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As real world evidence on drug efficacy involves nonrandomized studies,
statistical methods adjusting for confounding are needed. In this context, prog-
nostic score (PGS) analysis has recently been proposed as a method for causal
inference. It aims to restore balance across the different treatment groups by
identifying subjects with a similar prognosis for a given reference exposure
(“control”). This requires the development of a multivariable prognostic model
in the control arm of the study sample, which is then extrapolated to the
different treatment arms. Unfortunately, large cohorts for developing prognos-
tic models are not always available. Prognostic models are therefore subject to a
dilemma between overfitting and parsimony; the latter being prone to a violation
of the assumption of no unmeasured confounders when important covariates
are ignored. Although it is possible to limit overfitting by using penalization
strategies, an alternative approach is to adopt evidence synthesis. Aggregating
previously published prognostic models may improve the generalizability of
PGS, while taking account of a large set of covariates—even when limited indi-
vidual participant data are available. In this article, we extend a method for
prediction model aggregation to PGS analysis in nonrandomized studies. We
conduct extensive simulations to assess the validity of model aggregation, com-
pared with other methods of PGS analysis for estimating marginal treatment
effects. We show that aggregating existing PGS into a “meta-score” is robust to
misspecification, even when elementary scores wrongfully omit confounders or
focus on different outcomes. We illustrate our methods in a setting of treatments
for asthma.
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1 INTRODUCTION

Nonrandomized studies are an important source of evidence for causal inference, and often used to assess the safety and
effectiveness of certain treatments.1 Because nonrandomized studies are observational by nature, differences in individual
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outcomes cannot directly be attributed to the treatment exposure, and the estimation of comparative treatment effects is
therefore prone to confounding bias.2

Over the past few decades, several methods for addressing confounding in nonrandomized studies have been pro-
posed. Amongst these, prognostic score (PGS) analysis (also referred to as “disease-risk score analysis”) has recently
gained popularity in the medical literature.3-9 Initially formalized by Hansen9 in the case of binary treatments, the theory
of the PGS has since been extended to the case of general treatment regimes.6 This approach can be seen as the “prog-
nostic analogue of the propensity score” and is aimed at achieving a prognostic balance across the different treatment
arms or exposure groups.6,9 Briefly, PGS analysis involves the development of a multivariable model predicting an effi-
cacy or safety endpoint (eg, mortality) in patients under a specific exposure (often the control exposure). This model is
then applied to the patients of the remaining treatment exposure groups, to estimate their most likely outcome if they had
received the control exposure.6,9 In other words, the PGS analysis develops a prediction model in a set of control individ-
uals, and then extrapolates its predictions to individuals of other exposure groups. Hansen9 (in binary exposures), then
Nguyen and Debray6 (in general treatment regimes), showed that conditioning on this PGS allows to estimate treatment
effects that are free from confounding bias. Yet, a key requirement for PGS analysis is that the developed prognostic model
provides sufficiently accurate predictions of the (potential) outcome in the control and treated populations. This implies
that the prognostic model should properly account for covariates that are associated with the outcome under the control
exposure, particularly if their distribution varies across the treatment groups.6

Unfortunately, developing accurate prognostic models is subject to dilemmas when few control individuals are
available. On the one hand, considering too numerous covariates is likely to result in overfitting, which impedes the
generalizability of the prognostic model to other treatment groups. On the other hand, many parsimonious modelling
strategies such as penalization and variable selection (eg, least absolute shrinkage and selection operator [LASSO] regres-
sion) typically lead to biased outcome predictions, which in turn might introduce (unmeasured) confounding in PGS
analysis. To avoid this problem, it has been suggested to use prognostic models developed from large external cohorts
of control individuals.3-5,8 However, there is a growing evidence that published prognostic models tend to have limited
transportability across different settings and populations, especially when studies adopt different selection criteria, dif-
ferent variable and outcome definitions, or different measurement methods. For this reason, it is recommended to tailor
or update existing models before implementing them in new populations.10,11

Rather than focusing on a single external prognostic model, a much more effective strategy might be to utilize and
combine multiple previously published prognostic models. In particular, by combining multiple prediction models it
becomes possible to account for a large number of covariates without having to estimate their individual effects in the data
at hand—which may limit both the risk of overfitting and that of unmeasured confounding in PGS analysis. Debray et al12

previously showed that aggregating multiple published prognostic models, rather than developing or tailoring/updating
a single model, helps improve predictive accuracy in new settings (ie, transportability), particularly when model develop-
ment samples are relatively small. In this article, we extend this aggregation approach to PGS analysis for causal inference
purposes in nonrandomized studies.

The article is structured as follows: Section 2 presents an overview of the framework of PGS analysis; Section 3
describes a method for aggregating published prognostic models within the context of PGS analysis; Section 4 displays
an illustrative study; Section 5 reports two series of simulations; finally, Section 6 opens a discussion on our proposed
approach to PGS analysis.

2 PGS ANALYSIS FOR CAUSAL INFERENCE: AN OVERVIEW

2.1 Causal estimands

Following Rubin's counterfactual model,2 for individual i, let Zi be the treatment status (we consider a binary treatment
exposure in this article: Zi = 1, treated individual; Zi = 0, control individual), Y (1)i and Y (0)i the potential outcomes if Zi
were set to be equal to 1 and 0, respectively, and X i ∈ 𝒳 a set of measurable prognostic covariates.

