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Aminoglycosides are chemically diverse, broad-spectrum antibi-
otics that target functional centers within the bacterial ribosome
to impact all four principle stages (initiation, elongation, termina-
tion, and recycling) of the translation mechanism. The propensity
of aminoglycosides to induce miscoding errors that suppress the
termination of protein synthesis supports their potential as
therapeutic interventions in human diseases associated with pre-
mature termination codons (PTCs). However, the sites of interac-
tion of aminoglycosides with the eukaryotic ribosome and their
modes of action in eukaryotic translation remain largely un-
explored. Here, we use the combination of X-ray crystallography
and single-molecule FRET analysis to reveal the interactions of
distinct classes of aminoglycosides with the 80S eukaryotic
ribosome. Crystal structures of the 80S ribosome in complex with
paromomycin, geneticin (G418), gentamicin, and TC007, solved at
3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding
sites within the large and small subunits, wherein the 6′-hydroxyl
substituent in ring I serves as a key determinant of binding to the
canonical eukaryotic ribosomal decoding center. Multivalent bind-
ing interactions with the human ribosome are also evidenced
through their capacity to affect large-scale conformational dynam-
ics within the pretranslocation complex that contribute to multiple
aspects of the translation mechanism. The distinct impacts of the
aminoglycosides examined suggest that their chemical composi-
tion and distinct modes of interaction with the ribosome influence
PTC read-through efficiency. These findings provide structural and
functional insights into aminoglycoside-induced impacts on the
eukaryotic ribosome and implicate pleiotropic mechanisms of ac-
tion beyond decoding.
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Aminoglycosides are broad-spectrum, bactericidal antibiotics
of critical importance to the treatment of life-threatening

infections. Despite their proven clinical utility, these therapeutics
can lead to potential toxic side effects, including ototoxicity and
nephrotoxicity, and an increased prevalence of resistance (1, 2).
The most heavily employed and extensively investigated amino-
glycosides contain a central 2-deoxystreptamine (2-DOS) ring.
This class is comprised of both natural products (such as neo-
mycin and paromomycin) and semisynthetic derivatives (such as
dibekacin and amikacin).
The 2-DOS aminoglycosides effectively inhibit protein syn-

thesis in bacteria by targeting the mechanisms of translation
elongation, termination, and recycling (3–6). These activities
have, in part, been distilled to the capacity of the 2-DOS rings to
engage chemical features within the deep and narrow major
groove of the 16S rRNA secondary structure (7). Structural in-
sights into the mechanisms of 2-DOS aminoglycoside action
were first obtained through chemical footprinting methods (8)
and later using RNA fragments of the bacterial ribosome (7, 9)
and isolated Thermus thermophilus 30S ribosomal subunits (10–

12). These investigations revealed that aminoglycosides interact
within the major groove of a conserved, asymmetric internal loop
within the helix 44 (h44) decoding center of 16S rRNA within the
small ribosomal subunit to affect the decoding mechanism.
Structural investigations using isolated 30S ribosome subunits

led to the hypothesis that the universally conserved A1492, A1493,
and G530 residues within the h44 decoding center actively “mon-
itor” the interaction between the tRNA anticodon and the mRNA
codon (12). To do so, A1492/A1493 must extrude from the helical
axis of h44 to “recognize” the codon–anticodon helix through A-
minor groove interactions. This local conformational change then
couples to global conformational changes in the ribosome (domain
closure) that enable tRNA accommodation. It was also suggested
that the inability of mismatched near-cognate tRNA to form
proper A-minor groove interactions prevents domain closure,
thereby favoring tRNA rejection (11). The binding of paromomy-
cin and neomycin to helix 44 in the crystals of isolated 30S subunits
also extrudes both decoding nucleotides A1492 and A1493, leading
to the hypothesis that stabilization of extrahelical A1492/A1493
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positions is directly related to the misincorporation of near- and
noncognate tRNAs into the ribosome during translation (10, 12).
However, later studies of the fused-ring 2-DOS aminoglycoside
apramycin demonstrated that extrahelical A1492/A1493 positions
alone are insufficient to induce miscoding (13). The non-DOS
aminoglycoside streptomycin, which also promotes translation
errors, exerts distinct conformational changes in the decoding site
such that residues A1492 and A1493 remain intercalated within
the h44 helical axis (14).
Recent structural studies of the functional 70S ribosome in

complex with mRNA and tRNAs in the P- and E-sites (peptidyl-
and exit-tRNA–binding sites, respectively) show that the
A1493 nucleotide adopts an extrahelical positon in the absence
of tRNA within the decoding site (15). By contrast, the decoding-
specific changes in positions of nucleotides A1492 and G530 and
domain closure require the binding of either cognate or mis-
incorporated near-cognate tRNAs (16, 17). In the context of the
70S ribosome, paromomycin binding to the decoding center was
also shown to elicit moderate structural rearrangements in the
A-site tRNA-binding pocket, which may influence translation
accuracy (16, 18, 19).
Binding of 2-DOS aminoglycosides to the ribosome has also been

documented within the major groove of Helix 69 (H69) of the large
ribosomal subunit, which forms a critical intersubunit bridge (B2a)
that directly contacts the h44 decoding site of the small subunit (3).
Paromomycin or neomycin binding to H69 alters the conformation
of bridge B2 and the process of small subunit rotation with respect
to the large subunit that accompanies nearly every aspect of the
translation mechanism (4, 20). These impacts also hinge on inter-
actions of the 6′-OH group of h44-bound aminoglycosides with the
universally conserved A1913 residue located within the apical tip of
the H69 stem loop (21).
The basis of 2-DOS aminoglycoside-class antibiotic selectivity is

understood to arise from structural differences in the h44 decoding
sites of bacterial and eukaryotic ribosomes. In eukaryotes, the
presence of A1408G and G1491A base substitutions (bacterial
numeration) within h44 (Fig. 1A) alter key binding interactions

mediated by aminoglycoside rings I and II (22, 23). Nonetheless,
specific 2-DOS aminoglycosides such as geneticin (G418) retain
the capacity to bind eukaryotic ribosomes. G418 belongs to the 4,6-
linked aminoglycoside class that contains a ring I 6′-OH group
(Fig. S1). Its interactions with the eukaryotic h44 decoding region
are accommodated by conformational plasticity within both the
target and drug that enables a network of specific, stabilizing in-
teractions (24).
Investigations of aminoglycoside activity in both human cells

