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ABSTRACT Na+/H + exchange in vertebrates is thought to be electroneutral and 
insensitive to the membrane voltage. This basic concept has been challenged by 
recent reports of antiport-associated currents in the turtle colon epithelium (Post 
and Dawson, 1992, 1994). To determine the electrogenicity of mammalian anti- 
porters, we used the whole-cell patch clamp technique combined with microfluo- 
rimetric measurements of intracellular pH (pHi). In murine macrophages, which 
were found by RT-PCR to express the NHE-1 isoform of the antiporter, reverse 
(intracellular Na+-driven) Na+/H § exchange caused a cytosolic acidification and 
activated an outward current, whereas forward (extraceUular Na+-driven) ex- 
change produced a cytosolic alkalinization and reduced a basal outward current. 
The currents mirrored the changes in pHi, were strictly dependent on the pres- 
ence of a Na § gradient and were reversibly blocked by amiloride. However, the 
currents were seemingly not carried by the Na+/H + exchanger itself, but were in- 
stead due to a shift in the voltage dependence of a preexisting H § conductance." 
This was supported by measurements of the reversal potential (Erev) of tail cur- " 
rents, which identified H + (equivalents) as the charge carrier. During Na+/H + ex- 
change, Er,v changed along with the measured changes in pHi (by 60-69 mV/ 
pH). Moreover, the current and Na§ + exchange could be dissociated. Zn 2§ 
which inhibits the H § conductance, reversibly blocked the currents without alter- 
ing Na+/H + exchange. In Chinese hamster ovary (CHO) cells, which lack the H + 
conductance, Na+/H § exchange produced pHi changes that were not accompa- 
nied by transmembrane currents. Similar results were obtained in CHO cells 
transfected with either the NHE-1, NHE-2, or NHE-3 isoforms of the antiporter, 
indicating that exchange through these isoforms is electroneutral. In all the iso- 
forms tested, the amplitude and time-course of the antiport-induced pHi changes 
were independent of the holding voltage. We conclude that mammalian NHE-1, 
NHE-2, and NHE-3 are electroneutral and voltage independent. In cells endowed 
with a pH-sensitive H + conductance, such as macrophages, activation of Na+-H § 
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exchange can modulate a transmembrane H + current. The currents reported in 
turde colon might be due to a similar "cross-talk" between the antiporter and a 
H + conductance. 

I N T R O D U C T I O N  

Na+/H § antiporters are ubiquitous plasma membrane transport proteins, involved 
in multiple cellular functions including regulation of intracellular pH (pHi), con- 
trol of cell volume, and initiation and/or  control of mitogenesis (Grinstein, Roth- 
stein, and Cohen, 1985; Moolenar, 1986; Grinstein, Rotin, and Mason, 1989). Un- 
der physiological conditions, antiporters in eukaryotic cells catalyze the exchange 
of extracellular Na t for intracellular H § a process that is effectively blocked by 
amiloride and its 5,~alkylated derivatives (see Grinstein et al., 1989; Wakabayashi, 
Sardet, Fafournoux, Counillon, Pages, and Pouyssegur, 1992, for reviews). Na+/H + 
exchange has been reported in a wide range of tissues in many animal species. 
While certain features such as cation specificity are common to all the antiporters 
studied, the kinetic and pharmacological properties of Na+/H + exchange differ 
between individual cell types and, in polarized epithelial cells, also between the api- 
cal vs basolateral membranes (Haggerty, Agarwal, Reilly, Adelberg, and Slayman, 
1988; Fliegel and Frolich, 1993). A structural diversity parallels this functional het- 
erogeneity, as to date, four distinct isoforms of the Na+/H § exchanger (NHE) have 
been identified in mammalian tissues (Sardet, Franchi, and Pouyssegur, 1989; Or- 
lowski, Kandasamy, and Shull, 1992; Tse, Brant, Walker, Pouyssegur, and Donowitz, 
1992; Wang, Orlowski, and Shull, 1993). When expressed heterologously in cells 
devoid of endogenous N a t / H  + exchange activity, three of these isoforms, termed 
NHE-1 to NHE-3, display unique kinetic and pharmacological profiles that account 
at least in part for the heterogeneity reported in native tissues (Orlowski, 1993; Tse, 
Levine, Yun, Montrose, Little, Pouyssegur, and Donowitz, 1993a; Levine, Montrose, 
Tse, and Donowitz, 1993; Yu, Shull and Orlowski, 1993; Kapus, Grinstein, Wasan, 
Kandasamy, and Orlowski, 1994). The remaining identified isoform, NHE-4 has 
proven refractory to heterologous expression. Individual NHE isoforms are highly 
conserved among different species. For example, mammalian NHE-1 homologues 
have 93-96% amino-acid identity (Tse, Levine, Yun, Brant, Counillon, Pouyssegur, 
and Donowitz, 1993b;, Fliegel and Frolich, 1993), and the human NHE-1 shows 64% 
identity to the trout ~NHE isoform (Borgese, Sardet, Cappadoro, Pouyssegur, and 
Motais, 1992) and 50% identity to partial clones isolated from turtle (Harris, Rich- 
ards, Logsdon, Pouyssegur, and Dawson, 1992) and nematodes (Prasad and Bailie, 
1989). 

Na+/H + exchange is believed to be electroneutral and insensitive to the trans- 
membrane voltage. This central notion is based on the following kinetic and ther- 
modynamic considerations: (a) when performed under comparable conditions, 
measurements of transmembrane fluxes showed that Na + uptake and H + (equiva- 
lent) efflux were nearly identical, consistent with a stoichiometry of 1:1 (Cala, 1980; 
Boron and Boulpaep, 1983; Grinstein, Cohen, and Rothstein, 1984); (b) net flux 
through the antiporter was negligible when the Na + gradient was counterbalanced 
by an identical H + gradient (i.e., [Na+]o/[Na+]i = [H+]o/[H+]i, where the sub- 
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scripts 0 and i refer to extra- and intracellular, respectively) (Cala, 1980); (c) indi- 
rect measurements showed that activation of Na+/H + exchange had no effect on 
the transmembrane potential (Vm) (Kinsella and Aronson, 1980; Aronson, 1985); 
and (d) conversely, manipulation of Vm with ionophores did not appear to affect 
the rate of Na+/H + exchange (Murer, Hopfer, and Kinne, 1976; KinseUa and 
Aronson, 1980). 

The original information on the electrical correlates of Na+/H + exchange relied 
entirely on indirect isotopic or spectroscopic determinations of Vm, mostly in iso- 
lated membrane vesicles (e.g., Murer et a1.,1976; Kinsella and Aronson, 1980). Re- 
cent studies using direct electrophysiological measurements of the antiporter in 
vertebrate tissues yielded opposite results. In apically permeabilized layers of turtle 
colon epithelium, Post and Dawson (1992, 1994) reported the occurrence of well 
defined antiport-mediated currents. The currents were strictly Na + (or Li +) depen- 
dent and were sensitive to submillimolar doses of amiloride, hallmarks of the 
Na+/H + antiporter (Post and Dawson, 1992, 1994). These findings have chal- 
lenged the 20-yr old dictum that the vertebrate antiporter is electroneutral. 

Although direct measurements of transepithelial currents sensitive to basolateral 
amiloride is a convincing criterion for electrogenic Na+/H + exchange, identical 
currents could in principle result from coupling of electroneutral Na+/H + ex- 
change to a conductive process. In complex cellular systems endowed with multiple 
transporters, the ionic concentration changes associated with activation of the 
Na+/H + antiport can conceivably modulate the activity of other, conductive or 
electrogenic pathways. In fact, such indirect coupling between Na+/H + exchange 
and the electrogenic Na+/K + ATPase has been suggested (Rosic, Standaert, and 
Pollet, 1985; Fehlmann and Freychet, 1981) and coupling with an H + conductive 
pathway has also been proposed (DeCoursey and Cherny, 1994a, b). The latter sys- 
tem, a highly H+-selective conductance, is present in invertebrates (Thomas and 
Meech, 1982; Byerly, Meech, and Moody, 1984; Byerly and Suen, 1989), amphibi- 
ans (Barish and Baud, 1984; Baud and Barish, 1984) and was recently described in 
mammalian cells (DeCoursey, 1991; Demaurex, Grinstein, Jaconi, Schlegel, Lew, 
and Krause, 1993; Kapus, Romanek, Yi, Rothstein, and Grinstein, 1993; DeCoursey 
and Cherney, 1993). The magnitude of the H + current is exquisitely sensitive to 
changes in the intra- and extracellular pH (pHi and pHo, respectively), not only be- 
cause H + (equivalents) are the charge-carrying species, but also as a result of direct 
effects on the conductance activation process (Lukacs, Kapus, Nanda, Romanek, 
and Grinstein, 1993; DeCoursey and Cherny, 1994b). These features may make the 
H + conductance uniquely sensitive to changes in the activity of the Na+/H + anti- 
port. Under conditions when the pH is not stringently controlled, stimulation of 
Na+/H + exchange could conceivably modulate the current flowing through the 
conductance. The possibility that coupling to a H + conductance contributes to the 
antiport-mediated currents measured in turtle colon has not been addressed. 