Under the “stable unit treatment value assumption”, individual potential responses Y (⋅)i are not influenced by other
units j,∀j≠ i.13 Hence, for individual i the effect caused by the treatment, say “individual treatment effect” (ITE), is defined
as:

ITEi = Y(1)i − Y(0)i.
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In practice, ITEi can never be measured—which is referred to as the “fundamental problem of causal inference”14—as
only Y (1)i or only Y (0)i can be observed, but never both. Under the “consistency rule”, the observed outcome Y i is usually
defined as: Y i = ZY (1)i + (1−Z)Y (0)i.15

An quantity of interest to be estimated is the Average Treatment effect in the Entire population (ATE); that is, the
average difference in outcome that would be caused if all individuals were to receive the treatment vs if all individuals
were not to receive the treatment (but the control):

ATE = E(Y1) − E(Y0) = E(Y1 − Y0) = E(ITE).

(Index i disappears since potential outcomes and ITEs are averaged across individuals.)
Another quantity of interest is the Average Treatment effect in the Treated population (ATT); that is, the average

difference in outcome that would be caused if the treated population were treated (“factual” condition) vs if the treated
population were not treated but under the control exposure (“counterfactual” condition):

ATT = E(Y1|Z = 1) − E(Y0|Z = 1) = E(Y1 − Y0|Z = 1) = E(ITE|Z = 1).

As opposed to the ATE, here the expectation is iterated over the treated population instead of the entire population. The
ATT is often an estimand of primary interest since it refers to the causal effect of the treatment in the specific population
that it is intended for.16 Hence, we focus on the estimation of this estimand in the current article.

In nonrandomized studies, treatment allocation (eg, drug prescription) is often related to several (un)measured covari-
ates. As a consequence, no causal effect can be directly inferred from the average difference in the observed outcomes
across the treatment arms.2 (In other words, there is no reason for E(Y | Z = 1)−E(Y | Z = 0) to coincide with the ATT or
the ATE.) In response to this issue, multivariable scoring methods for addressing confounding have been proposed, such
as the propensity score analysis and its prognostic analogue.6,9,17,18

2.2 Prognostic scores

Briefly, PGS analysis aims to achieve a prognostic balance between different exposure groups. It thereby approximates a
design in which treated and control individuals would have a similar distribution of prognosis if they were left untreated
(ie, under the control exposure).9 Note, nonrandomized clinical datasets generally include more control than treated units,
which is the reason why the PGS is often defined with respect to the control exposure; in contrary case (ie, less control
than treated units), “treated” can be relabeled as “control” and vice-versa. Although PGS analysis originally focused on
causal inference with binary exposures, we recently discussed how to investigate general treatment regimes.6 For the sake
of simplicity, we here focus on binary treatment exposures.

Let 𝜓(X)≡E(Y 0| X) be a PGS such that Y 0 ⊥X ∣𝜓(X).9 Hansen9 showed that, under the assumption of no “hid-
den bias” given X (ie, Y 0 ⊥Z ∣X ; that is, X captures all confounders), conditioning on 𝜓(X) leads to Y 0 ⊥Z ∣𝜓(X).
From this, under the rule of consistency (ie, Y = ZY 1 + (1−Z)Y 0) and the assumption of “positivity” conditional on
the PGS (ie, 0<Pr(Z = 1|𝜓(X))< 1 with certainty), the ATT can be identified as follows. (For mathematical proofs,
see Hansen.9)

ATT = E𝜓(X)∣Z=1{E(Y |Z = 1, 𝜓(X)) − E(Y |Z = 0, 𝜓(X))}. (1)

E𝜓(X) ∣Z = 1 denotes the total expectation over all 𝜓(X) in the treated population. Thus, conditioning on the PGS via
subclassification or matching allows an unbiased estimation of the ATT.6,9 (Note, this identification of the ATT holds
regardless of the presence/absence of effect modifiers, which is not the case for the ATE.6,9).

The main advantages of PGS analysis are the following. First, as opposed to the propensity score (defined as
e(X)≡Pr(Z = 1| X)), the PGS does not require to predict the treatment allocation, and is therefore particularly useful
when exposures are rare or have a large number of categories.6,19,20 Second, PGS analysis does not require the strong pos-
itivity assumption needed in propensity score analysis, Pr{0<Pr(Z = 1| X)< 1} = 1,18 but instead the relaxed assumption
Pr{0<Pr(Z = 1|𝜓(X))< 1} = 1.9 Rather than requiring a stochastic treatment allocation across all covariate values, PGS
analysis only requires a stochastic treatment allocation across all values of the PGS.
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2.3 Practical issues in PGS analysis