and the wheat embryo system revealed that aminoglycosides
such as paromomycin and G418, which both possess a 6′-OH
group in ring I, are efficient in promoting missense errors
during protein synthesis (25, 26). Paromomycin and, with much
less efficiency, neomycin were also recognized as being effec-
tive suppressors of nonsense mutations (27). Since that time,
gentamicin, G418, tobramycin, and amikacin, which possess
either a 6′-OH or 6′-NH2 moiety in ring I, have all been shown
to induce suppression of premature termination codons (PTCs)
(28). Mutations that introduce PTCs are understood to be
causative in ∼11% of the >5,000 human genetic diseases iden-
tified to date, including sporadic cancers arising from mutations
in tumor-suppressor genes such as TP53 (29, 30). Consequently,
aminoglycosides are regarded as potential therapies for the
treatment of human disease.
The application of aminoglycosides for suppression therapies

has been limited in practice by their toxicities and their low ef-
ficiencies of stop-codon read-through (31, 32). Despite these
shortcomings, aminoglycosides have been enrolled in clinical
trials for the treatment of cystic fibrosis (33) and Duchenne
muscular dystrophy (34) and have shown therapeutic potential
for the treatment of dystrophic epidermolysis bullosa (35) and
Werner syndrome (36) as well as specific cancers (37). The
neomycin derivative TC007 has also been tested in the context of
spinal muscular atrophy (SMA) in both human fibroblasts (32)
and mouse models of disease (38).
As the molecular basis of aminoglycoside action against

eukaryotic ribosomes is currently lacking, we have examined the
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Fig. 1. Aminoglycosides target the decoding center of
the 80S ribosome in a different ways. (A) Secondary
structure of h44 of the small ribosomal subunit from
bacteria (E. coli) and eukaryotes (identical in S. cerevisiae
and Homo sapiens). Substituted nucleotides implicated
in the selectivity of aminoglycosides are marked in red.
(B) Binding of paromomycin (PAR-1) to h44 in the 80S
ribosome from S. cerevisiae. Paromomycin is colored
violet, and rings I, II, III, and IV of paromomycin are
marked. Ring I is in stacking with A1754. Residues
A1754, and G1645 are colored pink. h44 is shown in
orange; H69 of the large ribosomal subunit is shown
in light blue; and the eukaryote-specific protein
eS30 is shown in green. Oxygen atoms are colored
red, and nitrogen atoms are colored blue. (C) Com-
parison of PAR-1 binding to h44 in the 70S ribosome
from T. thermophilus (PDB ID code 5EL6) and the 80S
ribosome from S. cerevisiae. Paromomycin in complex
with 70S is shown in yellow; residues of 16S rRNA of
70S are in green; other color-coding is as in B. The
shift in the position of A1754 and the movement of
5′-OH group in ring III of paromomycin are marked
with arrows. (D) Binding of gentamicin (GENT-1) to
h44 in the 80S ribosome from S. cerevisiae. Genta-
micin is shown in green; other color-coding is as in
B. Rings I, II, and III of gentamicin are marked, and
atoms located at a hydrogen bonding distance are
connected by dashed lines.
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interactions of aminoglycosides with 80S eukaryotic ribosomes
using X-ray crystallography and single-molecule FRET (smFRET)
imaging. X-ray structural analyses of Saccharomyces cerevisiae 80S
ribosomes in complex with paromomycin, G418, gentamicin, and
TC007 reveal that aminoglycosides interact at multiple sites within
both 18S and 28S rRNA. Multivalent aminoglycoside–ribosome
interactions were further corroborated by the impact of amino-
glycosides on the spontaneous dynamics within the human ribo-
some and their propensities to promote errors in tRNA selection.
These investigations further revealed that TC007 exhibited distinct
modes of interaction with and miscoding and structural impacts on
the eukaryotic ribosome at ∼20-fold lower concentrations than
observed for G418, paromomycin, or gentamicin. These findings
are consistent with the efficacy profiles of TC007 in human cells
and with this compound’s unique capacity to promote PTC read-
through.

Results
Aminoglycoside Binding to the Eukaryotic h44 Decoding Site. To
investigate the binding mode of aminoglycosides with low affinity
to the 80S ribosome, we first sought alternative experimental
conditions for S. cerevisiae 80S ribosome crystal treatment. Os-
mium hexamine, which is normally present in this procedure,
binds rRNA, including the aminoglycoside-binding site within
the h44 decoding region (39). Hence, to examine the binding of
aminoglycosides that exhibit low affinities for the 80S ribosome,
we removed osmium hexamine and instead treated crystals of the
ribosome in the presence of high concentrations (up to 4 mM) of
aminoglycosides (Materials and Methods).
Under these conditions, we obtained a structure of the 4,6-

linked aminoglycoside G418 bound to the S. cerevisiae 80S ribo-
some at 3.7-Å resolution (Table S1). A similar structure had been
previously solved in the presence of osmium hexamine [Protein
Data Bank (PDB) ID code 4U4O] (24), where it was shown that
G418 can compete with osmium hexamine for h44 binding. In
both structures, G418 was found to exhibit canonical binding to
the h44 decoding site with ring I of the antibiotic stacking on
nucleotide A1754 (G1491 in bacterial numbering), displacing the
conserved nucleotides A1755 (A1492) and A1756 (A1493) away
from the helical axis (Fig. S2). There, the 6′-OH group of ring I is
positioned within hydrogen bonding distance (2.7 Å) of the
N2 atom of G1645 (A1408) (Fig. S2). Replacement of the 6′-OH
group in ring I with a hydrogen bond acceptor, such as a 6′-
NH2 group, could create repulsion from the N2 atom of G1645
(A1408) precluding aminoglycoside binding. Likewise, the pres-
ence of adenosine instead of guanosine at position 1754 (1491)
would disrupt Watson–Crick base pairing with C1646 (C1409), a
structural component of the bacterial h44 decoding site that is
essential to aminoglycoside binding (7, 24, 40).
Using similar osmium hexamine-free conditions, we solved an 80S–