As summarized above, the evidence supporting the electroneutrality of the anti- 
porter is partly indirect and was obtained largely in cell-free systems. On the other 
hand, the findings suggesting electrogenicity were derived from direct electrophys- 
iological determinations, but failed to rule out coupling with other pathways. More- 
over, the apparent discrepancies in these reports may be attributed to the involve- 
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ment of different isoforms. In an attempt to clarify these issues, the present study 
aimed to determine the electrogenicity of individual isoforms of mammalian (ro- 
dent) antiporters, using concurrent measurements of intraceUular pH and trans- 
membrane currents. In the course of these studies, we found that, in the whole-cell 
configuration of the patch clamp technique, the rate of transport of H § by the anti- 
porter outstripped the diffusion of buffers from the pipette, resulting in readily 
measurable changes of pHi. This enabled us to directly assess the voltage sensitivity 
of the different isoforms of the antiporter. 

M E T H O D S  

Materials and Media 

Nigericin, 2'7'bis-(2-carboxyethyl)-5(and 6) carboxyfluorescein (BCECF) free acid and  acetoxy- 
methyl ester (AM) were purchased from Molecular Probes Inc. (Eugene, OR). Powdered Brewer's 
thioglycolate was purchased from Difco Laboratories (Detroit, MI). 2-[N~morpholino]ethane- 
sulfonic acid (MES) and  med ium RPMI-1640 were f rom Sigma Chemical  Co. (St. Louis, MO). 
"Iris [hydroxymethyl] aminome thane  (TRIS) was obta ined from Boehr inger -Mannheim Corp. (In- 
dianapolis, IN). All o ther  chemicals were of  analytical grade and  were f rom Aldrich Chemical  Co. 
(Milwaukee, WI). Amiloride was a kind gift from Merck Sharp and  Dohme (St. Louis, MO). Com- 
pound  HOE694 was the generous gift of  Hoechst.  

The  composit ion of  the buffers used is shown in Table I. All solutions conta ined 1 mM MgCI2 
and  1 mM ethylene glycol-bis(13-amino-ethyl ether)  N,N,N' ,N'-tetraacetic acid (EGTA); pipette 
solutions also conta ined  2 mM MgATP and  200 p~M BCECF (free acid). When  Zn 2+ was used, 
EGTA was omit ted and  ZnSO4 was added to a final concentra t ion  of  I mM. The  osmolarity was set 
to 280 +- 5 mosm (pipette) and  to 300 -+ 5 mosm (bath).  

Cells 

Peritoneal macrophages  were obta ined from 6-wk old Swiss Webster mice (Charles River Breeding 
Laboratories Inc., Wilmington,  MA) injected intraperi toneally with 2 ml of thioglycolate 5 d be- 
fore harvest, as described (Kapus, Romanek, Yi, Rothstein, and  Grinstein, 1993). Peri toneal  exu- 
date cells were consistently >85% macrophages,  as assessed by Wright 's  stain. The  contaminat ing 
cells, mostly lymphocytes, are no t  adheren t  and  were therefore removed dur ing  plating. For plat- 

T A B L E  I 

Composition of Internal (Pipette) and External (Bath) Solutions 

Solution pH Buffer NaOH CsOH Aspartate 

Ba 1 6.5 100 120 2.5 77.5 

Ba 2 6.5 100 - -  122.5 77.5 

Ba 3 8.0 100 m 85 135 

Ba 4 8.0 100 85 - -  135 
Pi 1 6.5 5 120 30 150 

Pi 2 6.0 5 - -  150 150 

Ba, bath solutions; Pi, pipette solutions. Buffers used were IVIES (pH 6.0-6.5) or "Iris (pH 
8.0). Concentrations are in mM. All solutions contained 1 mM MgCI~ and 1 mM EGTA, 
and pipette solutions contained in addition 2 mM MgATP and 200 ~M BCECF (free 
acid). The osmolarity was adjusted to 280 -+ 5 musm (pipette) and to 300 -+ 5 mosm 
(bath). 
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ing, 1-2 • 10 s cells were deposited onto 25-mm diam glass coverslips (Thomas Scientific, Swedes- 
boro, NJ), allowed to adhere for 30 min at 37~ and washed three times with medium RPMI 1640. 
Adherent  cells were cultured for up to 3 d in a humidified atmosphere of 95% 02, 5% CO~ at 
37~ Macrophage viability was >95%, as determined by exclusion of trypan blue. 

CHO cells deficient in Na+/H + exchange were stably transfected with the full-length cDNAs 
encoding one of three isoforms (NHE-1, NHE-2, NHE-3) of  the rat antiporter, as previously de- 
scribed (Orlowski, 1993; Wang et al., 1993). The transfected cells were grown in a-minimal essen- 
tial medium (Ontario Cancer Institute) supplemented with 10% fetal calf serum and 1% antibi- 
otic solution (penicillin and streptomycin, GIBCO Laboratories, Grand Island, NY) and passaged 
twice a week. Cultures were reestablished from frozen stocks and cells from passages 3 to 12 were 
grown on glass coverslips for 24 to 48 h before the experiments. 

Isolation of RNA, reverse transcription and polymerase chain reaction (RT-PCR). Total RNA was 
isolated from ~ 106 mouse macrophages by guanidium thiocyanate-phenol-chloroform extraction, 
based on the method of  Chomczynski and Sacchi (1987). Poly(A+)-RNA was purified by affinity 
chromatography with an oligo-dT cellulose column (Pharmacia LKB Biotechnology, Inc., Piscat- 
away, NJ). Macrophage mRNA was then reverse transcribed and the complementary DNA ampli- 
fied by the polymerase chain reaction, using the GeneAmp RNA PCR kit (Perkin-Elmer Corp., 
Foster City, CA) and a Perkin-Elmer DNA thermal cycler model  480. After completion of the PCR 
reaction (35 cycles), a 10-p.l sample of  the PCR tube was analyzed by electrophoresis on a 0.8% 
agarose gel prestained with 0.5 t tg /ml  ethidium bromide and the gel was photographed under  
UV illumination. For illustration, the photograph was scanned and labeled using Adobe Photo- 
shop software (Adobe Systems, Inc.). Four isoform-specific sets of primers were used, which hy- 
bridized to unique regions of  the rat NHE-1, NHE-2, NHE-3 and NHE-4. Primers were as follows: 
NHE-1, 5' primer: CCT ACG TGG AGG CCA AC, 3' primer: CAG CCA ACA GGT CTA CC, size of  
the PCR product: 429 bp; NHE-2, 5' primer: GCT GTC TCT GCA GGT GG, 3' primer: CGT TGA 
GCA GAG ACT CG, size of PCR product: 680 bp; NHE-3, 5' primer: CTT C T r  CTA CCT Gc ' r  GC, 
3' primer: CAA GGA CAG CAT CTC GG, size of  PCR product: 574 bp; NHE-4, 5' primer: CTG 
AGC TCT GTG GCT TC, 3' primer: C GAG GAA ATG CAG CAG C, size of  PCR product: 381 bp. 
All four sets of  primers yielded the expected PCR products when linearized pCMV plasmids con- 
taining the full-length clone of the corresponding isoform were used as a template, but did not  
yield discernible products when any of  the other  isoforms was used as template. 

Measurements ofintraceUularpH. The intraceUular pH was measured microfluorimetri- 
cally, as described (Kapus et al., 1993). Briefly, cells adhered to coverslips were incubated with 2 
p~M of the fluorescent indicator BCECF-AM for 15 min at room temperature and experiments 
were performed within 1 h. Coverslips were inserted into a Leiden CoverSlip Dish (Medical Sys- 
tems Corp., Greenvale, NY), which was placed into a holding chamber (Open Perfusion Micro- 
Incubator;, Medical Systems Corp.) attached to the stage of a Nikon Diaphot TMD inverted micro- 
scope (Nikon Canada, Toronto).  The chamber allowed continuous perfusion of the cells with the 
indicated media at a rate of  ~-0.5 ml /min ,  while maintaining the temperature at 37~ Solutions 
could be switched by operating solenoid valves (General Valve, Fairfield, NJ) and total exchange 
of the bath occurred within =*1 min. The microscope was equipped with a Fluor 40X oil-immer- 
sion objective, a Hoffman Modulation Contrast video system (Modulation Optics, Greenvale, NY) 
and an M Series Dual Wavelength Illumination System (Photon Technologies Inc., South Brun- 
swick, NJ). Excitation light provided by a Xenon lamp was directed into 495 -+ 10 nm and 440 _+ 
10 nm filters (Omega Optical, Brattleboro, VT) by a chopping mirror rotating at 100 Hz and the 
alternating light was then reflected at the cells by a 510-nm dichroic mirror. The emitted fluores- 
cence and the red light (>600 nm) used for Hoffman illumination were separated with a 550-nm 
dichroic mirror. Fluorescence intensity was measured at 535 - 25 nm using a photometer,  
whereas the red light was directed to a video camera. This optical system allowed continuous visu- 
alization of  the cells without interfering with the fluorescence measurements. Photometric data 
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were recorded at 2 Hz using a 12-bit A / D  board interfaced to a NEC 386 computer. The excita- 
tion ratio of the fluorescence was calculated on line using the PTI software. Calibration of fluores- 
cence ratio vs pH was performed on single nonpatched cells, using nigericin (5 tLM final) accord- 
ing to (Thomas, Buchsbaum, Zimniak, and Racker, 1982). One calibration curve was obtained 
every day by averaging data from 3-6 cells sequentially perfused with KCI media buffered at four 
different pH values ranging from 6.0 to 7.5. In one series of  experiments (Fig. 8 C) macrophage 
fluorescence was measured in cell suspensions, essentially as described (Swallow, Grinstein, and 
and Rothstein, 1990). 