In practice, neither the propensity score, e(X), nor the PGS, 𝜓(X), is known; they are both estimated using the avail-
able nonrandomized data. Whilst the propensity score model, ê(X) = Pr(Z = 1|X , 𝛼), is fitted to the entire sample (ie,
including both treated and control individuals), the PGS model, 𝜓̂(X) = E(Y0|X , 𝛽), is fitted only to the control arm, as a
regression model fitted to both arms would estimate a confused mixture of E(Y 0| X) and E(Y 1| X).9 (Though it may be
possible to use both arms by stratifying all unknown PGS parameters across the treatment groups, for instance by means
of interaction terms, such an approach is likely to be at risk of model-dependence. For instance, see Groenwold et al21 or
van Klaveren et al.22)

Two practical issues should be considered in PGS analysis:

(A) After fitting 𝜓̂(X) to the control arm, Z = 0, the estimated PGS model is to be extrapolated to the treated arm, Z = 1.
(B) Contrary to propensity score analysis where the balance property of ê(X) can be evaluated in the entire sample, the

balance property of 𝜓̂(X) is assessable only in the control arm, since Y 0 is not observable in the treated arm (ie,
“fundamental problem of causal inference”).

Practical issue (A) arises from the PGS model being estimated only in the control patients. This implies that the sample
size for estimating a PGS model is smaller than for propensity score modelling. The estimated PGS model is then applied
to all patients of the study to predict their potential outcome Y 0. Since treated patients do not contribute to the estimation
of the prognostic model, it is possible that model predictions do not transport well to the treated arm. This may affect the
validity of the subsequent treatment effect estimation.

Practical issue (B) arises from the difficulty to evaluate the accuracy of the PGS model, because Y 0 is not observed in
treated patients. As a result, this accuracy can be assessed only in the control patients.

In this sense, (A) is a matter of modelling (ie, to be ensured, the generalizability of 𝜓̂(X) requires an appropriate
modelling strategy); whilst (B) is a matter of diagnostic (ie, to be ensured, the balance property of 𝜓̂(X) needs proper
diagnostic methods). Some authors have proposed the use of a “dry-run” analysis in response to (B)23; however, there
remains, to our best knowledge, a paucity of the literature addressing (A).

It is well-recognized that a prognostic model derived in one particular sample may not generalize well to other sam-
ples from the same (control) or different (treated) populations. Overfitting is likely to happen when the development
sample is relatively small (compared to the number of candidate predictors); and transportability issues are likely to
occur when the case-mix of the development sample is too narrow.24-27 In PGS analysis, it is of particular importance that
𝜓̂(X) properly accounts for covariates that substantially affect prognosis and may have different distributions across the
treatment exposure groups. Although 𝜓̂(X) can be derived in the same cohort containing the treated and untreated indi-
viduals, it has been shown through simulations that 𝜓̂(X) obtained from a separate sample of control individuals should
be more efficient.9 Hereupon, follows the discussion that “these difficulties [related to same-sample estimation] may be
substantially avoided if an alternate sample of controls, perhaps historical controls, are available for the determination of
the PGS.”9 The use of external, historical scores has therefore gained increased consideration, as they often improve the
performance of PGS analysis.3-5,8

Unfortunately historical controls are not always easy to obtain, and models derived from historical controls may not
necessarily calibrate well across different studies or treatment groups (for instance, due to differences in variable def-
initions or measurement methods across cohort studies). Furthermore, the use of a single, historical PGS model may
not always be straightforward, particularly when multiple competing models exist. Hence, instead of considering one
external, historical PGS model at face validity, we introduce the idea of aggregating multiple published PGS models, and
tailoring them to the control arm of the nonrandomized treatment study.

3 PROPOSED METHOD: AGGREGATION OF PUBLISHED PGSS

Debray et al12 previously proposed aggregating published prediction models to help improve their accuracy and gen-
eralizability across different settings and populations. The approach bears some similarities with penalization during
prediction model development, as it loosely imposes (in this case, previously estimated) predictive associations to the
data at hand. The authors showed through clinical datasets and simulations that the aggregation of multiple mod-
els into one “meta-model” tends to outperform redevelopment or updating of a single prognostic model, particularly
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when development datasets are relatively small compared to the number of predictors being studied.12 We focus on
an approach called “stacked regressions”,12 that is, a linear combination of published models—that we extend to the
PGS analysis.

Let 𝜳̂ be the set of M published PGS models, 𝜳̂ = (𝜓̂1, 𝜓̂2,… , 𝜓̂M), wherein, using generalized linear models with g()
link function:

𝜓̂m(X) = E(Y0|X , 𝛽m) = g−1

(
𝛽0,m +

P∑
p=1

𝛽p,mXp

)
.

Stacked regressions incorporate each prediction g(𝜓̂m) as a predictor in a generalized linear regression model that is
to be estimated in the control arm of the nonrandomized study sample.

For instance, for samples with binary outcomes, the meta-model is estimated by optimizing the following
log-likelihood function in the N control individuals with Z=0:

l(𝝑) =
N∑

i=1
Y(0)i

(
𝜃0 +

M∑
m=1

𝜃mg(𝜓̂m(X))

)
− log

(
1 + exp

(
𝜃0 +

M∑
m=1

𝜃mg(𝜓̂m(X))

))
.