paromomycin structure at 3.3-Å resolution (I/σ = 0.96, CC1/2 = 34.9)
(Table S1). Like G418, the 4,5-linked aminoglycoside paro-
momycin contains a 6′-OH group in ring I (Fig. S1). As for
G418, at high drug concentration (4 mM for soaking of paro-
momycin), we observed weak, positive electron density for
paromomycin (PAR-1) in the h44 decoding site (Fig. 1B).
Within this site, rings I and II of paromomycin adopted a po-
sition globally similar to that of G418, wherein ring I of the
antibiotic stacked on nucleotide A1754 (G1491 in bacterial
numbering), and the contact between the 6′-OH group in ring I
and the N2 atom of G1645 (A1408) was maintained (3.3 Å
distance) (Fig. S3A). To avoid steric clash with the 6-NH2
group of A1754 (G1491), ring III of paromomycin was found to
be rotated compared with the structure of paromomycin bound
to the bacterial 70S ribosome (Fig. 1C) (18). This repositioning
reoriented ring IV within the major groove, breaking the hy-
drogen bond between the 5′-OH in ring III and the N7 atom of
G1491 present in the 70S–paromomycin complex. Interestingly,

the 4′-OH group in ring I of paromomycin is positioned within
hydrogen bonding distance (3.5 Å) of the ζ-NH2 group of lysine
3 of the eukaryote-specific protein eS30, which approaches
h44 from the minor groove face (Fig. 1B). This interaction,
which is absent in both the paromomycin–70S ribosome com-
plex and the 80S–G418 structures (18, 24), may partially com-
pensate for the reductions in binding affinity arising from
sequence changes within the h44 decoding site (Fig. 1A) so that
low levels of miscoding are maintained (25, 26).
Gentamicin, a 4,6-linked aminoglycoside produced as a mix-

ture of C1, C1a, C2, and C2a isoforms (29) and which contains
amine along with a few methyl groups in the 6′ position of ring I
(Fig. S1) (41), does not induce errors in translation but competes
with paromomycin-induced miscoding (26). These data suggest a
common binding site within h44 but a unique mode of in-
teraction with the 80S ribosome. As for paromomycin, the crystal
structure of the 80S ribosome in complex with gentamicin, solved
at 3.4 Å resolution (I/σ = 0.94, CC1/2 = 33.5) (Table S1), exhibits
positive electron density in h44 (GENT-1) at a high drug con-
centration (4 mM) (Fig. S3B). Under these conditions, genta-
micin’s ring I does not stack upon A1754 (G1491), and
nucleotides A1755 (A1492) and A1756 (A1493) adopt only
semiextruded positions relative to the axis of h44 so that their
N2 atoms are within hydrogen bonding distance of the 2′-NH2
group of ring III. Thus, positioned, rings I–III also make
sequence-specific contacts with O4 of U1758 (U1495) and N7 of
G1642 (G1405) (Fig. 1D and Fig. S3C). This noncanonical pose,
which appears to be enforced by repulsion between the N1 and
N2 atoms of G1645 (A1408) and the NH2-group in the 6′ posi-
tion of ring I, rationalizes gentamicin’s capacity to compete with
paromomycin binding while being unable to support miscoding.

Interactions of TC007 with the 80S Ribosome and Implications for PTC
Read-Through. SMA, a leading genetic cause of infantile death, is
an autosomal recessive disease for which there is currently no
cure (42). SMA is associated with the loss of full-length SMN
protein (43). Initial screens for small molecule-mediated sup-
pression therapies for potential treatment of SMA led to the
discovery of TC007, a three-ring 4,5-linked aminoglycoside
bearing a 6′-NH2 group on ring I (Fig. S1) (32). TC007 testing in
fibroblasts from SMA patients and in SMA mouse models
showed good toxicity profiles and prolonged the lifespan of SMA
mice while partially lessening the severity of disease (44).
To gain insight into TC007 interactions with the 80S ribosome,

we solved the X-ray structure of the 80S–TC007 complex at 3.7-Å
resolution (I/σ = 0.98, CC1/2 = 36.1) (Table S1). Consistent with a
steric clash between the 6′-NH2 and the G1645 (A1408) residue
(24), TC007 was not observed to bind the small subunit decoding
center, despite being present at 4 mM concentration. Accordingly,
no electron density was evidenced for the disordered nucleobases
of residues A1755 (A1492) or A1756 (A1493). However, positive
electron density was observed for TC007 (TC007-1) immediately
below the canonical decoding site and above intersubunit bridge
B3, spanning between h44 of the small subunit and Helix 71
(H71) of the large subunit at the intersubunit space (Fig. 2A and
Fig. S4A). A second TC007 molecule (TC007-2) was also evi-
denced between Helix 68 (H68) and Helix 70 (H70) in the large
ribosomal subunit, proximal to the highly conserved H69 element
of intersubunit bridge B2. This binding site is close to (within
∼10 Å) but is distinct from the noncanonical aminoglycoside-
binding site observed within the H69 major groove in the bacte-
rial ribosome (3, 20, 21) and distorts the H69 conformation (Fig. 2
A and B and Fig. S4B).

Interactions of TC007 with Bacterial 70S Ribosome. To shed light on
the selectivity of TC007, we solved the structure of the bacterial
70S ribosome from T. thermophilus cocrystallized in complex
with three tRNAs, mRNA, and TC007 at 2.95 Å (I/σI = 1.38,
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CC1/2 = 47.1) (Table S1), where the drug was at 50-fold excess
over the ribosome (Materials and Methods). As expected, we
observed strong positive electron density in the h44 decoding
site, where rings I and II were observed to overlap with those of
paromomycin (Fig. S4C). In contrast to ring III of paromomycin,
which interacts with the Hoogsteen face of G1491 (Escherichia
coli numbering), the O7 atom of ring III of TC007 is positioned
within hydrogen bonding distance of N4 of C1407. When TC007
was soaked into preformed crystals of the same 70S–tRNA–

mRNA complex (500 μM for 24 h), we were able to obtain a
structure at 3.05 Å resolution (I/σI = 1.25, CC1/2 = 39.9) (Table
S1) in which TC007 was bound in an identical position within h44
(TC007–h44) (Fig. S4D). As for neomycin, gentamicin, and
paromomycin binding to H69 within the Escherichia coli 70S ri-
bosome (3, 20, 21), TC007 was observed to make an array of
hydrogen bonding contacts with bases lining the H69 major
groove, including sequence-specific contacts with residues
G1921 and G1922 (Fig. S4 B and E). Remarkably, the orienta-
tion of TC007 is different from that in a previously reported
70S–neomycin structure (21): The position of ring II is similar
in the two antibiotics, but the positions of rings I and III are
swapped. As for gentamicin, intersubunit bridging contacts
present in both paromomycin and neomycin structures were not
observed due to the absence of ring IV. As H69 is sterically
accessible within the eukaryotic 80S ribosome, we attribute the
observed differences in TC007 binding to Ψ2264 (G1921) and
C2265 (G1922) substitutions present in the 80S ribosome (Fig.
S4 B and F), which likely disrupt the drug’s capacity to pack
tightly against the floor of the major groove. These findings
confirm that the TC007-binding sites in the T. thermophilus 70S
ribosome are distinct from those found in the 80S ribosome of
S. cerevisiae (Fig. S4B).