Electrophysiology. The whole-cell configuration of  the patch clamp technique was used es- 
sentially as described (Kapus et al. 1993). Electrodes made from filament-filled borosilicate glass 
capillaries (World Precision Instruments, Inc., Sarasota, FL) using a P-87 horizontal puller (Sutter 
Instrument Co., Novato, CA) were fire polished using a MF-9 microforge (Narishige USA, Green- 
vale, NY). Pipette resistance ranged from 2 to 10 Mfl and seal resistance from 10 to 50 C~.  Re- 
cordings were made using an Axopatch-lD amplifier (Axon Instruments Inc., Foster City, CA) in 
the voltage clamp mode. Series resistance varied between 5 and 30 Mfl and cell capacitance 
ranged between 10 and 70 pF (for macrophages) or  between 12 and 34 pF (for CHO cells); both 
parameters were logged for subsequent use in data analysis. When bath solutions were exchanged, 
changes injunct ion potential were <5 mV. Currents were filtered at 50 or  200 Hz and recorded at 
0.2 or  1 kHz, respectively, using a 12 bit A / D  board (LabMaster, Axon Instruments, Inc.) inter- 
faced to a PC/AT computer. Data acquisition was performed using pClamp (Axon Instruments, 
Inc.). None of  the experiments illustrated were leak subtracted. Data analysis and statistics were 
carried out using the Origin software (MicroCal Software Inc., Northampton, MA) and are shown 
as means _+ one standard error (SE) of the number  of  experiments indicated. All measurements 
were carried out at 37~ 

Other methods. The preparation and purification of  anti-NHE-1 antibodies and the method 
used for immunoblotting of  macrophage membranes have been described in detail elsewhere 
(Grinstein, Woodside, Sardet, Pouyssegur, and Rotin, 1992). 

R E S U L T S  

Antiport-mediated Currents in Murine Macrophages 

Fig. 1, A and B, illustrate the experimental paradigms utilized by Post and Dawson 
(1992, 1994) to elicit Na+/H + exchange associated currents. Outward (cell to serosa) 
current was generated in the turtle colon when the antiport operated in reverse in 
Na+-containing cells bathed in Na+-free medium (Fig. 1 A). Conversely, inward cur- 
rent  (a decrease in basal outward current)  was noted  when forward Na+/H + ex- 
change was activated by the imposition of an outwardly directed H + gradient. 

To define whether antiport-associated currents exist also in mammalian cells, we 
simultaneously measured transmembrane currents and pHi in murine macro- 
phages. For this purpose we combined the use of the whole-cell patch clamp tech- 
nique with microfiuorimetric measurements of the emission of  the pH-sensitive dye 
BCECF. The ionic conditions used to elicit reverse Na+/H + exchange in turtle co- 
lon (Fig. 1 A) were mimicked in macrophages (Fig. 2, top inset), using pipette solu- 
tions with a low buffering capacity (5 mM MES) to facilitate the detection of anti- 
port-induced pHi changes. The cells were voltage clamped at - 6 0  mV, which 
approximates the resting potential of  intact macrophages and 1-s depolarizing 
pulses to 0 mV were applied at 10s intervals (Fig. 2, bottom inset) to reproduce the 
"short-circuit" conditions utilized in the experiments with colonic epithelia. Ini- 
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tially, b o t h  pipet te  a n d  bath  solut ions c o n t a i n e d  120 m M  Na +, p H  6.5 (solutions Ba 
1 and  Pi 1; see Table  I). After  es tabl i shment  o f  the whole-cell  conf igura t ion  the cy- 
tosolic pH,  which was initially nea r  neutrality, equi l ibra ted  within 3 min  at a value 
similar to tha t  o f  the pipet te  solution.  At this point ,  the  c o m b i n e d  chemica l  gradi- 
en t  o f  Na  + and  H + is nea r  zero and  essentially n o  cu r r en t  was de tec ted  at e i ther  
- 6 0  a n d  0 mV, the i npu t  resistance o f  the cells be ing  consistently > 2 5  Gf l  in this 
voltage range.  T o  activate N a + / H  + exchange ,  the  hath  solut ion was isosmotically 
rep laced  with a Na+-free solut ion (solution Ba 2), h e n c e  creat ing an  ou tward  (cell- 
to -medium)  Na  + gradient .  T h e  onse t  o f  reverse an t ipor t  activity was indica ted  by a 

FIGUaZ 1. Proposed models account- 
ing for Na+/H+-associated current. (A 
and B) The conditions used by Post and 
Dawson (1994) to detect antiport-asso- 
ciated currents in permeabilized turtle 
colon epithelium. The Na § concentra- 
tion (in millimolar) and the pH of the 
intra- and extracellular solutions are in- 
dicated. Currents (thick arrows) were ob- 
served upon activation of reverse (A) or 
forward (B) Na+/H + exchange and fol- 
lowed the direction of the Na + fluxes. 
To account for these observations, the 
authors proposed a model ofNa § to H + 
stoichiometry >1. (Cand D) The condi- 
tions applied in the present whole-ceU 
study of murine macrophages. Basal 
outward currents (thick arrows) through 
a separate conductive pathway were in- 
creased by reverse Na+/H + exchange 
(C) and reduced by forward Na+/H + 
exchange (D). The basal currents are 
carried by H + ions and are modulated 
by changes in intracellular pH. The cur- 
rents closely mirror the pH changes be- 
cause H + ions are both substrates and 
activators of the conductance. 

rapid  cytosolic acidification, the pHi d r o p p i n g  by ~-0.3 U within 5 min  (Fig. 2, top 
trace). T h e  rate o f  H § t ranslocat ion by the ant ipor ters  thus ou t s t r ipped  the diffu- 
sion o f  H § equivalents  and  buffers to and  f r o m  the  pa tch  pipet te ,  caus ing the  intra- 
cellular  p H  to deviate f r o m  the  pipet te  pH.  

T h e  lower panel  in Fig. 2 illustrates the cu r r en t  changes  associated with activa- 
t ion o f  the reverse m o d e  o f  the ant iport .  T h e  decrease  in p h i  was a c c o m p a n i e d  by 
an  ou tward  cu r r en t  at  0 mV (Fig. 2, open circles), whereas  the c u r r e n t  at  - 6 0  mV re- 
m a i n e d  cons tan t  (filled circles). T h e  c u r r en t  changes  r e c o r d e d  at 0 mV closely paral- 
leled the  decrease  in ph i ,  suggest ing an  association with N a + / H  + exchange  activity. 
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Accordingly,  addi t ion  o f  ami lor ide  (1 mM) t o  the bath  solut ion reversed bo th  the 
changes  in cu r r en t  a nd  in pHi, the cytosolic p H  alkalinizing towards the p H  o f  the 
pipette.  As in o the r  systems, the  inhibi t ion o f  N a + / H  § exchange  by amilor ide  was 
readily reversible, a nd  removal  o f  the d rug  resul ted in a s econd  b o u t  o f  acidifica- 
tion. T h e  changes  in c u r r e n t  m e a s u r e d  at 0 mV again m i r r o r e d  the  changes  in pHi: 
the  cu r r en t  virtually d i sappeared  in the p resence  o f  amilor ide  bu t  was quickly re- 
s tored when  the  inhib i tor  was removed.  T h e  amilor ide  sensitivity, as well as the 
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6"41 ~6.2 
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i 
o 0 
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120/0 ~+ 

1'o ab io 4'0 
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FIGURE 2. Reverse activation of the antiporter, detectable as cytosolic acidifcadon, is associated 
with an outward current. Simultaneous measurements of intraceUular pH (top) monitored by mi- 
crofluorimetry with BCECF and of whole-ceU currents (bottom) in a mouse peritoneal macrophage. 
The cell was voltage clamped at -60 mV and 1-s pulses to 0 mV were applied at 10s intervals (bottom 
inset). The initial bath and pipette solutions (Ba 1, Pi 1 in Table I) were symmetrical and contained 
120 mM Na § pH 6.5 (see top inset and bar). 5 min after attaining the whole-cell configuration, the ex- 
ternal Na + was isoosmotically replaced by Cs § (solution Ba 2, indicated as 0 [Na +] in top bar). Where 
indicated, 1 mM amiloride was applied externally. Current was measured at -60 mV (filled circles) 
and at the end of the 1-s depolarizing pulse to 0 mV (open circ/es). Where indicated by the connecting 
lines, data acquisition was suspended to perform detailed current-voltage or taft current analysis 
(e.g., Figs. 4--6). Cell capacitance: 24 pF, access resistance: 9 Mfl. Results are representative of 10 
similar experiments. 

[Na +] d e p e n d e n c e  o f  the c o n c u r r e n t  changes  in pHi and  cu r r en t  indicate that  
bo th  are associated with the ant ipor ter .  