In this expression, the constraint 𝜃m ≥ 0 was proposed to allow the omission of literature models 𝜓̂m(X) with strong
collinearity.12 Further, X is defined as the set of all covariates across the M published PGS models. The estimation of the
parameters leads to the meta-model Φ̂:

Φ̂(X) = E(Y0|𝜳̂ , 𝜃) = E(Y0|X , 𝜷 = (𝛽1, 𝛽2,… , 𝛽M), 𝜃) = g−1

{
𝜃0 +

M∑
m=1

𝜃m

(
𝛽0,m +

P∑
p=1

𝛽p,mXp

)}
.

Since 𝜓̂1, 𝜓̂2,… , 𝜓̂M originate from different studies and settings, they are likely to include many covariates. This
implies that the stacked model, which only involves one unknown parameter for each literature model (rather than for
each covariate), allows one to adjust for many confounders even when very few data are at hand, thereby minimizing
both the risk of unmeasured confounders and that of overfitting.

The PGS model derived from the meta-model, Φ̂(X), is then used for conditioning (eg, matching or subclassification).
Replacing 𝜓(X) by Φ̂(X) in Equation (1), one can estimate the ATT as:

ÂTT = EΦ̂(X)∣Z=1{E(Y |Z = 0, Φ̂(X)) − E(Y |Z = 0, Φ̂(X))}.

The next section presents an illustrative case in which we estimate the ATT, using a “meta-score”, external (ie,
previously published) PGS, or same-sample PGS.

4 ILLUSTRATIVE CASE STUDY

4.1 Methods

To illustrate our approach, we performed a subgroup analysis of the ACCURATE trial.28 (The data that support the
findings of the current study are available from the investigators of this trial upon reasonable request.)

Briefly, this pragmatic trial investigated three asthma interventions to reduce the 1-year risk of exacerbation in
asthmatic patients (see Data S1, Section 1.1). The severity of clinical manifestations of asthma was classified into con-
trolled asthma (Ca), partly Ca (PCa), and uncontrolled asthma categories. Here, we defined Ca as an Asthma Control
Questionnaire (ACQ) score equal or below 0.75, and PCa as 0.75<ACQ ≤1.50.28

We considered PGS analysis in the ACCURATE trial to estimate the comparative efficacy of PCa (“treatment”) vs Ca
(“control exposure”) in a subgroup of female asthmatic patients. A naïve estimation of the causal effect would likely suffer
from confounding bias given the cluster-randomization,29,30 subgroup analysis,31,32 and exclusion of some randomized
patients (see Data S1, Section 1.1).
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We conducted three strategies of PGS analysis. First, we derived three same-sample (logistic) PGS models using
maximum likelihood (ML) estimation, ridge regression, and LASSO regression. These scores were developed from the
“control” female patients allocated to Ca, and included seven covariates: ACQ score; current smoking status (yes/no);
chronic sinusitis complaints (yes/no); hospitalization for asthma ever (yes/no); steroid courses for asthma within last
year (yes/no); predicted prebronchodilator forced expiratory volume in 1 second (FEV1); fraction of exhaled nitric
oxide. (We chose these covariates as they had been previously identified as prognostic variables,33 and thus, potential
confounders.)

Second, we used three external, published asthma prediction models as PGSs, which predicted different but related
outcomes (Data S1, Section 1.2). The model reported by Schatz et al34 predicted the risk of asthma hospitalization at 1 year,
given three covariates: hospitalization for asthma ever (yes/no); steroid courses for asthma within last year (yes/no);
income. The model presented by Eisner et al. estimated the risk of unscheduled care visit at 1 year, given two covariates:
severity of asthma score and asthma control test.35 The TENOR model, reported by Miller et al,36 predicted the risk of

T A B L E 1 Covariates and
outcomes considered in
different PGSs

Same-sample
score

Schatz
score

Eisner
score

TENOR
score

Meta-
score

Covariates 7 3 2 10 15

ACQ score X

Currently smoking X

Chronic sinusitis complaint X

Hospitalization for asthma X X X

Steroid course for asthma within
last year

X X X

Predicted FEV1 X

Fraction of exhaled nitric oxide X

Income X X

Severity of asthma score X X

Asthma control test X X

Age X X

Sex X X

Race X X

Body mass index X X

Predicted FVC X X

History of pneumonia X X

Diabetes X X

Cataracts X X

Intubation for asthma X X

Steroid bursts in the prior
3 months

X X

Outcomes

Exacerbation at 1 year X X

Hospitalization at 1 year X

Unscheduled care visit at 1 year X

Emergency department visit or
hospitalization at 6 months

X

Abbreviations: ACQ, Asthma Control Questionnaire; FEV1, prebronchodilator forced expiratory volume in 1 s; FVC;
postbronchodilator forced capacity volume; PGS, prognostic score.
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emergency department visit or hospitalization at 6 months, given 10 covariates: younger age; female sex; nonwhite race;
body mass index> or= 35 kg m−2; postbronchodilator percent predicted forced vital capacity<70%; history of pneumonia;
diabetes; cataracts; intubation for asthma; and three or more steroid bursts in the prior 3 months.

Finally, using the proposed method of stacked regressions, we aggregated the three external scores (Schatz score,
Eisner score, and TENOR score) into a “meta-score” in the “control” arm of study data, and compared this meta-score
with the same-sample PGS.