Aminoglycosides Inhibit Intersubunit Rotation of the Eukaryotic
Ribosome. To assess the impact of aminoglycosides on the dy-
namics of subunit rotation within functional 80S ribosome
complexes, we performed smFRET imaging on surface-
immobilized human 80S pretranslocation (PRE) complexes in
the absence and presence of paromomycin, G418, gentamicin,
and TC007 (45). As previously reported (45), in the absence of
drug, human PRE complexes predominantly exhibited a mixture
of lower-FRET (H2: ∼0.2 and H1: ∼0.4) hybrid state configu-

rations in which the 3′-CCA end of deacylated tRNA occupies
the large subunit E-site and the 3′-CCA end of peptidyl-tRNA
occupies either the aminoacyl (A)- or P-site, respectively (A/A
and P/E; A/P and P/E) (Fig. 3 A and B, Left). The addition of
paromomycin to the 80S PRE complex first lowered the average
FRET value of the hybrid-state tRNA configurations, suggesting
a relative stabilization of the H2 hybrid state in which peptidyl-
tRNA returns to its classic (A/A) position while deacylated
tRNA remains in its hybrid (P/E) state (46). This impact was
maximized at a drug concentration of ∼10 μM. Above this con-
centration, we observed the appearance of an intermediate-
FRET (∼0.55) state, followed by stabilization of a high-FRET,
classic (C) PRE complex conformation (Fig. 3B). The estimated
EC50 of this effect was ∼35 μM. These data are consistent with a
multivalent impact of paromomycin binding to the 80S PRE
complex, which first stabilizes peptidyl-tRNA in its classic posi-
tion within the A-site, followed by a shift of deacylated P-site
tRNA from its hybrid to its classic position. By contrast, G418,
which also bears a ring I 6′-OH substituent, only stabilized at an
intermediate-FRET state (∼0.55) (Fig. 3C). Notably, consistent
with the concentration range used to inhibit mammalian cell
culture growth (47), the EC50 of this impact was ∼2 mM. By
analogy to bacterial systems, the intermediate-FRET state may
reflect a reversal of subunit rotation from the P/E hybrid state,
which promotes a chimeric, intersubunit hybrid configuration of
deacylated P-site tRNA associated with the global inhibition of
translation factor binding (20, 21).
Analogous investigations of gentamicin, which contains a 6′-

NH2 group on ring I, also led to intermediate-FRET (∼0.55)
state stabilization, but the EC50 of its impact was approximately
an order of magnitude lower (∼100 μM) than that of G418 (Fig.
3D). TC007, which also has a 6′-NH2 group on ring I, exhibited
impacts on the 80S PRE complex that shared characteristics of
G418 and gentamicin as well as paromomycin, in which drug
binding was bimodal in nature. At concentrations below 2 μM,
TC007 predominantly promoted a lower-FRET PRE complex
conformation, in line with H2 hybrid state stabilization (A/A;
P/E). Higher TC007 concentrations increasingly stabilized an
intermediate-FRET (∼0.55) state, similar to that evidenced in
the presence of subsaturating paromomycin and saturating G418
and gentamicin concentrations (Fig. 3E). At 10 μM, both H2 and
intermediate-FRET PRE complex conformations persisted. Above
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this concentration the FRET distribution broadened substantially,
consistent with an increase in dynamic PRE complex behaviors.

Aminoglycoside-Induced Errors in tRNA Selection on the Eukaryotic
Ribosome. To evaluate the impact of aminoglycosides on amino-
acylated tRNA (aa-tRNA) miscoding at the A-site, we examined
the extent of aa-tRNA misincorporation of Phe-tRNAPhe into
surface-immobilized 80S initiation complexes (ICs) containing
(Cy3)Met-tRNAi

Met in the P-site, in which the A-site codon was
changed from the cognate UUU codon to the near-cognate UCU
codon. To provide adequate time for miscoding, the eEF1A(GTP)-
(Cy5)Phe-tRNAPhe ternary complex (20 nM) was incubated with
surface-immobilized ribosome complexes for 2 min (Materials and
Methods) followed by buffer exchange to remove unbound ternary

complexes. Using this approach, we could specifically examine the
extent of PRE complex formation in the absence of convoluting
signals arising from transient ternary complex binding events.
Consistent with a high-fidelity decoding mechanism, near-cognate
ternary complexes were efficiently rejected from the A-site in the
absence of drug so that little or no PRE complex formed (Fig. 4 A
and B, Left). By contrast, increasing levels of A-site miscoding were
observed as a function of paromomycin, G418, gentamicin, and
TC007 concentration. In each case, the extent of miscoding cor-
related with the concentrations of drug, where the EC50 of mis-
coding closely mirrored that observed for drug binding to the
cognate PRE complex (Figs. 3 and 4). Strikingly, the distribution of
FRET values exhibited by precomplexes bearing near-cognate
tRNA at the A-site were distinct from those bearing cognate
tRNAs; the near-cognate complexes were found to exhibit multiple
distinct FRET states (compare far right panels in Figs. 3 and 4).
Inspection of individual FRET trajectories of PRE complexes
bearing near-cognate tRNA in the A-site showed that the FRET
states observed were in dynamic exchange. These findings suggest
that the nature of the codon–anticodon pair in the A-site influ-
ences the ribosome’s interaction with antibiotics and tRNA in a
manner that affects both the conformation and dynamics of the
PRE complex.