We next  tested whe the r  forward N a §  + exchange  cou ld  induce  inward cur- 
rents t h r o u g h  the ant ipor ter ,  as r epo r t ed  in turtle co lon  (Post and  Dawson, 1994). 
Using Na+-free solutions in bath  and  pipet te  (solutions Ba 3 and  Pi 2, respectively), 
a t r a n s m e m b r a n e  p H  grad ien t  o f  2 U was imposed  (Fig. 3, inset). U n d e r  these con- 
ditions, an  ou tward  cu r r en t  was p resen t  at voltages > - 6 0  mV and  large ( > 4 0 0  pA) 
currents  were observed at 0 mV. To  minimize  changes  in the  intracel lular  concen-  
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t rat ion o f  ions caused  by these large currents ,  Vm was he ld  at - 6 0  mV and  pulses to 
- 5 0  mV were applied.  Impos i t ion  o f  an  inward Na  § g rad ien t  by i n t roduc ing  a ba th  
solut ion con ta in ing  85 m M  Na + (solut ion Ba 4) p r o d u c e d  a brisk cytosolic alkalin- 
ization o f  ~ 0 . 5  p H  U (Fig. 3, top trace). T h e  c h a n g e  in p h i  was a c c o m p a n i e d  by a re- 
duc t ion  o f  the outward  current ,  m e a s u r e d  at - 5 0  mV (bottom trace). Again, the 
changes  in cu r r en t  closely m i r r o r e d  the changes  in pHi and  bo th  were reversibly 
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FmORE 3. Forward activation of the antiporter, detectable as cytosolic alkalinization, is associated 
with reduced outward current. Concurrent measurements of phi  (top pane/) and of whole-cell cur- 
rents (bottom pane/) in a mouse peritoneal macrophage. The cell was voltage clamped at -60 mV and 
1-* pulses to -50 mV were applied at I0.* intervals. The pipette solution (Pi 2) was Na+-free and was 
dtrated to pH 6.0 (inset). The initial bath soludon was Na*-free, pH 8.0 (solution Ba 3). Where 
noted, the external solution was replaced by an isoosmotic medium containing 85 mM Na § (solution 
Ba 4). Where indicated, 1 mM amiloride was applied externally. The current measured at the end of 
the depolarizing pulse to -50 mV is shown (open c/rc/es). Data acquisition was suspended during two 
periods to perform detailed current-voltage or tail current analysis (e.g., Figs. 4--6). Cell capacitance: 
62 pF, access resistance: 7 Mr}. Results are representative of 16 similar experiments. 

b locked  by ami lor ide  (Fig. 3), indica t ing involvement  o f  the ant ipor ter .  Thus ,  for- 
ward N a + / H  + e x c h a n g e  also p r o d u c e d  large changes  in pHi in m a c r o p h a g e s  volt- 
age c l amped  in the whole-cell  conf igura t ion .  Moreover ,  activation o f  the an t ipor t e r  
in the physiological  d i rec t ion  is also associated with changes  in the t r a n s m e m b r a n e  
current .  

Voltage Activation of the Currents 

These  initial observat ions suppo r t ed  the  no t ion  that  N a + / H  + exchange  in m a m m a -  
lian cells can opera te  in an  e lec t rophore t ic  mode .  However ,  close inspect ion o f  the 
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da ta  revealed  i m p o r t a n t  inconsis tencies  with this in te rpre ta t ion .  While  an ou tward  
c u r r e n t  was associa ted  with reverse  an t ipo r t  acdvity w h e n  m e a s u r e d  a t  0 mV, the  
c u r r e n t  m e a s u r e d  at  - 6 0  mV r e m a i n e d  u n c h a n g e d  (Fig. 2, filled circles), despi te  
c o n t i n u e d  N a + / H  + exchange .  In  addi t ion,  fo rward  N a + / H  + e x c h a n g e  a p p e a r e d  to 
suppress  a basal ou tward  c u r r e n t  r a the r  than  to i nduce  an  inward cur ren t .  These  
f indings  c a n n o t  be  readily exp l a ined  by an  e l ec t rophore t i c  e x c h a n g e  m e c h a n i s m  
o f  cons tan t  s to ichiometry ,  bu t  r a the r  suggests tha t  a p reex is t ing  conduc t ive  path-  
way is m o d u l a t e d  by N a + / H  + exchange .  T o  test this hypothesis ,  we have  analyzed 
the  kinetics o f  act ivat ion and  the  vol tage d e p e n d e n c e  o f  the  cur ren t s  u n d e r  the dif- 
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FIGURE 4. Voltage-dependence of the current activated by reverse (Nai-driven) Na+/H § exchange. 
A macrophage was voltage-clamped at-60 mV and 2-s pulses to voltages ranging from -90 to +60 mV 
were applied at 10s intervals in 15-mV increments. Ionic conditions, schematized in inset, were as in 
Fig. 2. (A) families of currents recorded in the absence (top) or presence (bottom) of an outward Na + 
gradient. Cell capacitance: 35 pF. (B) Current-voltage relationships obtained in the absence (fi//.ed 
squares) and in the presence (open c/rc/es) of an outward Na* gradient. Currents were measured at the 
end of the voltage pulse and normalized for cell capacitance. Results are means + SE of 12 cells for 
each condition. When not shown, error bars are smaller than symbols. 

f e r en t  ionic condi t ions  used  in Figs. 2 and  3. In  the  absence  o f  Na  + a n d  H + gradi-  
ents  (solut ions Ba 1, Pi 1), i.e., when  N a + / H  + e x c h a n g e  is inopera t ive ,  the  applica-  
t ion o f  2-s vol tage pulses r ang ing  f r o m  - 9 0  to + 6 0  m V  revealed  the  p r e sence  o f  
slowly act ivat ing ou tward  cur ren t s  at  vol tages > 0  mV (Fig. 4, top left traces, squares). 
T h e  cu r ren t s  d isplayed sha rp  ou tward  rect i f icat ion (Fig. 4, right) a n d  r equ i r ed  
~ 5 0 0  ms  fo r  ha l f -maximal  activation. T h e s e  fea tures  are  character is t ic  o f  the  H + 
(equivalent)  c o n d u c t a n c e  desc r ibed  ear l ier  in phagocyt ic  cells ( D e m a u r e x  et  al., 
1993; Kapus e t  al., 1993; DeCoursey  a n d  Cherney ,  1993). Because  the  prevai l ing 
ionic  condi t ions  used  (acidic in t racel lu lar  solut ion)  activate this pathway,  the  cur-  
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rents  r e c o r d e d  in the absence  o f  N a + / H  § exchange  mos t  p robab ly  flow t h r o u g h  
the  H + c o n d u c t a n c e  o f  macrophages .  

T he  currents  r e c o r d e d  du r ing  N a + / H  + exchange  had  similar characteristics,  i.e., 
slow voltage activation a nd  sharp  ou tward  rectif ication (Fig. 4, bottom left traces). 
However ,  the init iat ion o f  reverse N a §  § exchange  by removal  o f  external  Na  § 
(solutions Ba 2, Pi 1) shifted the voltage d e p e n d e n c e  o f  the cur rents  by - 1 5  mV 
(Fig. 4, bottom left traces, circles), resul t ing in a ne t  outward  cu r r en t  at  0 mV. Thus,  
when  the cells are  c l amped  at this voltage, the activation o f  an  outward  cu r r en t  by 
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FIGURE 5. Voltage dependence of the currents reduced by forward (Nao-driven) Na§ § ex- 
change. The voltage protocol was as in Fig. 4 except that 1-s pulses were applied to a maximum volt- 
age of +30 inV. Ionic conditions, schematized in inset, were as in Fig. 3. (A) Families of currents re- 
corded in the absence (top) or presence (bottom) of an inward Na § gradient. Cell capacitance: 42 pF. 
(B) current-voltage relationship determined in the absence of Na § 0f//ed squares) or in the presence 
of an inward Na § gradient in media without (open c/rc/es) or with 1 mM amiloride (open tr/ang/es). 
Currents were measured at the end of the voltage pulse and normalized for cell capacitance. Results 
are means + SE of 16, 12, and 5 cells for 0 Nao, 85 Nao, and 85 Nao + amiloride, respectively. When 
not shown, error bars are smaller than symbols. 

reverse N a + / H  + exchange  cou ld  be exp la ined  by a shift in the  voltage d e p e n d e n c e  
o f  a preexis t ing conduc t ance ,  likely the H+-selective conduc tance .  

T he  cur ren ts  associated with forward  N a + / H  § exchange  cou ld  also be exp la ined  
by a shift in the voltage d e p e n d e n c e  o f  the H § conduc tance .  T h e  basal ou tward  
c u r r e n t  inhibi ted  by forward  N a + / H  § exchange  (e.g., Fig. 3) p robab ly  f lowed 
t h r o u g h  the H § conduc tance ,  as this has b e e n  shown to be the p r e d o m i n a n t  con-  
duc t ance  in m a c r o p h a g e s  when  a large ou tward  H + grad ien t  is imposed  in the ab- 
sence  o f  o the r  p e r m e a n t  ions (Kapus et al., 1993). Accordingly,  u n d e r  these condi-  
t ions (solutions Ba 3, Pi 2) large outwardly rectifying and  slowly activating currents  
were observed (Fig. 5, top left traces). As expec ted  f rom the pHi d e p e n d e n c e  o f  the 
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H + c o n d u c t a n c e ,  the  basal cur ren ts  had  a th resho ld  voltage for  activation a r o u n d  
- 6 0  mV (Fig. 5, filled squavzs), consis tent  with results ob ta ined  earl ier  using similar 
med ia  (Kapus et al., 1993). T h e  init iation o f  forward N a + / H  + e x c h a n g e  by addi- 
t ion o f  external  Na  + (solutions Ba 4, Pi 2) shifted the  current-vol tage re la t ionship 
by ~ 2 5  mV a nd  slowed the kinetics o f  cu r r en t  activation (Fig. 5, bottom left traces, 
0~en c/rc/~). Both  effects were fully reversed by the addi t ion  o f  I m M  amilor ide  
(Fig. 5, open tr/angles), conf i rming  med ia t ion  by the  N a + / H  + exchanger .  