All covariate sets and outcomes considered in each of the PGS are reported in Table 1.
We performed a full matching analysis on the PGSs to estimate the ATT.6 To address the issue of missing data

(which concerned only the same-sample PGSs), we used multiple imputation as described by Leyrat et al37 in propen-
sity score analysis, who recommend to apply Rubin's rules on the estimated treatment effects across the imputed
datasets, and not over the scores. We therefore created 10 imputed datasets. In each imputed dataset, we fit three
PGSs (based on ML, ridge, and LASSO) to the control arm, matched on each on these three scores (separately),
and estimated the treatment effect. We then averaged the treatment effect estimates obtained from the 10 imputed
datasets.

We computed standard errors of treatment effect estimates (and 95% confidence intervals [CI]) by bootstrapping (1000
iterations): we resampled the initial dataset with replacement and performed in each bootstrap sample all aforementioned
analyses, including multiple imputations.38 We estimated the standard errors as the standard deviations of the estimates
across the 1000 iterations.

4.2 Results

In the subgroup of 281 female patients, the active “treatment” (ie, strategy aiming at PCa) was allocated to 134 individuals
(47.7%). Table 2 summarizes baseline characteristics and predicted outcome risks across the two groups. Twenty-three
(15.6%) and 21 (15.7%) patients experienced an exacerbation at 1 year in the “control” and in the “treatment” group,
respectively. Thus, a naïve approach ignoring the potential for confounding bias would estimate the treatment effect to
be equal to 0.001, on an absolute risk difference scale. Note that given the few outcomes observed in the control arm, the
same-sample PGSs—in particular, the one estimated by ML—may have suffered more from overfitting issues (ratio of
events per variable [EPV] = 3.3) than did the “meta-score” (EPV = 7.7).39,40

After full matching on the same-sample PGSs derived by ML, ridge, and LASSO regressions, the ATT was estimated
to be equal to 0.021 (95% CI: −0.054 to 0.097), 0.024 (95% CI: −0.052 to 0.099), and 0.022 (95% CI: −0.052 to 0.096),

Ca PCa

n = 147 (42.7%) n = 134 (37.7%)

ACQ score 1.22 (SD: 1) 1.02 (SD: 0.96)

Currently smoking 21 (14.5%) 22 (16.9%)

Chronic sinusitis complaint 20 (13.7%) 17 (13.2%)

Hospitalization for asthma 14 (9.5%) 15 (11.2%)

Steroid course for asthma within last year 39 (26.5%) 27 (20.1%)

Predicted FEV1 (%) 92.29 (SD: 14.33) 92.35 (SD: 16.75)

Fraction of exhaled nitric oxide 26.40 (SD: 30.96) 21.83 (SD: 21.18)

Schatz score (logit scale) −3.32 (SD: 0.61) −3.30 (SD: 0.56)

Eisner score (logit scale) −1.06 (SD: 0.48) −1.11 (SD: 0.45)

TENOR score (logit scale) −3.75 (SD: 0.87) −3.81 (SD: 0.89)

Exacerbation at 1 year 23 (15.6%) 21 (15.7%)

Note: Mean and SD are reported for continuous variables; frequency and percentage for binary variables.
Abbreviations: ACQ, Asthma Control Questionnaire; Ca, aiming at controlled asthma; FEV1,
prebronchodilator forced expiratory volume in 1 s; PCa, aiming at partially controlled asthma.

T A B L E 2 Baseline characteristics
and predicted outcome risks in the
subgroup of female patients (N = 281)
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respectively. After full matching on the (historical) Schatz, Eisner, and TENOR scores, the estimated ATT was equal to
0.018 (95% CI: −0.069 to 0.105), 0.027 (95% CI: −0.054 to 0.108), and− 0.002 (95% CI: −0.088 to 0.085), respectively. After
full matching on the meta-score (ie, aggregation and simultaneous updating of the Schatz, Eisner, and TENOR scores),
the estimated ATT was equal to 0.019 (95% CI, −0.060; 0.098). In summary, the evaluated approaches yielded an absolute
treatment effect ranging from 0 to 3%, with considerably large CI.

Given these differences in estimated treatment effects, we conducted two simulation studies to better inform the
performance of each method.

5 SIMULATION STUDIES

5.1 Simulation study 1

5.1.1 Data generation

We conducted a series of simulations in which we estimated the ATT of a (fictive) treatment Z. We considered nine
covariates X = (X1,… , X9) and a binary outcome Y (see Box 1). To generate data with realistic distributions and correlation
structures, we took the ACCURATE study as a reference,28 and generated new, simulated, datasets by random sampling
from its posterior distribution (Data S1, Sections 1.3 and 1.4).

Briefly, we estimated the conditional distributions of Y 0, X1, … , X9 in the ACCURATE study. The con-
ditional distributions were then combined into a Markov chain where Monte Carlo sampling (using 1000
iterations) was used to generate new individuals that resemble those observed in the ACCURATE cohort
(see Box 1).

We defined four populations A, B, C, and D with different patient characteristics and focusing on different but related
outcomes.

