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Abstract

A genome-wide association study was carried out in 1,020 case subjects with recurrent early-onset 

major depressive disorder (MDD) (onset before age 31) and 1,636 control subjects screened to 

exclude lifetime MDD. Subjects were genotyped with the Affymetrix 6.0 platform. After extensive 

quality control procedures, 671,424 autosomal SNPs and 25,068 X chromosome SNPs with minor 

allele frequency greater than 1% were available for analysis. An additional 1,892,186 HapMap II 

SNPs were analyzed based on imputed genotypic data. Single-SNP logistic regression trend tests 

were computed, with correction for ancestry-informative principal component scores. No genome-

wide significant evidence for association was observed, assuming that nominal P < 5 × 10−8 
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approximates a 5% genome-wide significance threshold. The strongest evidence for association 

was observed on chromosome 18q22.1 (rs17077540, P = 1.83 × 10−7) in a region that has 

produced some evidence for linkage to bipolar I or II disorder in several studies, within an mRNA 

detected in human brain tissue (BC053410)and approximately 75 kb upstream of DSEL. 

Comparing these results with those of a meta-analysis of three MDD GWAS datasets reported in a 

companion article, we note that among the strongest signals observed in the GenRED sample, the 

meta-analysis provided the greatest support (although not at a genome-wide significant level) for 

association of MDD to SNPs within SP4, a brain-specific transcription factor. Larger samples will 

be required to confirm the hypothesis of association between MDD (and particularly the recurrent 

early-onset subtype) and common SNPs.
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Introduction

Major depressive disorder (MDD) is a common psychiatric disorder with a lifetime 

prevalence of 10–15% in most large studies. Despite the availability of medication and 

psychotherapeutic treatments, recurrent or chronic course is common (60–80%)1, often with 

comorbid anxiety or substance use disorders, substantial impact on family and work life and 

on physical health, and an approximately 4% risk of eventual suicide (higher in more severe 

cases).2 MDD is diagnosed when an individual experiences one or more major depressive 

episodes in the absence of other diagnoses such as bipolar-I or -II disorder, schizoaffective 

disorder or schizophrenia. An episode is defined as two or more weeks during which the 

person experiences impaired functioning and five or more key symptoms (dysphoric mood, 

loss of enjoyment, suicidal thoughts or acts, agitated or slowed movements, guilty or self-

denigrating feelings, fatigue, and disturbances of sleep, appetite, concentration).3

The heritability of MDD has been estimated at approximately 40% in population-based twin 

studies4, and higher in clinical samples5 or with repeated assessments.6 There is an 

approximately three-fold increase in risk to first-degree relatives.4 Risk is also increased by 

severe childhood trauma or parental loss7, probably interacting with genetic vulnerability.8 

Recurrent episodes and early onset in probands predict greater familial risk, although the 

size of these effects is controversial.4, 9–11 Women are at two-fold greater risk of MDD, and 

there are probably both common and independent genetic factors in men and women, with 

similar heritability.12, 13 Although MDD is more frequent in relatives of probands with 

bipolar disorders and schizophrenia, those disorders are not more frequent in relatives of 

MDD probands.14 The degree or nature of overlap in genetic factors underlying these 

disorders remains unclear.

The Genetics of Recurrent Early-Onset Depression (GenRED) project is creating a large 

clinical sample, based in the National Institute of Mental Health repository program, for 

molecular genetic studies of MDD. GenRED I recruited affected sibling pair families for 

linkage studies10, 15, 16, and GenRED II is currently recruiting additional cases for 
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association studies. We have focused on probands with recurrent MDD, early age at onset 

and positive family history as indices of increased genetic risk.

We present here the results of an initial case-control genome-wide association study 

(GWAS) of recurrent early-onset MDD using single nucleotide polymorphism (SNP) array 

technology. A companion article presents a second MDD GWAS in the STAR*D 

antidepressant effectiveness trial sample and a meta-analysis of the GenRED, STAR*D and 

publicly-available Genetic Association Information Network (GAIN-MDD) GWAS datasets.
17 We did not observe genome-wide significant evidence for association in the GenRED or 

combined analyses. The meta-analysis demostrated increased statistical support for one of 

the top GenRED findings, for SNPs in the gene encoding the Sp4 transcription factor. Many 

of the most robust GWAS findings to date have been detected in samples of 10,000–20,000 

cases (plus controls), with genotypic relative risks typically in the 1.1–1.2 range.18 Thus, 

larger samples will be required to clarify whether any of our findings represent true 

associations, and whether recurrent, early-onset MDD is a uniquely valuable phenotype for 

association studies.