Toge the r ,  the  results o f  Figs. 4 and  5 are consis tent  with the  no t ion  that  mac-  
rophages  possess a H+-selective c o n d u c t a n c e  and  that  the cu r r en t  changes  elicited 
by activation o f  N a + / H  + exchange  in e i ther  the  forward o r  reverse modes  can be 
a t t r ibuted to m o d u l a t i o n  o f  this conduc tance ,  likely by the associated changes  in 
pHi (see Fig. 1, C a n d  D). 

Ionic Selectivity of the Currents 

To  de t e rmine  whe the r  the cur rents  m o d u l a t e d  by N a + / H  + exchange  are in fact  
carr ied by H + ions, we m e a s u r e d  their  reversal potent ia l  (F~) .  E ~  c a n n o t  be accu- 
rately d e t e r m i n e d  f r o m  steady state cur rents  because  o f  their  outward  rectification 
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Fmunz 6. Reversal potentials of the currents associated with Na+/H + exchange. The reversal po- 
tential (F~; ordinate, in millivolts) of the tail currents recorded under the conditions specified is 
plotted as a function of the transmembrane pH gradient (ApH; abscissa) defined as the difference 
between the intracellulax pH (pHi), measured with BCECF, and the pH of the bath solution (pFIo). 
Initial ionic conditions were as in Fig. 2 (ApH = 0), or Fig. 3 (ApH = -2) and Na+/H § exchange was 
induced by imposing either an outward or an inward Na § gradient (fiRed symbo/a). Currents were acti- 
vated by 1-2-s depolarizing pulses to 0 mV (for ApH = -2) or +45 mV (for ApH = 0) and tail current 
amplitude measured 5 ms after stepping back to test potentials ranging from -100 to +20 mV. F_~ 
was calculated by interpolation as the voltage at which tail currents reversed sign. Results are means 
+ SE of six to nine determinations, except the two points determined in the presence of 1 mM 
amiloride (crossed symb0/s) which are the mean of two determinations. The dotted line is the Nernst 
potential for H + ions at 37~ 
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properties. However, inward tail currents can be readily measured, as illustrated in 
Fig. 4. To determine E~, tail currents were elicited by applying 1-2-s depolarizing 
pulses to 0 mV (when an H + gradient was present and currents activated above -60  
mV) or +45 mV (when a H § gradient was absent and currents activated >0 mV) and 
the current amplitude was measured 5 ms after stepping back to test potentials 
ranging from -100 to +20 inV. The Er~ of the tail currents was determined and is 
plotted in Fig. 6 against the transmembrane pH gradient (ApH), taken as the dif- 
ference between the bath pH (which we assumed constant) and the measured 
value of the intracellular pH. In the absence of Na + or H + gradients (using solu- 
tions Ba 1, Pi 1), E~  averaged - 5  mV (Fig. 6, open circle). Activation of reverse 
Na+/H + exchange (solutions Ba 2, Pi 1) generated a ApH of 0.2 pH U and shifted 
F~e~ by -10  mV (tiffed circ/e). Both the pH and E~ changes were reversed by 
amiloride (crossed circle). In the absence of a Na + gradient but in the presence of a 
large H + gradient (solutions Ba 3, Pi 2), F ~  approximated -60  mV (open square). 
Operation of forward Na+/H + exchange (solutions Ba 4, Pi 2) reduced ApH by 0.3 
pH U and shifted E~ by +25 mV (filled square). Both changes were reversed by 
amiloride (cr0ssed square). 

The nature of the charge-carrying species can be inferred from comparison of 
E~  with the equilibrium potentials of the candidate ions. The equilibrium poten- 
tial for Na + ions, Esa can be determined in the two initial conditions (open symb0/s), 
assuming that intracellnlar [Na +] equilibrates with the pipette [Na +] when Na+/H + 
exchange is inactive. Although Esa is close to 0 mV in both conditions, the mea- 
sured E~ values differ by 60 mV, suggesting that the basal current is not carried by 
Na + ions. In contrast, in all conditions studied, Em varied in parallel with the calcu- 
lated H + equilibrium potential, Ea (Fig. 6, dotted line), although the absolute values 
deviated somewhat from the theoretical predictions, particularly when ApH was 
large. When the relationship between the recorded F~v changes and the ApH was 
estimated, a slope between 60-69 mV/pH was calculated, which compares favor- 
ably with the value of 62 mV/pH predicted for a purely H+-selective conductance. 
Thus, the currents modulated by Na+/H + exchange are carried mostly, if not ex- 
clusively, by H + equivalents. 

We next tested the effects of ZnC12, which reversibly blocks the H + conductance 
of phagocytic cells (Demaurex et al., 1993; Kapus et al., 1993; DeCoursey and 
Cherny, 1993). In macrophages, addition of 2 mM ZnCl2 greatly inhibits the H + 
current (>90% block at voltages up to 50 mV above the activation threshold) by 
shifting the current-voltage relationship by ~+60  mV (Kapus et al., 1993). To test 
the effects of ZnCl2, cells were subjected to a H + gradient (solutions Ba 3, Pi 2) and 
the basal current was activated by 1-s voltage steps from -60  to -10  mV (see left- 
most segment of Fig. 7). In the cell illustrated, a current of 130 pA was recorded. 
The bath solution was then exchanged for a Na+-free solution containing 2 mM 
ZnC12. Addition of ZnCl~ (at t = 7 min) had no effect on pHi, which continued to 
drift downward at a constant rate as the cytosol equilibrated with the pipette, but 
blocked the basal current by >90% (Fig. 7). The solution was then exchanged (t = 
9 min) to a Na+-containing medium in the continued presence of Zn 2+ (solution 
Ba 4+ 2 mM ZnCl~). This produced an alkalinization of 0.3 pH U, demonstrating 
that forward Na+/H + exchange can still occur in the presence of ZnCl2. Impor- 
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tantly, no current  changes were observed, despite activation of  the antiporter.  Re- 
moval of  Zn 2+ in the cont inued presence of  Na § (t = 12.5 rain) did not  alter the 
prevailing steady state pHi, but  unmasked outward currents that were smaller (~75 
pA) than those recorded in Na+-free medium, consistent with the results in Fig. 3. 
Readdition of  ZnClt (t = 15 rain) again blocked the current  without changing phi ,  
whereas switching to a Na+-free solution (t = 16.5 rain) caused a reacidification 
that was not  accompanied by changes in current.  Thus, N a+ /H  + exchange could 
be pharmacologically dissociated from its accompanying currents. The  currents 
were reversibly blocked by Zn ~+, as expected if carried by the H + conductance of  
macrophages.  

It is noteworthy that like the fluxes mediated by N a §  + exchange, displacement 
of H + by the conductive pathway is expected to alter pHi. In the exper iment  of  Fig. 
7, a cell with a low current  density was chosen (3.6 pA/pF  at - 1 0  mV) to minimize 
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the effects of  the H + current  on pHi .  This has enabled us to reversibly block the 
conductance without inducing detectable changes in pHi, and to separate N a+ /H  + 
exchange from its accompanying currents. As previously observed (Kapus et  al., 
1993), however, larger currents generated readily measurable changes of  pHi, con- 
firming that H + equivalents mediate the current.  Jointly, these experiments suggest 
that macrophages possess a H + conductance that is modula ted  by the pHi changes 
occurring during Na+/H + exchange, whereas the ant iporter  itself appears to be 
electroneutral.  

Macrophages Express NilE-l, the Ubiquitous Isoform of the Antiporter 

Several isoforms of  the ant iporter  exist, which exhibit different kinetic and phar- 
macological properties. It was thus important  to establish which isoform underlies 
cation exchange in macrophages,  because it may differ f rom that of  the basolateral 
membrane  of  the turtle colon epithelium. A partial clone isolated from the turtle 
colon shows >80% amino-acid identity to the human NHE-1 homologue (Harris et 
al., 1992), and NHE-1 is believed to predominate  in basolateral membranes of  
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mammalian epithelia. Moreover, the pharmacological profile of Na+/H + exchange 
in the turtle cells is similar to that of NHE-1 (Post and Dawson, 1992). Thus, the 
currents reported in the basolateral membrane of turtle colon epithelium are 
probably mediated by an NHE-l-like isoform. To determine which isoform is 
present in macrophages, we extracted messenger RNA from mouse peritoneal mac- 
rophages and assessed the expression of four different isoforms of the antiporter 
(NHE-1 to 4) by RT-PCR (Fig. 8 A). Isoform-specific primers which hybridized to 
unique regions of the rat NHE-1, NHE-2, NHE-3 and NHE4 were used. All four 
sets of primers yielded the expected PCR products (Fig. 8 A, lanes 1, 4, 7, and 10) 
when linearized pCMV plasmids containing the full-length cDNA clone of the cor- 
responding isoform were used as template. No discernible products were detected 
when a specific primer set was used with any of the noncorresponding isoforms as 
template (not shown). When cDNA obtained by reverse transcription of macro- 
phage mRNA was used as a template, the NHE-1 primers yielded a product of -~500 
bp (Fig. 8 A, lane 2), whereas all the other sets of primers did not yield discernible 
products (Fig. 8 A, lanes 5, 8, and 11). Omission of reverse transcription prevented 
appearance of the 500-bp product, ruling out contamination with genomic DNA. 
Thus, the predominant isoform expressed in macrophages is NHE-1. 