Population D (and its corresponding outcome definition) was of primary interest for estimation of the ATT of treatment
Z such that Y D

0,k = Y0,k. Samples of population D were, however, small and restricted to ND
k = 100.

Populations A, B, and C represented external historical cohorts, from which previous prognostic models could have
been derived and published in the literature. These external cohorts had larger sample sizes (N(A,B,C)

k ≥ 500) but adopted
outcome definitions that did not necessarily correspond to the outcome of primary interest (Y A

0,k, Y B
0,k, Y C

0,k ≠ Y0,k). Fur-
thermore, since in clinical practice inclusion criteria are likely to differ across studies, we defined bounds (ie, truncation)
to impose slightly different covariate distributions across the four populations.

In samples of population D, we generated the potential outcome Y 1, k of primary interest that would be observed were
individuals to receive the fictive treatment (see Box 1). We defined Y 1, k using a nonlinear nonmonotonic function of Y 0, k
(see Box 1). In samples of population D, we generated the treatment status Zk according to a logistic model mimicking a
clinical decision (ie, true propensity model; see Box 1). This model set the treatment prevalence at 35 to 40%. Finally, we
generated the observed outcome Y k using the rule of consistency.

BOX 1 Definition of variables used in simulations

X = (X1,… , X9) and Y 0 are generated in samples of populations (A, B, C, and D), using a Gibbs sampler approx-
imating joint distributions observed in the ACCURATE cohort28:

X1: age (continuous, years).

X2: sex (binary, 0 = male, 1 = female).

X3: baseline ACQ score (continuous, ranges from 0 to 6).

X4: current smoking status (binary, 0 = no, 1 = yes).
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X5: chronic sinusitis complaints (binary, 0 = no, 1 = yes).

X6: hospitalization for asthma ever (binary, 0 = no, 1 = yes).

X7: steroid courses for asthma within last year (binary, 0 = no, 1 = yes).

X8: predicted FEV1 (continuous, %).

X9: fraction of exhaled nitric oxide (continuous, ppb).

Y 0: occurrence of exacerbation at 1 year following the definition of the American Thoracic Soci-
ety (binary, 0 = no, 1 = yes); potential outcome of primary interest under Z = 0.

Y 1: binary potential outcome of primary interest under Z = 1, generated in population D from a distribu-
tion Bernoulli(p(Y 1)), where p(Y1) = 1

1+exp
{

3−0.7 log
(

sin(Y0+u+0.4)
1−sin(Y0+u+0.4)

)} and u is a random number drawn from a Uni-

form distribution U(0, 1).

Z: fictive treatment (binary, 0 = control, 1 = treatment), generated in population D from a distribu-
tion Bernoulli(e(X)), where e(X) = 1

1+exp{0.25−0.05 log(X1)−0.25X2+0.25X3+0.5X4+0.75X5+X6+1.25X7}
.

Y : binary observed outcome of primary interest, generated in population D using the rule of consis-
tency: Y = ZY 1 + (1−Z)Y 0

Y A
0 : binary potential outcome of secondary interest under Z = 0, generated in population A from a distribu-

tion Bernoulli(p(Y A
0 )), where p(Y A

0 ) =
1

1+exp

{
2−0.9 log

(
sin

(
0.2+ Y0+u

2
)

1−sin
(

0.2+ Y0+u
2

)
)} and u is a random number drawn from a Uni-

form distribution U(0, 1).

Y B
0 : binary potential outcome of secondary interest under Z = 0, generated in population B from a dis-

tribution Bernoulli(p(Y B
0 )), where p(Y B

0 ) =
1

1+exp

{
1.5−1.5 log

(
sin

(
0.15+ Y0+u

2
)

1−sin
(

0.15+ Y0+u
2

)
)} and u is a random num-

ber drawn from a Uniform distribution U(0, 1).

Y C
0 : binary potential outcome of secondary interest under Z = 0, generated in population C from a distribu-

tion Bernoulli(p(Y C
0 )), where p(Y C

0 ) =
1

1+exp

{
2−2 log

(
sin

(
0.2+ Y0+u

2
)

1−sin
(

0.2+ Y0+u
2

)
)} and u is a random number drawn from a Uni-

form distribution U(0, 1).

For each population (A, B, C, and D), we used this procedure to generate K = 5000 samples. Across all K = 5000
simulated samples of population D, the true ATT corresponded, on an absolute risk difference scale, to the empirical
expectation:

1
K

K∑
k=1

⎧⎪⎨⎪⎩
∑ND

k
i=1(Y(1)i,k − Y(0)i,k)I(Zi,k = 1)∑ND

k
i=1 I(Zi,k = 1)

⎫⎪⎬⎪⎭ = 0.087.
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5.1.2 Statistical analysis

In each simulation k, we compared three strategies of PGS analysis for estimating the ATT. First, we fitted a logistic regres-
sion model to the control arm of sample Dk to predict the potential outcome Y 0, k in this same sample (ie, same-sample
PGS). We included all covariates (X1, k to X9, k) into the regression model, such that no hidden bias was introduced (ie,
“utopian” case). Second, we used the score derived from sample Ak and applied it as a PGS in sample Dk (ie, exter-
nal PGS). Finally, we performed the proposed method of stacked regressions to aggregate external PGSs obtained from
samples Ak, Bk, and Ck into a meta-score which predicts Y 0, k in sample Dk (ie, aggregated external PGSs). To assess
the robustness of the use of external PGSs (either individually or after aggregation), we considered different scenarios
(see Box 2).