Methods and procedure

Subjects

Genotyping was attempted for 1,110 MDD cases (655 recruited by GenRED I and 455 by 

GenRED II). The 1,636 control subjects were selected from the Molecular Genetics of 

Schizophrenia (MGS)19 sample. All subjects were of European ancestry. Clinical 

characteristics are summarized in Table 1 for samples that passed all quality control filters 

and were included in the analyses presented here.

Cases were recruited from clinical settings and through media and internet announcements 

and advertisements. After giving written informed consent, participants were interviewed by 

phone or in person using the Diagnostic Interview for Genetic Studies20 version 3 (http://

nimhgenetics.org). Two independent expert reviewers achieved consensus ratings of DSM-

IV mood and comorbid disorder diagnoses and associated course of illness variables, based 

on the DIGS, a narrative summary, and available treatment records and/or informant reports 

from the Family Interview for Genetic Studies (FIGS). Eligible probands had an MDD 

diagnosis, two or more episodes (or one episode lasting at least three years), onset before 

age 31, at least one sibling or parent with recurrent MDD with onset before age 41, MDD 

independent of substance dependence (i.e., no lifetime dependence, prior to dependence, or 

after at least two years of remission from dependence), no diagnosis of bipolar or 

schizoaffective disorder or schizophrenia, and no suspected bipolar-I disorder in a parent or 

sibling.10 In GenRED I, at least one affected sibling was directly interviewed. In GenRED 

II, MDD in a parent or sibling was documented by FIGS with the proband, supplemented 

when necessary by a telephone interview with a relative. Additional family history was 

obtained by FIGS. Because of the excess of female probands, we replaced some female 

GenRED I probands with a male sibling who met proband eligibility criteria.

MGS control subjects were recruited by Knowledge Networks, Inc. (Menlo Park, CA), a 

survey research company, from a nationally-representative marketing panel recruited by 
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random digit dialing methods.19 Control participants consented to anonymization and 

deposition of their DNA and clinical information in the NIMH repository for use in any 

medical research. They completed an online questionnaire including a lifetime version of the 

Composite International Diagnostic Interview-Short Form (CIDI-SF) for common mood, 

anxiety and substance use diagnoses21, supplemented by questions about schizophrenia, 

psychosis or bipolar disorder. After excluding those who endorsed or failed to answer these 

latter questions (or who were outliers in total number of items endorsed), MGS selected 

2,653 European-ancestry controls who passed SNP QC. We then excluded controls who met 

CIDI-SF criteria for MDD, or who reported recurrent depression but missed MDD by one 

criterion, leaving 1,636 controls for analysis.

Genotyping and quality control (QC)

Samples were genotyped with the Affymetrix 6.0 genome-wide SNP array at the Broad 

Institute Center for Genotyping and Analysis (Cambridge, MA) in three batches: 863 

controls, as part of the GAIN schizophrenia project (late 2007); GenRED cases (early 2008); 

and 773 controls, under MGS grant funding (mid-2008). Genotypes were called with 

Birdseed (version 2).22 QC analyses were carried out using PLINK23 supplemented by local 

software (see online Supplementary Methods for details). We excluded SNPs and control 

samples that failed either MGS or GenRED QC criteria, which were selected by determining 

thresholds that achieved a balance between a low genomic control λ value and inclusion of 

more data.

Criteria for included SNPs were call rate >97% for autosomes, >98% for chromosome X in 

females or >99% in males; minor allele frequency >1%; Hardy-Weinberg P-value >10−6 in 

controls; <3 Mendelian errors detected in 30 MGS trios; <2 discordant duplicate genotypes 

in GenRED duplicates or <3 in 90 MGS specimens genotyped in both the GAIN and 

NonGAIN experiments; case-control call rate difference <2% for autosomes or <1% for X 

chromosome; and passing a 1df plate-effect test (no plate differing from all others with 

P<10−8, or <2 plates with P<10−4). Each SNP passed these criteria in both MGS and 

GenRED samples. After QC, 671,424 autosomal and 25,068 X chromosome SNPs were 

included.