This conclusion was further supported by detection of the NHE-1 protein in a 
preparation of macrophage microsomes. As shown in Fig. 8 B, a polypeptide of mo- 
lecular weight =115 kD was recognized by an antibody raised against the COOH- 
terminal 157 amino acids of NHE-1. A polypeptide of similar size was recognized in 
cells transfected with NHE-1, but not in their untransfected, antiport-deficient 
counterparts (Fig. 8 B), confirming the specificity of the antibody. 

The presence of functional NHE-1 in macrophages could also be demonstrated 
pharmacologically. As shown in Fig. 8 C, the antiport activity of macrophages, as- 
sessed as the Na+-dependent recovery from an acid load, could be effectively inhib- 
ited by compound HOE694. The concentration of HOE694 required for half-maxi- 
mal inhibition was 0.15 v,M, similar to that reported to inhibit NHE-1 (Counillon, 
Scholz, Lang, and Pouyssegur, 1993), and much lower than that needed to inhibit 
either NHE-2 or NHE-3 (/~ of 5 and 650 wM, respectively). Together, these find- 
ings indicate that NHE-1 is the primary Na+/H + antiporter of murine macro- 
phages. 

Assessing the Electrogenicity of NHE-1 by Heterologous Transfection 

The current associated with activation of NHE-1 in macrophages appeared to result 
from indirect coupling to a separate, pH-sensitive conductance, whereas the ex- 
changer itself was seemingly electroneutral. This hypothesis could in principle be 
tested by assessing the electrical properties of NHE-1 in cells devoid of a conductive 
pathway and lacking any other isoforms of the antiport. To this end, we used CHO 
cells, which we found not to display detectable H + conductance. That only NHE-1 
was expressed in these cells was ensured by heterologous transfection of rat NHE-1 
into CHO cells that were previously selected by the H § suicide method, i.e., they 
lacked functional Na+/H + exchange (Orlowski, 1993). The transformants were 
studied under conditions identical to those used in Fig. 3. The cytosol was acidified 
through the patch pipette (solutions Ba 3, Pi 2) and an inward Na + gradient was 
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subsequently imposed (solution Ba 4) to activate forward Na+/H § exchange. Effi- 
cient activation of  NHE-1 was detectable as a large Na+-induced cytosolic alkaliniza- 
tion (Fig. 9, top), which exceeded the rate observed in macrophages (cf. Fig. 3). In 
contrast to macrophages, no basal outward currents were observed in fibroblasts 
and only small, t ime-independent currents were elicited by 1-s steps to voltages 
ranging from - 9 0  to +60 mV (Fig. 9, top inset). Thus, the voltage-activated H § con- 
ductance present in macrophages cannot  be detected in CHO cells. No changes in 
current accompanied the pHi changes induced by introduction of  Na § (Fig. 9, bot- 
tom trace) and the whole-cell conductance remained constant across the entire 
range of voltages tested (Fig. 9,/ower inset). Addition of amiloride blocked the ex- 
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lhGLr~ 9. NHF~l-mediated Na+/ 
H + exchange in fibroblasts is not 
associated with whole-cell cur- 
rents. A CHO cell expressing the 
NHFA isoform of the antiporter 
was subjected to the same proto- 
col as in Fig. 3. (T0p) pHi deter- 
mination. (Bottom) Currents mea- 
sured at the end of 1-s pulses to 
0 mV, applied every 10 s from a 
holding voltage of - 6 0  mV. At 
the times indicated by a and b on 
the pHi traces, families of cur- 
rents elicited by 1 s voltage steps 
ranging from -90  m +60 mV 
were recorded and are shown in 

the right panel. Cell capacitance: 24 pF, access resistance: 5 MI~. The current scale in a and b is mag- 
nified fivefold compared to that in Fig. 5, which was obtained under comparable conditions in mac- 
rophages. Representative of eight experiments. 

c h a n g e r ,  l e a d i n g  to  ce l lu l a r  ac id i f ica t ion ,  b u t  fa i led  to a l t e r  the  cu r r en t .  Thus ,  
N a + / H  + e x c h a n g e  t h r o u g h  the  NHE-1 i so fo rm does  n o t  g e n e r a t e  d e t e c t a b l e  cur-  
ren t s  in  C H O  cells,  cons i s t en t  wi th  an  e l e c t r o n e u t r a l  process .  

T o  assess t he  e lec t r i ca l  p r o p e r t i e s  o f  the  o t h e r  i soforms,  the  a n t i p o r t M e f i c i e n t  
C H O  cells were  t r ans f ec t ed  with  e i t h e r  NHE-2 o r  NHE-3  ( a t t empt s  to express  
NHE-4  have  thus  far  b e e n  unsuccess fu l ) .  T h e  resul ts  o b t a i n e d  with all o f  these  iso- 
fo rms  a re  s u m m a r i z e d  in  Fig. 10, t o g e t h e r  with the  resul ts  o b t a i n e d  in m a c r o -  
phages .  T h e  s teady  state pHi  a n d  the  t r a n s m e m b r a n e  c o n d u c t a n c e  were  m e a s u r e d  
c o n c o m i t a n t l y  be fo re ,  d u r i n g  a n d  a f te r  i n d u c t i o n  o f  N a + / H  + e x c h a n g e .  T h e  con-  
d u c t a n c e  was d e r i v e d  f r o m  c u r r e n t s  e l i c i t ed  by vo l tage  pulses  o f  15 mV (macro -  

FIGURE 8. Murine macrophages express the NHE-1 isoform of the antiporter. (A) Messenger RNA 
was extracted and used as a template for RT-PCR with isoform~pecific primers. M: molecular weight 
markers. P: template was linearized pC_AtV plasmid containing the full sequence of rat NHE-1 (lane 
I), NHE-2 (lane 4), NHE-3 (lane 7), or NHE,4 (lane 10), hybridized with the corresponding prim- 
ers. M~: template was macrophage mRNA, hybridized with primers specific for NHE-1 (lane 2), 
NHE-2 (lane ~ ,  NHE-3 (lane 8), or NHE-4 (lane II). Controls used shnilar template and primers as 
MO, but reverse tran$criptase was omitted. Representative of four separate experiments. (B) Mi- 
crosomal fractions were separated by gel electrophoresis and immunoblotted with a polyclonal anti- 
body specific for the carboxy terminus of the human NHE-1 isoform. (/.eft/ant) Mouse macro- 
phages; ( m/ddk/ant) CHO cells stably transfected with the NI-IE-1 isoform; (r/ght/ant) untransfected 
antiport-deficient CHO cells. Representative of two separate experiments. (C) Suspensiom of mouse 
macrophages were loaded with BCECF (2 I~M) and suspended in KCl-free solutions (140 mM 
NMG~). Low concentrations of nigericin (0.1 ~g/ml) were used to acidify the cytusoL The rate of 
fluorescence increase following addition of 50 mM NaCI to the extracellular solution was measured 
at comparable pHi and is plotted as a function of the concentration of HOE 694. A sigmoidal func- 
tion of the form: y = 100/{l+(x/x0)"} (//nt) was fitted to the data (X 2 = 1.01; n = 0.89), and yielded an 
apparent Ki of 0.15 o~M (dott~//nt). Data are mean • SE of three separate determinations. 
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phages) or  60 mV (CHO cells) amplitude,  and has been  normalized per  cell capac- 
itance in order  to allow compar ison between cell types. In all cases, the cytosolic al- 
kalinization effected by forward N a + / H  + exchange was of  comparable  ampli tude 
and a secondary acidification was always induced by addit ion of  amiloride,  confirm- 
ing involvement of  the antiport.  However, a change in t r ansmembrane  conduc- 
tance was observed only in macrophages.  This indicates that, under  comparable  
conditions, the three isoforms of  the mammal ian  ant ipor ter  behave similarly, i.e., 
they catalyze electroneutral  exchange.  Associated currents can only be recorded  in 
cells expressing a H + conductance,  where pHi changes resulting f rom the activity of  
the ant ipor t  seemingly modula te  the conductance.  Therefore ,  though the proper-  
ties o f  NHE-4 remain  to be established, electroneutral  exchange appears  to be a ge- 
netic feature of  mammal ian  antiporters.  

FIGURE 10. Na§ + exchange 
in macrophages and in CHO 
cells transfected with three differ- 
ent isoforms of the antiporter: 
comparison of effects on pHi and 
conductance. Data are from ex- 
periments performed with macro- 
phages or with CHO cells trans- 
fected with the NHEA, NHE-2 or 
NHE-3 isoforms of the andporter, 
using a protocol similar to that 
used for Figs. 3 and 8. (Top) 
Steady state pHi, measured be- 
fore (open bars) and after (fi//ed 
bars) superfusion with 85 mM 
Na § and after addition of amilo- 

ride in the presence of Na § (stippled bars). (Bottom) Steady state conductance, normalized for cell ca- 
pacitance, measured under the same conditions. Conductance was derived from the currents elic- 
ited by voltage steps ranging from -50 to 0 mV. Data are means + SE of the number of cells indicated 
in parenthesis. *: P< 0.0002 with condition 0 Na § (t test). 