Secondary Binding Sites: Hot Spots Targeted in the Eukaryotic 80S
Ribosome by Aminoglycosides. Aminoglycosides are positively
charged and are well known to bind a diverse range of RNA
molecules, including catalytic RNAs such as ribonuclease P, self-
splicing introns, and ribozymes (48–50). Crystal structures of the
isolated small ribosomal subunit as well as intact 70S ribosomes
from bacteria have all shown evidence of multiple aminoglycoside-
binding sites (3, 13, 14, 20, 21). The positively charged anticancer
drug cisplatin also has several binding sites in the 70S ribo-
some (51).
As high aminoglycoside concentrations were used in each of

our crystallographic investigations under conditions of rela-
tively low ionic strength (∼130 mM salt concentration) and
neutral pH (7.0–7.5), secondary binding sites were observed
for each of the aminoglycosides examined. While it is difficult
to link the binding sites observed with the impairment of
specific ribosome functions due to the presence of numerous
copies of rRNA genes in the genome, we note that several of
the secondary aminoglycoside-binding sites map to key func-
tional centers of the ribosome (Fig. 5A). These findings are
consistent with the known propensities of aminoglycosides to
show diverse impacts on the bacterial translation mechanism
(20, 52).
The peptide exit tunnel, which spans the peptidyl-transferase

center to the solvent side of the ribosome, is subjected to
translation regulation by small molecules and peptides that in-
duce translational stalling (53). We find that gentamicin, G418,
and TC007 each bind to the peptide exit tunnel (Fig. 5B).
Paromomycin was not found in the exit tunnel, suggesting that
only aminoglycosides with a maximum of three rings can be ac-
commodated within this pocket. Superposition with the structure
of the 50S ribosome subunit from Haloarcula marismortui com-
plexed with erythromycin shows that aminoglycosides and
erythromycin bind opposite sides of the exit tunnel wall (Fig.
S5A) (54). Interestingly, although each drug interacts with the
same 25S rRNA residues, the orientations of G418 and genta-
micin within the exit tunnel, which are very similar, are distinct
from TC007 (Fig. 5B). These distinctions likely reflect the unique
ring topologies of the 4,6-linked (G418 and gentamicin) and 4,5-
linked (TC007) aminoglycosides. Alignment of each of these
structures with that of the Escherichia coli ribosome containing
the SecM stalling peptide (55) suggests that aminoglycoside oc-
cupancy within the exit tunnel wall is unlikely to be sufficient to
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ing the impact of paromomycin (B), G418 (C), gentamicin (D), and TC007 (E)
on the equilibrium distribution of FRET states exhibited by the 80S PRE
complex. The concentration of antibiotic is indicated; n, number of single-
molecule observations made in each experiment.
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block the path of nascent peptides lacking bulky amino acid side
chains (Fig. S5B) (56, 57).
The E-site of the small ribosomal subunit is a potential point

of regulation of eukaryotic protein synthesis (45, 58, 59). We
observe that paromomycin (PAR-3), geneticin (G418-3), and
gentamicin (GENT-2) bind in the space normally occupied by
the E-site mRNA codon and exhibit similar ring I and II posi-
tions (Fig. 5C). Aminoglycoside binding in this region may have
important impacts on tRNA occupation within the translating
ribosome (45) and/or alter the mRNA-binding and -scanning
mechanism required for translation initiation (60). Similar to the
binding mode of streptomycin to the bacterial 30S subunit (14),
gentamicin (GENT-3) was also found within <4 Å of the mRNA
backbone wedged between helices 1, 44, 18, and 27 within the A-
site, where it interacts with the phosphate groups of residues
U9 and A11 (Fig. S6 A–C). In contrast to streptomycin, however,
gentamicin does not appear to induce substantial conformational
changes in h44 and h45. This same pocket was also occupied by
geneticin (G418-4) (Fig. S6C). In addition to potential impacts
on the initiation mechanism, binding in such proximity to the
decoding region may influence tRNA selection and translocation
of the mRNA–tRNA module during the elongation phase of
protein synthesis.
Aminoglycosides interact extensively with the intersubunit

region of the ribosome. Paromomycin (PAR-3) provides addi-
tional contacts between the subunits in the vicinity of bridge B2c
formed by h24 of the small subunit and H66 of the large subunit
(Fig. 5D). Gentamicin (GENT-4, 5) is also observed to bind
bridge B2c (Fig. 5E), and GENT-6 binds bridge B4, a protein–
RNA bridge comprised of H34 of the large subunit and protein
uS15 of the small subunit (Fig. 5F). The interactions of the
GENT-5 molecule with bridge B2c are expected to preclude
bridge B2c rearrangements relative to h24 in the small subunit
(Fig. 5E). These findings, together with the observation that
TC007 binds close to bridge B2c (Fig. S6D) and B3 (Fig. 2A), are
consistent with aminoglycosides interfering with intersubunit
rotation in distinct ways to affect the translation mechanism.
Such distinctions may impact the mechanism of translocation in
particular, which requires dramatic remodeling events within the
central bridge B2 domain (20, 21), as well as rearrangements in
B4 (61, 62).
Additional impacts on the elongation mechanism may also

arise from aminoglycoside binding in proximity to the peptidyl-
transferase center. Paromomycin (PAR-4) is located just 3 Å
away from the phosphate groups of the catalytic residues A2820
(A2450) and C2821 (C2451) and 3.4 Å away from C75 of the A-
site tRNA (Fig. S7A). Aminoglycosides are also observed to bind
the base of the P-stalk and sarcin–ricin loop (H95), elements of
the large ribosomal subunit that interact with translation elon-
gation factors (Fig. 5G and Fig. S7B).

Discussion
The structural and functional insights into aminoglycoside in-
teractions with the 80S eukaryotic ribosome obtained through
the present investigations serve as a foundation for exploring the
molecular mechanisms of aminoglycoside action in eukaryotes.
Although the impairment of mitochondrial translation is con-
sidered one of the main causes of side effects produced by
aminoglycosides in eukaryotic cells (63, 64), emerging evidence
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spectively, are indicated. (B) Population FRET histograms showing that
aminoglycoside-induced errors in tRNA selection lead to the accumulation of
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servations made in each experiment.
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suggests that aminoglycosides also exert effects on cytosolic ri-
bosomes to alter translation elongation and termination in a
manner that induces read-through of PTCs (27, 65). These
findings have led to their consideration as potent drugs to treat
human diseases caused by PTCs (28). Aminoglycosides also
operate against eukaryotic human pathogens, including Leish-
mania and Trypanosoma families (66, 67), due to sequence var-
iations in their canonical h44 decoding sites (Fig. S8).
The concentrations of aminoglycosides required for eukaryotic

cell growth inhibition and the EC50 values measured for the in-
hibition of eukaryotic translation by distinct aminoglycosides in
vitro generally correlate with their affinities for the canonical
h44 decoding region within the small subunit A-site (23, 68). As
illustrated by crystal structures of the 80S ribosome with genta-
micin and TC007, which adopt noncanonical poses in the vicinity
of the h44 decoding site, the eukaryotic-specific G1645 residue