Criteria for DNA samples were call rate >97%; non-outlier for mean heterozygosity across 

all SNPs and for ancestry principal component scores (EIGENSTRAT24); pairwise identity-

by-descent estimates not >0.1 with many other samples (pairs of apparent relatives were also 

inspected and one retained); and non-ambiguous heterozygosity values for X chromosome 

SNPs in females (these samples were excluded only for X chromosome analyses if they 

passed autosomal QC). Additional details about population substructure analyses are 

provided in online Supplementary Methods. Further analyses included 1,020 cases and 

1,636 controls.

Statistical analyses

Association between single genotyped SNPs and case-control status was tested with logistic 

regression (trend test) using PLINK. Genotypic dosages (the estimated number of test 

alleles) were imputed for all HapMap II SNPs with MACH 1.0 software25 for autosomal 
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SNPs and with IMPUTE26 for X chromosome SNPs, using a Hidden Markov Model 

algorithm and a training dataset consisting of phased HapMap CEU haplotypes. This 

provided an additional 1,892,186 SNPs (1,849,062 autosomal and 43,124 X chromosome 

SNPs) for testing in addition to the genotyped SNPs, after filtering for MAF > 1% and 

imputation r2 > 0.3 (an estimate of expected agreement between imputed and actual 

genotypes). This threshold was used in four previous GWAS meta-analyses because it 

removed most poorly-imputed SNPs but few well-imputed SNPs.27–30 Association tests for 

imputed SNPs were carried out with local software using the same logistic regression model. 

For all tests, ancestry-informative principal components were included as covariates.24 Each 

SNP was tested for all subjects, and then separately for males and for females. For the 

primary analysis of all subjects, a reasonable threshold for 5% genome-wide significance is 

a nominal P-value less than 5 × 10−8, based on three estimates assuming that all common 

SNPs have been directly or indirectly tested.31–33 The analyses of male and of female 

subjects were considered exploratory.

As described in online Supplementary Results, we also separately examined results for SNPs 

in or near forty-one mood disorder candidate genes, including single-SNP tests and a 

permutation-based aggregate test (page S-22) of whether P-values in these genes were more 

significant than expected by chance.

Power analysis

Results of power analyses are shown in Table S3. In the primary analysis, for log additive 

transmission, power was 78% to detect a locus with MAF of 0.25 conferring a genotypic 

relative risk (GRR) to heterozygotes of 1.45, or 45% for MAF of 0.4 and GRR of 1.35.

Data sharing

Genotypic and clinical data are available to qualified scientists through controlled-access 

repository programs: the NIMH repository program (http://nimhgenetics.org). for the 

GenRED sample; and dbGAP (http://www.ncbi.nlm.nih.gov/gap) for MGS controls.

Results

Figure 1 illustrates results for the primary analysis and the quantile-quantile plot of observed 

vs. expected chi-square values for all genotyped and imputed SNPs. The genomic control λ 
value (the observed median chi-square divided by the expected median value of 0.456 under 

the null hypothesis) was 1.031, indicating that there was no meaningful inflation of test 

statistics.34

Table 2 lists results with P < 10−5 for each of the three analyses. (Online file 

genred_supplementary_data.txt provides data for all results with P < 0.001 in any analysis.) 

Rows report data for the “best” SNP in independent regions (whether gene-containing or 

not) with P < 10−5 for one or more SNPs. In most regions, many SNPs were in strong 

linkage disequilibrium (LD) and gave similar results. Genes and other functional elements 

are noted in the table if P-values less than 10−5 were observed either within the transcribed 

boundaries of the gene, or within 50 kb upstream or downstream, except that the closest 

genes are listed for some nongenic regions. Table S13 provides names of these genes 
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summarizes their known functional roles. Regions in Table 2 for which no gene or element 

is listed have peaks of similarity to known regulatory sequences by the ESPERR regulatory 

potential method available as a UCSC browser track.35

There were no genome-wide significant findings. Three of the top regions in the primary 

analysis also produced P-values less than 10−5 in the meta-analyses that are presented in a 

companion article.36 (Low meta-analytic P-values required a consistent allelic direction of 

association across samples.) In the primary meta-analysis (Broad phenotype) that included 

all MDD cases from GenRED, STAR*D and GAIN-MDD, SNP rs17144465 in SP4 

(7p14.3) had P= 8.38 × 10−7, lower than that for GenRED alone (P=5.97 × 10−6). Another 

two of top GenRED regions (18q22.1 and 5p13.2) yielded P<10−5 In the Narrow meta-

analysis (recurrent early-onset MDD in all samples). For 18q22.1 (rs17077540), the meta-

analysis (P=7.55 × 10−7) did not provide stronger support than GenRED alone (1.83 × 10−7). 