BOX 2 Definition of scenarios used in simulations
Scenario 1: All historical models predict Y 0 and include covariates X = (X1,… , X9).
Scenario 2: All historical models predict Y 0. Historical model A includes covariates (X1, X2, X3, X4, X5, X6), his-
torical model B includes covariates (X1, X2, X3, X7, X8, X9), and historical model C includes covari-
ates (X4, X5, X6, X7, X8, X9).
Scenario 3: Historical model A predicts Y A

0 , historical model B predicts Y B
0 , and historical model C predicts Y C

0 .
All historical models include covariates X = (X1,… , X9).
Scenario 4: Historical model A predicts Y A

0 and includes (X1, X2, X3, X4, X5, X6), historical model B pre-
dicts Y B

0 and includes (X1, X2, X3, X7, X8, X9), and historical model C predicts Y C
0 and includes covariates

(X4, X5, X6, X7, X8, X9).

Regardless of whether the PGSs were externally or same-sample derived, we considered three approaches to regres-
sion: ML, ridge, and LASSO regressions.

To evaluate the impact of the sample size of historical cohorts from which external scores were derived, we defined
samples of populations A, B, and C as including either N(A,B,C)

k = 500, 1000, or 2000 subjects.
Therefore, at each iteration k∈ (1, 2, … , K = 5000) we had: three same-sample PGSs derived from Dk; 36 external

PGSs derived from sample Ak; 36 meta-PGSs aggregating models derived from samples Ak, Bk, and Ck.
We performed full matching analysis on the PGSs.6 As opposed to classical matching methods, full matching allows

the entire sample to be preserved.41,42 It creates strata within which control and treated units are paired in an optimal way
such that the overall distance between them is minimized. Since each stratum (or “pair”) can include unequal numbers of
treated and controls, individuals are to be weighted.41,42 Let Si denotes the stratum in which individual i falls; to estimate
the ATT, the individual weight WATT

i is:

WATT
i (Si = s) = Zi + (1 − Zi)

{∑
i I(Si = s)I(Zi = 1)∑

i I(Zi = 1)

}{ ∑
i I(Zi = 0)∑

i I(Si = s)I(Zi = 0)

}
.

We estimated the ATT as the weighted average difference in outcome across the two treatment arms. We compared
the performance of the three PGS analyses, by measuring the bias and mean-squared error (MSE) of estimates.

5.1.3 Results

Across all K = 5000 simulations, the mean treatment prevalence in population D was equal to 37.1%. The mean outcome
prevalence was equal to 15.3% in control individuals and 16.9% in treated individuals, thereby leading to a mean naïve
absolute risk difference of 0.016 (empirical SD: 0.077). In populations A, B, and C (ie, historical control cohorts), the mean
outcome prevalence was equal to 10.9%, 12.3%, and 10.6%, respectively.

Using the different methods of PGS, the performances (bias, SD, and MSE) of ATT estimates across all scenarios were
reported in Table 3.
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T A B L E 3 Performance of different PGS analyses

PGS
Outcome of
external score

Covariates of
external score

Modelling
method N (A,B,C)

k
= 500 N (A,B,C)

k
= 1000 N (A,B,C)