(equivalent to A1408 in bacteria) within h44 tends to preclude
the binding of aminoglycosides containing a 6′-NH2 substituent
in the ring I (Figs. 1D and 2A). Paromomycin and G418, which
contain a 6′-OH substituent, can achieve canonical interactions
with the h44 decoding site, but the absence of Watson–Crick
base pairing between C1646 and A1754 impedes drug-binding
interactions that hinge on ring I interactions with the floor of the
aminoglycoside-binding site (Fig. 1B and Fig. S1). Human mi-
tochondrial ribosomes contain an adenosine at the 1408 position
(bacterial numbering), making it a good target for aminoglyco-
sides with both 6′-OH and 6′-NH2 substituents in ring I (63).
However, aminoglycoside affinity to mitochondrial ribosomes is
likely to be attenuated by two consecutive noncanonical base
pairs [C1494–A1555 (A1410–U1490) and C1493–C1556 (C1409–
G1491)] that are likely to strongly disrupt ring I interactions
(Fig. S8). Consistent with this notion, the reestablishment of
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Fig. 5. Overview of the secondary binding sites of
aminoglycosides in 80S ribosome. (A) Binding sites of
gentamicin (GENT), G418, TC007, and paromomycin
(PAR) in the 80S ribosome from S. cerevisiae. All
structures were aligned either on 18S rRNA or on 28S
rRNA, for small and large subunits, respectively, in
the 80S–gentamicin structure. The ribosome is col-
ored light gray; elements of the binding pockets of
aminoglycosides are colored light orange; gentami-
cin is colored green; G418 is colored yellow; TC007 is
colored magenta; and paromomycin is colored violet.
(B) Binding of GENT-7, G418-2, and TC007-3 to the
peptide exit tunnel of the 80S ribosome. G418 is
colored yellow; gentamicin is colored light green;
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bosome from T. thermophilus in complex with tRNAs
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spheres. (G) Interactions of GENT-8 and TC007-4 with the elements of the ribosomal P-stalk. Different conformation of the helices 42 and 97 of the P-stalk are
shown in blue for 80S-GENT and 80S-TC007 structures and in cyan for the 80S-apo structure (PDB ID code 4V88). H42 in the apo conformation would clash with
GENT-8. Arg62 in the uL6 protein approaching TC007 is shown as spheres. Color-coding is as in A–E.
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Watson–Crick interactions in the floor of the aminoglycoside-
binding site by the naturally occurring mutations A1555G or
C1494T leads to aminoglycoside hypersusceptibility in humans
(69, 70).
Our smFRET experiments indicate that each of the amino-

glycosides tested increases the error rate of A-site decoding (Fig.
4). However, the behaviors of the miscoded 80S precomplexes
bearing near-cognate tRNA in the A-site are unique for each
drug. These findings suggest that aminoglycosides may promote
PTC read-through by distinct mechanisms. Aminoglycosides
containing 6′-OH substituent in ring I likely induce miscoding
and PTC read-through due to residual binding to the canonical
binding site in h44 of the eukaryotic ribosome. In this case, near-
cognate or noncognate tRNA may efficiently accommodate at
the stop codon-programmed A-site to compete with the termi-
nation factors. Aminoglycosides containing a 6′-NH2 constituent
in ring I, including gentamicin and TC007, do not bind h44 in a
canonical fashion. Their impacts on PTC read-through may en-
tail alternative mechanisms, including intersubunit rotation ef-
fects that are anticipated to hamper RF1 interactions with the
classically configured ribosome (Fig. S9) (71).
The propensity of eukaryotic ribosomes to adopt rotated states

and the impact of aminoglycosides in enforcing closer interac-
tions (higher FRET) between deacylated and peptidyl-tRNA
within the 80S human PRE complex suggest that aminoglycoside
binding to intersubunit regions of the ribosome (bridges B2c and
B4 for gentamicin and bridge B3 for TC007) facilitate confor-
mational changes in the PRE 80S–ribosome complexes that shift
peptidyl tRNA toward the P-site. Such impacts may relate to the
stabilization of partially rotated ribosome configurations that
move deacylated tRNA toward the A-site (20, 21).
The nature of the observed aminoglycoside interactions with

the eukaryotic ribosome hint at potentially multiple modes of
action on the translation mechanism. These insights also provide
an important framework for understanding the diversity of
aminoglycoside interaction sites and drug-binding modes with
the 80S ribosome. The combined perspectives afforded by X-ray
crystallography and direct imaging of aminoglycoside impacts on
functional ribosome complexes using smFRET has the potential
to facilitate the design of new antibiotic derivatives and may be
particularly suited for the identification of compounds capable of
mediating efficient PTC read-through. Such efforts will be
greatly aided by in-depth functional investigations of a diversity
of functional ribosome complexes relevant to termination. In this
regard, the present findings suggest that nonspecific impacts on
decoding may be reduced by avoiding aminoglycoside scaffolds
bearing a ring I 6′-OH moiety, which exhibit generally higher
affinity for the h44 decoding site, and instead focusing on ami-
noglycosides, other compounds, or mixtures of compounds that
give rise to stop codon-specific miscoding in the absence of
dominant-negative downstream impacts.