For 5p13.2, the meta-analysis P-value (1.68 × 10−6) was slightly smaller than for GenRED 

alone (P=2.49 × 10−6). Please see the companion article for further details.

Figure 2 includes genome browser plots showing association P-values and relevant genomic 

information for three regions: 18q22.1 which produced the lowest GenRED P-value (all 

subjects); SP4/7p15.3, the best finding that received increased support in the meta-analysis; 

and 1p13.3, which was not supported in the meta-analysis, but contained the largest number 

of SNPs with the lowest P-values in two large LD blocks in the GenRED analysis, and 

which spans a set of interesting candidate genes. Genotyping cluster plots for top SNPs with 

P<10−6 (Table 2) or tags for those SNPs are provided in online file 

SNP_intensity_cluster_plots.pdf.

In the 41 mood disorder candidate genes (see Tables S5 and S6), the lowest P-value 

(0.000067) was observed in an intron of CACNA1C (calcium channel, voltage-dependent, L 

type), a gene with strong evidence for association to bipolar disorder.37 For further details, 

see Table S6. The aggregate analysis did not yield evidence that the distribution of P-values 

in these genes was more significant than expected by chance.

Discussion

A GWAS of 1,020 recurrent early-onset MDD cases and 1,636 screened controls did not 

detect genome-wide significant evidence of association. This is consistent with other GWAS 

results for common, genetically complex diseases38, 39: the genotypic relative risks (GRR) 

of significant findings have typically been in the range of 1.1–1.2, often requiring samples 

10,000–20,000 cases obtained by combining multiple samples (in each of which the 

evidence for association can be quite modest). The odds ratios listed in Table 2 are much 

higher. They could represent a combination of false positive results and of true associations 

whose GRRs have been over-estimated by selecting the best results in one study (the 

“winner’s curse” effect), and particularly with an underpowered sample. A companion 

paper17 provides details of meta-analyses combining the GenRED, STAR*D and GAIN-

MDD samples. We are also participating in an effort to carry out larger meta-analyses of 

MDD GWAS data through the Psychiatric GWAS Consortium.39, 40 But because findings 
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with the strongest statistical evidence for association in each study are most likely to be true 

positive results, we briefly review here several interesting findings.

Chromosome 18q22.1 (Figure 2) has produced suggestive evidence for linkage to bipolar 

disorder in several studies41–47 (although not in the largest combined analysis48) and 

particularly in families with multiple bipolar-II (BP-II) cases43, 44 (characterized by 

recurrent depression plus hypomania). Several studies have also reported suggestive linkage 

to MDD or related personality traits in the same region.49 Study of a family with diverse 

mood disorders46 identified DSEL (dermatan sulfate epimerase-like), a brain-expressed gene 

in which two non-synonymous mutations were observed in cases but not in controls.50 

Dermatan sulfate epimerase is involved in D-glucuronic acid metabolism and tumor 

rejection. The most strongly associated SNPs in the present study are upstream of DSEL, in 

regions with possible regulatory functions, and within an mRNA (BC053410), identified in 

pooled human brain tissue, that encodes a hypothetical protein (LOC643542) of unknown 

function. Familial co-aggregation of MDD and BP-II disorder has been inadequately 

studied. BP-II was an exclusion criterion for GenRED probands, although in GenRED I, BP-

II was diagnosed in 4.2% of the siblings selected for interview because of a history of 

depression, so the prevalence among all siblings was lower.

On chromosome 1p13.3 (Figure 2), low P-values spanned two broad LD blocks that include 

many genes (Table 3), including those encoding two G proteins (GNAI3, GNAT2), a G-

protein coupled receptor related to biogenic amine receptors (GPR61), a transcription factor 

gene resembling those involved in neurodegenerative syndromes (ATXN7L2), and genes 

involved in neuronal growth and plasticity (AMIGO1) and neuronal apoptosis (SORT1). 