Voltage Sensitivity of the Antiport 

Although N a + / H  + exchange does not  generate  detectable currents, the exchange 
process could nevertheless be affected by changes in Vm. Since our  exper imenta l  
system could readily measure  N a + / H  + exchange in voltage c lamped cells, we were 
able to directly assess the voltage dependence  of  the antiporter.  Moreover,  the 
three isoforms of  the ant ipor ter  could be studied independent ly  in the same ex- 
pression system. We thus pe r fo rmed  exper iments  similar to the one shown in Fig. 
9, but  held the m e m b r a n e  voltage at different values ( - 6 0 ,  0, or  +30 mV) before 
initiating forward N a + / H  + exchange.  Then,  the holding voltage was changed dur- 
ing the course of  the ant iport- induced alkalinization. Typical results obta ined with 
this voltage protocol  are shown for a NHE-l - t ransformant  (Fig. 11, left panel; dotted 
line indicates the time of  voltage change).  Forward N a + / H  + exchange occurred  
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normal ly  at  a ho l d i ng  voltage o f  0 mV, the alkalinization be ing  similar to tha t  ob- 
served at - 6 0  mV (see Fig. 9). More  important ly ,  c h a n g i n g  the -ho ld ing  voltage to 
- 6 0  mV did  no t  alter the o n g o i n g  alkalinization (Fig. 11). T h e  rates o f  increase o f  
pHi du r ing  the 30 s before  o r  after  the c h a n g e  in voltage were c o m p a r e d  in six 
d i f ferent  NHE-1 t ransformants  (Fig. 11, right). T h e  absolute  rates o f  p h i  recovery 
varied f r o m  cell to cell, bu t  were in all cases i n d e p e n d e n t  o f  the h o l d i n g  voltage. 
Similar results were ob ta ined  with NHE-2 t ransformants  ( four  cells) and  NHE-3 
t ransformants  ( three  cells; no t  illustrated). In  separate  exper iments ,  c h a n g i n g  the  
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FIGURE 11. Voltage dependence of NHE-1. (Left) An NHE-l-transfectant was patch clamped in the 
whole-cell configuration using a pipette filled with solution Pi 2. The bath initially contained Na § 
free solution (Ba 3) and, where indicated, was switched to a solution containing 85 mM Na § (Ba 4). 
The cell was voltage clamped at 0 mV and, when indicated by the dotted line (t = 4.3 min), the hold- 
ing voltage was changed to -60 mV (bottom). Cell capacitance: 34 pF, access resistance: 15 MA2. 
(R/gh0 Voltage dependence of the pHi recovery rates, derived from experiments similar to the one 
illustrated in the left. NHE-1 transformants were voltage-clamped at-60,0,  or +30 mV and the hold- 
ing voltage was stepped during the course of the recovery. The rates of alkalinizafion (in pH/min) 
during the 30-s intervals before and after the voltage change were compared. The arrows indicate 
the direction of the voltage changes during the recovery. Results from six different experiments are 
illustrated. 

voltage by ___60 mV did  n o t  alter the steady state pHi a t ta ined du r ing  con t inuous  
ope ra t ion  o f  the N a + / H  + e x c h a n g e r  (no t  shown).  Taken  together ,  these experi-  
men t s  indicate  tha t  the  activation and  sustained func t ion  o f  the an t ipor t e r  are  in- 
d e p e n d e n t  o f  the  t r a n s m e m b r a n e  voltage. 

D I S C U S S I O N  

The Rodent NilE-l,  -2, and -3 Are Electroneutral 

T h e  earliest precise de te rmina t ions  o f  N a + / H  + exchange ,  p e r f o r m e d  in vesicles 
isolated f r o m  brush  borders  o f  epithelial  cells, suggested a s to ichiometry  o f  1:1 and  
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failed to reveal associated changes in membrane potential (Murer et al., 1976; Kin- 
sella and Aronson, 1980; Aronson, Nee, and Suhm, 1982). It was therefore gener- 
ally assumed that Na§ § exchange in mammalian tissues is electroneutral (Aron. 
son, 1985). Subsequent results obtained with other biological systems were gener- 
ally consistent with this notion (Cala, 1980; Boron and Boulpaep, 1983; Grinstein 
et al., 1984). By contrast, recent findings of Post and Dawson (1992, 1994) indi- 
cated that a sizable current is associated with the activation of the antiporter of 
the basolateral membrane of turtle colon cells and were interpreted to mean that 
Na§ § exchange is an electrophoretic process. The existence of electrogenic 
Na§ + exchange is not unprecedented. Electrogenic, 2 Na+/H + exchange has 
been detected in a variety of invertebrate species and tissues (Ahearn and Franco, 
1990, 1991; Kimura, Ahearn, Busquets-Turner, Haley, Nagao, and DeCouet, 1993). 
This electrogenic antiporter has been suggested to play a central role in the acidifi- 
cation of the crustacean gut, in Na + absorption by crab gills and to indirectly con- 
tribute to calcium homeostasis in crustaceans and echinoderms (Ahearn, Zhuang, 
Duerr, and Pennington, 1994; Grinstein and Wieczorek, 1994). 

In view of these apparently incompatible findings, a reassessment of the electro- 
genicity of the mammalian antiporters seemed warranted. It was particularly impor- 
tant to establish the individual properties of each isoform of the exchanger, inas- 
much as differential behavior might account for the apparent inconsistencies 
described in different biological systems. It is noteworthy that much of the evi- 
dence supporting electroneutrality was gathered using vesicles isolated from apical 
membranes of epithelial cells (Murer et al., 1976; Kinsella and Aronson, 1980; 
Aronson et al., 1982) and therefore most likely reflected the activity of NHE-3 
(Haggerty et al., 1988; Tse et al., 1992; Wang, Orlowski, and Shull, 1993). On the 
other hand, support for electrogenic behavior was obtained with turtle colon baso- 
lateral antiporters. By analogy with mammalian gastrointestinal epithelia (Book- 
stein, DePaoli, Xie, Niu, Musch, Rao, and Chang, 1994), reptilian cells are likely to 
express primarily NHE-1 on their basolateral membranes. Indeed, a partial clone 
isolated from this tissue bears >80% identity with the mammalian NHE-1 homo- 
logue (Harris et al., 1992). Moreover, the amiloride sensitivity of Na§ + ex- 
change activity reported by Post and Dawson (1992) is compatible with that found 
for the mammalian NHE-1 (Orlowski, 1993). 

Using murine macrophages, we were able to reproduce antiport-associated cur- 
rents that were indistinguishable from those reported by Post and Dawson (1992, 
1994). However, close examination of the properties of these currents revealed 
that they were not an intrinsic property of the Na§ § exchange process but in- 
stead resulted from coupling of the antiporter to a separate endogenous H § con- 
ductive pathway (see model in Fig. 1, Cand D). The latter conclusion was based on: 
(a) the similarity between the Na§ currents and those elicited by compara- 
ble changes in pHi attained by independent means, i.e., without involvement of the 
antiporter. The voltage dependence and kinetics of the currents were virtually 
identical in both cases; (b) the reversal potential of the currents was similar to EH +, 
consistent with participation of a conductive, H+-selective pathway. A different 
thermodynamic profile would be anticipated if the currents were due to an uneven 
Na§ § stoichiometry; and (c) the current could be dissociated from the activity of 
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the antiport by means of Zn 2+, which blocked the endogenous H + conductance 
without preventing antiport activity, as indicated by the Na+-induced and amilo- 
ride-sensitive changes in pHi. 

Modulation of H + currents by Na+/H + exchange was recently suggested by De- 
Coursey and Cherny (1994a, reviewed in DeCoursey and Cherny, 1994b). In 
human neutrophils and rat alveolar epithelial cells, these authors found that condi- 
tions expected to activate forward Na+/H + exchange shifted both the current-volt- 
age relationship and the reversal potential of the currents to more positive poten- 
tials. To account for these observations, DeCoursey and Cherny (1994a, b) specu- 
lated that changes in pHi might occur in peffused cells during Na+/H + exchange, 
and that a 0.4-0.5 pH U alkalinization of the submembranous compartment could 
account for the observed changes in H + current. Our phi measurements in mac- 
rophages are consistent with these calculations confirming that, in cells endowed 
with a H + conductance, activation of Na+/H + exchange can markedly affect H + 
currents through changes in pHi. If a H + conductance were also present in the ba- 
solateral membrane of turde colon epithelium, the currents attributed to electro- 
genic Na+/H + exchange in this system might be due to a similar "cross-talk" mech- 
anism. 

Using isoform-specific primers and RT-PCR, macrophages were shown to exhibit 
only NHE-1. Expression of the NHE-1 isoform was confirmed by immunoblots of 
macrophage membrane proteins, and the pharmacological profile of Na+/H + ex- 
change in macrophages was consistent with NHE-1. Further evidence that this iso- 
form is not electrogenic was obtained using CHO cells transfected with the rat ho- 
molog of this isoform. These cells, which lack the endogenous H + conductance 
found in leukocytes and in some epithelia, displayed robust Na+/H + exchange ac- 
tivity without associated current. Because the rate of Na+/H + exchange in these 
cells can be estimated from measurements of pHi, the magnitude of the current 
predicted to be associated with a putative electrophoretic exchanger can be calcu- 
lated. We observed pHi changes of ~-0.12 pH/min  during antiport activation in 
patch clamped NHE-I transformants. This value underestimates antiport activity as 
in intact CHO cells, where determination of ApH is not complicated by diffusion of 
H + equivalents and buffers to and from the patch pipette, the rate of alkalinization 
mediated by NHE-1 under comparable conditions averages 1 pH/min  (Kapus et 
al., 1994). Considering the buffering capacity of the cells in the pH range studied 
(~-11 and 32 mM/pH for whole-ceU patched and intact fibroblasts, respectively), 
these rates of ApHi are equivalent to 1.2--40 mmol H + equivalents/liter/rain. Tak- 
ing the average volume of CHO cells as 1 pL (measured by electronic sizing) and 
assuming a 2Na+:IH + stoichiometry as suggested by Post and Dawson (1994), the 
anticipated current would range from 2 to 60 pA (for ApHi of 0.12 or 1 pH/min  
and buffering powers of 11 and 32 mM/pH, respectively). This value is well within 
the range measurable by our experimental setup, implying that our failure to de- 
tect antiport associated currents is not due to technical limitations. 