Materials and Methods
Yeast and Bacterial Ribosome Purification, Crystallization, and Crystal
Treatment. Ribosomes from S. cerevisiae were purified and crystallized as
described (39). The crystal treatment procedure was modified based on the
procedure described previously (39). Briefly, crystals were transferred to the
solution containing 80 mM Tris·acetate (pH 7.0), 70 mM KSCN, 10 mM
Mg(OAc)2, 20% (vol/vol) glycerol, 5% (wt/vol) PEG 20,000, 6.5 mM
spermidine, 7.5 mM NH4OAc, 1.4 mM N,N’-bis-(3-D-gluconamidopropyl)
deoxycholamide (Deoxy Big Chap), 2 mM DTT, and stepwise increasing con-
centrations of PEG 4000, PEG 3350, or PEG 2000 MME up to 20%. The crystals
were incubated for 1 h or 4 h and were flash-frozen in a stream of liquid ni-
trogen. All manipulations were performed at 4 °C. Aminoglycosides G418,
paromomycin, and gentamicin were ordered from Sigma. TC007 was obtained
as described in ref. 32. High-concentration stocks of aminoglycosides were
prepared and introduced during the last steps of treatment. We observed that
soaking in high concentrations of paromomycin or gentamicin improves the
diffraction of the crystal. For example, crystals prepared in the same

conditions and soaked in 2 mM of paromomycin diffracted up to 3.7-Å
resolution. Ribosomes from T. thermophilus were purified and crystal-
lized as described in ref. 72. TC007 was added for cocrystallization in 50-
fold excess over the ribosome concentration (70S = 1.25 μM; TC007 =
62.5 μM). The crystal treatment was performed as described. If neces-
sary, TC007 was added for soaking during all steps of the crystal treat-
ment procedure at a concentration of 500 μM.

Purification of 40S and 60S Ribosomal Subunits from Human Cells. Preparation
of small (40S) and large (60S) human ribosomal subunits was adapted from
refs. 45 and 73. Specific deviations implemented for the purification of
polysome fractions from human tissue culture are described here. Cell pellets
were resuspended in lysis buffer [20 mM Tris HCl (pH 7.5), 2.5 mM MgCl2,
10 mM KCl, and 1 mM freshly prepared DTT] with the RNase inhibitor RNase
Out (Invitrogen), EDTA-free Halt Protease Inhibitor (Thermo Scientific), and
cycloheximide (Sigma) at 100 μg/mL (∼350 μM). The solution was incubated
on ice for 10 min before centrifugation in a Microfuge 22R Refrigerated
Centrifuge (Beckman Coulter) at 14,000 rpm for 10 min at 4 °C to pellet cell
debris. The supernatant was loaded onto precooled 10–50% sucrose density
gradients and spun at 35,000 rpm for 3 h at 4 °C in an Optima L-100 XP ul-
tracentrifuge (Beckman Coulter). The gradients were then fractionated us-
ing a BR-186-1 Fractionator and a UA-6 UV/Vis detector (Teledyne Isco).
Fractions corresponding to polysomes were collected and subsequently
pelleted and dissociated into subunits according to ref. 73. Pelleted subunits
were resuspended with storage buffer [30 mM Hepes (pH 7.5), 15 mM
MgCl2, 50 mM NH4Cl, 2 mM spermidine, 5 mM putrescine, 1 mM DTT, and
6% sucrose] for stable, long-term storage in liquid nitrogen.

Data Collection, Crystal Structure Determination, and Analysis. Diffraction
data were collected at 90 K using 0.05° oscillation on beamline PROXIMA I at
the Soleil synchrotron (Saint-Aubin, France) equipped with a Pilatus 6M
detector (Dectris) or on the PXI beamline at the Swiss Lightsource synchro-
tron (Villigren, Switzerland) equipped with an Eiger 16M detector (Dectris).
Two to eight crystals were used for each dataset. Data were reduced and
scaled using the XDS suite (74). Coordinates of vacant 80S ribosome from
S. cerevisiae from PDB 4V88 were used to determine structures of 80S–
paromomycin, 80S–gentamicin, and 80S–TC007. Phenix software was used
for structure refinement, starting with several rounds of a rigid body re-
finement, and validation (75, 76). P-stalk elements were disordered and
were removed from the structures except for P-stalk rRNA in the 80S–
paromomycin structure and P-stalk rRNA and protein L12 in the 80S–gen-
tamicin structure. Due to weak electron density, protein S31 was removed
from the 80S–paromomycin structure, and a few structural elements were
remodeled, in particular, amino acids 103–113 of protein uL16 and residues
80–87 of 5.8S rRNA. An unbiased difference electron density map (Fobs −
Fcalc) was used to locate the binding sites of aminoglycosides. Ligand fitting
was performed in Coot (77). Geometry restraints for antibiotics were gen-
erated with the help of Grade web server (Global Phasing, grade.global-
phasing.org/cgi-bin/grade/server.cgi). Peaks of positive electron density
maps were inspected manually to add magnesium ions, with coordinated
water molecules often replacing osmium hexamine molecules. Manual cor-
rections were followed by several iterations of reciprocal space refinement
of atomic coordinates, B-factors (one isotropic B-factor per residue), and
occupancies (one occupancy value per ligand and individual occupancies for
magnesium ions). Real-space refinement in Phenix was applied to fit
rotamer outliers. Finally, translation–libration–screw-rotation (TLS) re-
finement was performed with two TLS groups. For structure determination
of 70S–tRNA–mRNA–TC007 complexes, coordinates of the 70S ribosome
from PDB 4WSM and tRNAs and mRNAs coordinates from PDB 4V6F were
used for two rounds of rigid-body refinements. The electron density maps
were inspected manually, and the molecules of TC007 were localized in the
peaks of positive electron density. Secondary binding sites of TC007 (four in
total) were located on the periphery of the ribosome far from the functional
centers. Additionally, one binding site of TC007 to the intersubunit region
was detected. Here TC007 interacts with the low part of h44 of the 30S
subunit and the junction of helices 62 and 64 in the 25S rRNA of the 50S
subunit between intersubunit bridges B5 and B6. Geometry restraints for
TC007 were generated with the help of Grade web server (Global Phasing,
grade.globalphasing.org). Manual modeling was done in Coot and was
followed by several rounds of reciprocal space refinement of atomic coor-
dinates and B-factors. Crystallographic statistics are reported in Table S1. All
figures were generated using PyMOL 1.5 ( https://pymol.org/2/) (Schrödinger).
Local structure alignments were performed in Coot (77). Ribosomal proteins
are named throughout the paper according to the newly established no-
menclature (78). Atomic coordinated and structure factors for structures
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of 80S–paromomycin, 80S–gentamicin, 80S–TC007, 80S–geneticin (G418), 70S-
tRNAs-mRNA–TC007 (cocrystallization), and 70S–tRNAs–mRNA–TC007 (soak-
ing) have been deposited in the Protein Data Bank (https://www.rcsb.org/pdb/
home/home.do) under ID codes 5NDV (80S–paromomycin), 5OBM (80S–gen-
tamicin), 5NDW (80S–TC007), 5NDG [80S–geneticin (G418)], 5NDK (70S–tRNA–
mRNA–TC007 cocrystallized), and 5NDJ (70–tRNA–mRNA–TC007 soaked).