Current hypotheses suggest that both G-protein coupled signaling and mechanisms of 

neuronal plasticity are relevant to the pathophysiology of MDD and the actions of 

antidepressant drugs.51

The signal on chromosome 7p15.3 is within SP4 (Figure 2), and comes almost entirely from 

females (P=4.44E-05 vs. 0.148 in males). Sp4 is specific to neurons and expressed primarily 

early in development52–54, forms complexes with estrogen receptors that influence 

regulation of many genes55, and could play a role in the mediation of neuroprotective 

enzymes and in glutamate-induced neurotoxicity.56, 57 Zhou et al. have reported that reduced 

expression of Sp4 in mice leads to hippocampal vacuolization, age-dependent reduced 

expression of neurotrophin 3 and deficits in sensorimotor gating and contextual memory54, 

possibly mediated by defects in the development of dentate gyrus cells.58 There is also 

evidence for a possible association between bipolar disorder and SNPs in the promoter of 

ADRBK2 (beta adrenergic receptor kinase 2, previously GRK3) which disrupt an Sp1/Sp4 

binding site.59 Thus there are several mechanisms by which SP4 could play a role in 

psychiatric disorders.

In conclusion, we carried out a GWAS of recurrent early-onset MDD in 1,020 cases and 

1,636 controls of European ancestry. No genome-wide significant evidence for association 

was observed. Of the strongest signals reported in the GenRED sample, the meta-analysis in 

the companion article17 provides the greatest support for association to SNPs in SP4. Much 
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larger samples may be needed to determine whether there are true associations between 

MDD and common SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide results
Panel A shows the association test result for each SNP (genotyped and imputed) as -log10(P-

value), for the primary analysis of all subjects. The largest symbols represent P<10−6, and 

the intermediate-size symbols represent P<10−5. For the same SNPs, Panel B shows the 

quantile-quantile plot of observed vs. expected Χ2 (1df) statistics. The genomic control λ 
value was 1.032. Manhattan and QQ plots are shown for males and for females separately in 

online Figures S7 and S14.
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Figure 2. Results for selected chromosomal regions
Shown from top to bottom of each plot are chromosome ideogram (plotted region marked 

with vertical red bar); genomic information (RefSeq genes with direction of transcription; 

and in Panel A, mRNAs); association test results (−log10[P]) in the primary analysis of all 

subjects; and HapMap linkage disequilibrium (r2) information.
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Table 1

Sample characteristics

Cases Controls

N 1020 1636

Male 29% 56%

Age at recruitment 40.5 ± 11.9 52.5 ± 17.2

Age at onset 16.85 ± 5.4

Major Depressive Disorder episodes:

 Recurrent 98%

 Single ≥ 3 years 2%

 Number of episodes 8.4 ± 14.6

 Longest episode (days) 931 ± 1896

Chronic course (consensus rating) 39%

Number of 8 MDD criteria met during worst episode (plus dysphoric mood) 6.8 ± 1.1

Comorbid anxiety disorder diagnosis (panic, agoraphobia, social phobia) 35%
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Table 2

Strongest association findings (All, Male or Female subjects)

The SNP with the lowest P-value is listed for all genes or nongenic regions with at least one SNP with P < 10−5, separately for the analyses of all 

subjects (primary analysis), males, and females. The Annotation column lists all genes in the region with one or more SNPs with P < 10−5, either 
within the gene or within 50 kb upstream (up) or downstream (dwn), unless a longer distance is listed. Other functional elements in a region are as 

noted. Nongenic regions all contain peaks of bioinformatically predicted high homology to known regulatory sequences.35

OR=Odds Ratio for the tested allele, indicated in bold font in the Alleles column.

Frq=frequency of the tested allele in Controls. (Case-control frequencies for All Subjects findings are available in online Table S11.)

R2 indicates the R2 predicted (by MACH 1.0) between imputed and actual genotypes; R2 = 1 indicates that the SNP was genotyped.

Note that many of these regions contained multiple SNPs with low P-values, see online file genred_supplementary_data.txt.

1
P=6.04 × 10−7 in the meta-analysis of Narrow cases (GenRED, STAR*D and GAIN) in a companion paper.17 2- P=1.88 × 10−6 in the Narrow 

meta-analysis.
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