The absence of complicating H + conductive pathways enabled us to test also the 
electrical properties of NHE-2 and NHE-3. Like NHE-1, these isoforms were found 
to be electroneutral. It therefore seems unlikely that differential isoform composi- 
tion might account for the discrepancies in electrogenicity of the antiporter re- 
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ported in the literature. Nevertheless, it is important to point out that the behavior 
of NHE-4 has not been established as it awaits its functional expression. Moreover, 
the precise isoform content of the turtle colon and possible species differences be- 
tween NHE-1 homologues remain to be determined. 

The Rodent NHE-1, -2, and -3 Are Voltage Insensitive 

While electroneutral processes are frequently also voltage-independent, this is not 
necessarily always the case. Reactions involving displacement of charges or dipoles 
across the membrane are often part of catalytic cycles that produce no net charge 
translocation. In the cases where such partial reactions are rateqimiting, the overall 
yield of the electroneutral process can be altered by the transmembrane potential 
(Eisner and Lederer, 1985). Therefore, the finding that Na+/H + exchange in 
mammalian cells is electrically neutral does not rule out the possibility that it might 
be sensitive to the applied voltage. 

In previous reports, the rate of Na+/H § exchange was not affected when the 
membrane potential was predicted to be altered by manipulation of the ionic envi- 
ronment and/or  by addition of conductive ionophores (Cala, 1980; Grinstein et 
al., 1984). The isoform(s) involved in these studies were not defined, nor was the 
membrane potential directly measured. To complement existing information, we 
performed experiments using the transfected CHO cells, which are endowed with a 
single, well defined isoform of the antiporter. The ability to measure sizable pHi 
changes when using the whole-cell configuration of the patch clamp technique al- 
lowed us to assess the rate of Na+/H + exchange while accurately controlling the 
transmembrane potential. Using this experimental paradigm, neither NHE-1, 
NHE-2 nor NHE-3 displayed detectable voltage sensitivity in the -60  to +30 mV 
range. These findings imply that partial reactions requiring transmembrane dis- 
placement of charges or dipoles are not part of the Na§ § exchange cycle or 
that, if they are present, such steps are not rate determinant. 

The persistence of measurable phi changes when using the whole-cell configura- 
tion of the clamp, despite the continuity of the cytosolic and pipette solutions, is re- 
markable. It implies that the rate of transmembrane displacement of H + by the 
exchanger outstrips the diffusion of H + equivalents and buffers to and from the pi- 
pette. The access resistance in our experiments was not inordinately high (~5-30 
Mr/), however, the calculated time constants for H § equilibration via a 5-MI-/pi- 
pette ranged from 16 to 100 s, in agreement with the value of ~-60 s derived from 
fluorescence measurements (see Appendix for calculation and measurements of 
the dme constants). These slow time constants could be explained by the presence 
of ~8 mM intracellular "fixed" H § buffers (see Appendix) and, combined with the 
relatively large rates of transmembrane transport, made the detection of pHi 
changes possible even in intracellularly perfused cells. It is noteworthy that alkalin- 
ization due to Na+/H + exchange was measurable not only in the transformants, 
but also in macrophages expressing only the endogenous antiporter. These find- 
ings should serve as a caution to investigators who, in the course of experiments us- 
ing the whole-cell configuration, make the assumption that the cytosolic and pi- 
pette pH and Na + concentration will be identical under all conditions. 
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Physiological Significance of the Electrical Properties of the antiporter 

Epithelia of invertebrates, where electrophoretic 2Na+:IH + exchange has been de- 
tected, are exposed to drastic changes in salinity and pH. It has been suggested that 
in these systems the ionic component  of the electrochemical driving force may not  
always suffice to drive H + in the appropriate direction. Coupling the ionic gradient 
to the transepithelial electrical potential is regarded as a means to energize the 
translocation of  H + and Na +, ensuring the occurrence of  fluxes of adequate magni- 
tude and polarity. 

The constancy of  the extracellular milieu bathing nonepithelial cells as well as 
the basolateral membrane of epithelia obviates the need for electrical driving 
force. In mammals, even the mucosal face of epithelia rarely faces the extreme en- 
vironmental shifts that confront  some invertebrates, as in the case of  gills of shore 
crabs. Moreover, in mammalian renal and gastrointestinal epithelia, primary active 
transport of H + equivalents appears to be the mechanism of  choice when transloca- 
tion of acid-base equivalents against large gradients is required. Therefore, contri- 
bution of an electrical component  to drive Na+/H + exchange is seemingly not  es- 
sential. 

The development of 1:1 Na+/H + exchange as a neutral and voltage-insensitive 
means of transporting H § equivalents probably reflects the need for dissociation of  
pH regulation from the electrical activity of excitable tissues. Clearly, secondary al- 
terations in membrane potential associated with H + extrusion in metabolically acti- 
vated nerve, muscle or endocrine cells could result in severe interference with their 
electrophysiological behavior. Conversely, modulation of the rate of Na+/H + ex- 
change by changes in potential during the course of excitable activity is undesir- 
able. The electroneutrality and voltage insensitivity of  the antiporters preclude 
such potentially deleterious interactions. 

In summary, three mammalian isoforms of the Na+/H + exchanger, NHE-1, -2 ,  
and -3 ,  were found to be electrically neutral and insensitive to the applied trans- 
membrane potential. The existence of additional H + transporting systems and the 
constancy of  the transmembrane Na + gradient have enabled mammals to limit the 
stoichiometry of Na+/H + exchange to 1:1, rendering the regulation of  cellular pH 
and volume independent  of the electrophysiological activity of  the cells. 

A P P E N D I X  

Measurement of pHi Transients in Cells Patched in the Whole-CeU Configuration 

The activity of the antiporter could be measured readily in cells that were clamped 
in the whole-cell configuration, despite the continuity of the cytosolic space and 
the pipette solution. This seemingly unexpected observation can be explained by 
the comparatively long time required for equilibration of  pH buffers between the 
pipette and the cell. Fluxes to and from the patch pipette follow exponential kinet- 
ics of the form: [X] i  = [X]p*(1 -- e-t/T), with time constant: 'r = V/o*RA/D, where 
[x]i and [x]p are the intracellular and pipette concentrations of  the solute, Vis the 
cell volume, O the resistivity of the pipette so lu t ion , /~  the access resistance, and D 
the diffusion constant of x in the cytosol (Pusch and Neher, 1988; Oliva, Cohen, 
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and Mathias, 1988). Cytosolic diffusion of  H + equivalents is slower than diffusion in 
aqueous solutions and depends on the concentrat ion of  both fLxed and mobile 
buffers. In whole-cell patch clamp experiments,  some fixed buffers such as proteins 
and lipids on membrane-bound organelles or  cytoskeletal proteins remain in the 
cell, whereas endogenous  mobile buffers such as phosphates are dialyzed out  and 
replaced by the pipette buffers. Thus, the apparent  diffusion constant for  H + in the 
cytosol, DHo cannot  exceed the diffusion constant of  the mobile (i.e., pipette) buff- 
ers, Dm, and is fur ther  limited by the amount  of  fixed buffers remaining in the cell, 
according to: DHc = Dm*[3m/(13m + 13f), where [3 m a n d  [~f are the buffering powers of  
the mobile and fixed buffers, respectively (Irving, Maylie, Sizto, and Chandler,  
1990). The  buffering power of  our  pipette solutions, f3m, is ~3  m M / p H ,  most of  
which is contr ibuted by MES (molecular weight 213), whose diffusion constant in 
the cytosol should be similar to that of  fura-2, i.e., ~3"10  -6 cm2/s at 37~ (Neher  
and Almers, 1986). The  buffering power of  the fixed buffers remaining in the 
whole-cell configuration, 13f, has not  been measured. However, the total (fixed + 
mobile) buffering power of  intact fibroblasts is ~32  m M / p H ,  approximately half of  
which consists of  mobile buffers. Thus, in our  whole-cell experiments [3f cannot  rea- 
sonably exceed 16 m M / p H ,  yielding DEc values ranging from 5"10 -7 cm2/s ([~f = 16 
m M / p H )  to 3"10 -6 cm2/s ([3f := 0). Assuming a volume of  1 pl for CHO cells (mea- 
sured by electronic sizing) and a resistivity of  the pipette solution of  100 [l.cm, for  a 
typical recording such as the one illustrated in Fig. 9 (RA = 5 MI2), this translates 
into time constants ranging from 17 s to 100 s, i.e., the presence of  intracellular 
"fLxed" buffers might  prolong the time required for equilibration of  pHi by a factor 
of  6. In this cell, as in the ones illustrated in Figs. 2 and 3, the time constant can be 
estimated from the changes in pHi that follow inhibition of  the ant iporter  by 
amiloride. Such changes, which were measured fluorimetrically, essentially reflect 
the dissipation of  the pH gradient by diffusion of  buffer f rom the patch pipette. An 
exponential  fit to the data between t = 30 and t = 240 s after amiloride addition 
yielded a x of  60 s for the cell illustrated in Fig. 9, which, based on the above calcu- 
lations, corresponds to a "fixed" buffering power of  ~ 8  m M / p H ,  
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