Preparation of Native and Fluorescently Labeled tRNAs. E. coli tRNAfMet and
tRNAPhe were purified as previously described (79, 80). Aminoacylation and
fluorescent labeling of tRNAs (tRNAi

Met at 4sU8 and tRNAPhe at acp3 U47
positions) were performed following established protocols.

In Vitro Reconstitution of 80S ICs. As previously described (45), 80S ICs were
assembled following a procedure that bypasses the need for exogenous
initiation factors (81). Purified 40S subunits were mixed with an equal vol-
ume of 80S association buffer [30 mM Hepes (pH 7.5), 5 mM MgCl2, 50 mM
NH4Cl, 2 mM spermidine, 5 mM putrescine, 1 mM DTT] and then were heat
activated at 42 °C for 5 min. Fourfold excess of mRNA with the sequence 5′-
CAA CCU AAA ACU UAC ACA CCC UUA GAG GGA CAA UCG AUG UUU UUU
UUU UUU UUU UUU UUU-3′ (Dharmacon) (henceforth referred to as “MFF
mRNA”) or 5′-CAA CCU AAA ACU UAC ACA CCC UUA GAG GGA CAA UCG
AUG UCU UUC UUC UUC UUC UUC UUC-3′ (henceforth referred to as “MFF
near-cognate mRNA”) was added, heated to 37 °C for 10 min and sub-
sequently cooled on ice. To this mixture, a twofold excess of fluorescently
labeled Met-tRNAi

Met (prepared as described in ref. 82) was added, and the
reaction was heated and cooled as above. At this time, equimolar amounts
of 60S subunits were heat activated at 42 °C for 5 min. The 60S subunits were
then added to the mixture of 40S/tRNA/mRNA. After an additional heating
and cooling cycle, the MgCl2 concentration of the reaction was raised to
15 mM, and the mixture remained on ice for 5 min. It was then loaded on a
10–30% sucrose gradient in 80S association buffer and was ultracentrifuged
in a Beckman SW41 rotor at 35,000 rpm for 1.5 h at 4 °C before fraction-
ation. The peak corresponding to 80S complexes was collected and ali-
quoted before storage in liquid nitrogen. To achieve surface immobilization,
the mRNA was hybridized to a double-stranded, biotinylated DNA oligo-
nucleotide (sequence 1: 5′-GTA AGT TTT AGG TTG CCC CCC TTT TTT TTT TTT
TTT TTT TTT TTT TTT TTT-3′; sequence 2: 5′-AAA AAA AAA AAA AAA AAA
AAA AAA AAA AAA-3′) before its mixture with the 40S subunit.

Formation of the eEF1A(GTP)–aa-tRNA Ternary Complex. aa-tRNAs (tRNAPhe,
tRNAMet) were first generated as previously described (82) and were mixed
with 1 mM GTP, 6 mM phosphoenolpyruvate, 12 units/mL pyruvate kinase,
and 12 units/mL myokinase. A twofold excess of eEF1A isolated from rabbit
reticulocyte lysate (45), which bears 100% sequence identity with human
eEF1A, was then added, and the mixture was incubated at 37 °C for 5 min to
form the ternary complex.

Single-Molecule Fluorescence Imaging. Complexes were surface-immobilized
via the biotin–streptavidin interaction in PEG-passivated quartz chambers.
All imaging experiments were performed in Hepes (KOH)-Polymix buffer
(pH 7.5) containing 5 mMMgCl2, 50 mM NH4Cl, 2 mM spermidine, and 5 mM
putrescine, as well as an oxygen scavenging system (2 mM protocatechuic
acid, 50 nM protocatechuate 3,4-dioxygenase) together with a mixture of
solution additives (1 mM Trolox, 1 mM cyclooctatetraene, 1 mM nitrobenzyl-

alcohol) (83) to reduce photobleaching. As previously described (82), single-
molecule fluorescence imaging was performed using a custom prism-based
total internal reflection fluorescence microscope. Cy3 fluorophores were il-
luminated with an Opus 532-nm solid-state laser (Laser Quantum), and fluo-
rescence emissions from Cy3 and Cy5 fluorophores were collected using a 60×,
1.27 NA Plan-Apo water immersion objective (Nikon) and were spectrally
separated using a MultiCam-LS device (Cairn) equipped with a T635lpxr-
UF2 dichroic mirror (Chroma) and imaged onto ORCA-Flash 4.0 v2 sCMOS
cameras (Hamamatsu). Data were acquired at 40-ms time resolution using
custom software implemented in LabVIEW (National Instruments).

Single-Molecule tRNA Selection Assay. As previously described (45), the pro-
cess of tRNA selection on the ribosome was performed by stopped-flow
injection of a 20-nM solution of ternary complex [eEF1A(GTP)–aa-tRNA]
containing (Cy5)Phe-tRNAPhe into surface-immobilized ribosome complexes
containing (Cy3)tRNAi

Met in the P-site. Here, 80S ICs were formed with the
near-cognate UCU mRNA codon in the A-site, and the period of incubation
with the ternary complex was extended from 30 s to 2 min. To prevent spu-
rious, nonenzymatic binding of deacylated tRNAPhe to the E-site, tRNA selec-
tion experiments were performed in the presence of 500 μM cyclohexamide.
Subsequent steady-state imaging of PRE complexes was performed following
buffer exchange into a solution lacking the ternary complex.

Analysis of smFRET Data. Analysis of single-molecule fluorescence data was
performed using the SPARTAN analysis software package MATLAB (84).
Single-molecule fluorescence traces were extracted from wide-field movies
and were corrected for background, spectral crosstalk, and unequal appar-
ent brightness (85). FRET trajectories were calculated as EFRET = IA/(IA + ID),
where IA and ID are the acceptor and donor fluorescence intensities at each
frame, respectively. Traces were selected for further analysis according to
the following criteria: (i) single-step photobleaching; (ii) signal-to-
background noise ratio >8; (iii) fewer than four donor blinking events;
and (iv) >0.12 FRET efficiency for at least 50 frames (2 s). FRET histograms
were calculated from the first 50 frames of all individual molecules passing
the aforementioned criteria from each dataset with bin sizes of 0.03.
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