k
= 2000

Relative
bias

100×
MSE

Relative
bias

100×
MSE

Relative
bias

100×
MSE

Same-sample
PGS

ML −14.9% 0.6509 −14.9% 0.6509 −14.9% 0.6509

Ridge −2.3% 0.6070 −2.3% 0.6070 −2.3% 0.6070

LASSO −14.9% 0.6692 −14.9% 0.6692 −14.9% 0.6692

External PGS Identical Identical ML −13.8% 0.6235 −10.3% 0.6043 −8.0% 0.5987

Ridge −11.5% 0.6247 −8.0% 0.5928 −6.9% 0.5920

LASSO −12.6% 0.6197 −10.3% 0.5956 −8.0% 0.6047

Different ML −41.4% 0.8078 −39.1% 0.7728 −39.1% 0.7769

Ridge −41.4% 0.8050 −39.1% 0.7820 −37.9% 0.7640

LASSO −42.5% 0.8040 −39.1% 0.7801 −39.1% 0.7686

Different Identical ML −48.3% 0.9012 −39.1% 0.8083 −26.4% 0.7057

Ridge −43.7% 0.8815 −33.3% 0.7707 −21.8% 0.6958

LASSO −64.4% 1.0745 −52.9% 0.9468 −33.3% 0.7664

Different ML −62.1% 1.0218 −58.6% 0.9860 −51.7% 0.9065

Ridge −63.2% 1.0452 −58.6% 0.9799 −51.7% 0.9055

LASSO −74.7% 1.1631 −70.1% 1.1072 −60.9% 0.9829

Aggregated
external PGSs

Identical Identical ML −6.9% 0.5975 −5.7% 0.5851 −5.7% 0.5729

Ridge −3.4% 0.5759 −3.4% 0.5861 −3.4% 0.5675

LASSO −4.6% 0.5775 −4.6% 0.5911 −4.6% 0.5713

Different ML −5.7% 0.5898 −4.6% 0.5767 −3.4% 0.5869

Ridge −4.6% 0.5859 −3.4% 0.5848 −3.4% 0.5805

LASSO −5.7% 0.5931 −3.4% 0.5706 −3.4% 0.5835

Different Identical ML −13.8% 0.6337 −9.2% 0.6146 −5.7% 0.5956

Ridge −9.2% 0.6235 −4.6% 0.5854 −2.3% 0.5884

LASSO −17.2% 0.6644 −9.2% 0.6118 −5.7% 0.6020

Different ML −12.6% 0.6308 −9.2% 0.6111 −5.7% 0.6024

Ridge −11.5% 0.6228 −8.0% 0.6068 −5.7% 0.6003

LASSO −19.5% 0.6585 −11.5% 0.6202 −8.0% 0.6202

Abbreviations: LASSO, least absolute shrinkage and selection operator; ML, maximum likelihood; MSE, mean-squared error; N(A,B,C)
k , sample size for external

prognostic score derivation; PGS, prognostic score.

Though it was considered under “utopian” conditions (ie, no misspecification nor hidden bias), we found that the
use of same-sample PGSs could lead to a biased estimation of the ATT, in particular when the PGS was derived by ML or
LASSO regression (Table 3). This bias may have arisen from overfitting when using ML, whilst it might be due to residual
confounding given variable selection when using LASSO regression. In comparison, same-sample PGSs derived by ridge
regression performed better (Table 3).

The use of external PGSs (derived from samples of population A) that included all covariates and predicted the out-
come of primary interest yielded a performance comparable to that of same-sample PGSs, when the sample size for
external PGS derivation was relatively small, NA

k = 500 (Figure 1). This performance in estimating the ATT improved
when the size of samples Ak was larger, NA

k ∈ {1000, 2000} (Figures 2 and 3). We showed that external PGSs including a
limited set of covariates—thus, potentially omitting important confounders—resulted in biased estimates, regardless of
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F I G U R E 1 Performance of different approaches to PGS analysis (sample size for external score derivation, N(A,B,C)
k = 500). The dotted

line refers to the “true” ATT. AES, aggregated external prognostic scores; ES, external prognostic scores; LASSO, least absolute shrinkage and
selection operator; ML, maximum likelihood; PGS, prognostic score; SS, same-sample prognostic scores [Colour figure can be viewed at
wileyonlinelibrary.com]

whether the outcome of sample Ak was identical to the primary outcome of sample Dk (Figures 1-3). In addition, consid-
ering a different but related secondary outcome (Y A

0 instead of Y 0) also led to bias, even when no confounder was missing
in the external PGSs (Figures 1-3). The use of external PGSs derived by ridge regression generally outperformed those
obtained by ML and LASSO regression across the different scenarios (Figures 1-3).

As shown in Figures 1-3, the use of aggregated external PGSs after stacked regressions led to unbiased estimates
of the ATT. This result appeared consistent across all (unfavorable) scenarios. When all three external PGSs (derived
from samples of populations A, B, and C) included all covariates and predicted the outcome of primary interest, the

http://wileyonlinelibrary.com
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F I G U R E 2 Performance of different approaches to PGS analysis (sample size for external score derivation, N(A,B,C)
k = 1000). The dotted

line refers to the “true” ATT. AES, aggregated external prognostic scores; ES, external prognostic scores; LASSO, least absolute shrinkage and
selection operator; ML, maximum likelihood; PGS, prognostic score; SS, same-sample prognostic scores [Colour figure can be viewed at
wileyonlinelibrary.com]

use of a meta-PGS outperformed all other methods in terms of bias, variance, and mean square error (Table 3). We
observed that the aggregation of external PGSs derived by ridge regression led to the best performance (Table 3). In the
most unfavorable scenario, in which the three external PGSs included different covariate sets and predicted secondary
outcomes (Y A

0 , Y B
0 , and Y C

0 instead of Y 0), the aggregation of PGSs still allowed an unbiased estimation of the ATT,
especially when the historical cohorts were large (Figures 2 and 3). Even in this worst-case scenario, the aggregation
of external PGSs yielded a performance comparable to that of “utopian” same-sample PGSs derived by ridge regression
(Table 3).

http://wileyonlinelibrary.com
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F I G U R E 3 Performance of different approaches to PGS analysis (sample size for external score derivation, N(A,B,C)
k = 2000). The dotted

line refers to the “true” ATT. AES, aggregated external prognostic scores; ES, external prognostic scores; LASSO, least absolute shrinkage and
selection operator; ML, maximum likelihood; PGS, prognostic score; SS, same-sample prognostic scores [Colour figure can be viewed at
wileyonlinelibrary.com]

Additional results from simulations on larger sample sizes (ND
k = 1000) are reported in Data S1, Section 1.5. Results

were more modest, but comparable to those described above.

5.2 Simulation study 2

We conducted a second series of simulations which favored the traditional same-sample PGS over stacked regressions of
external PGSs (for details, see Data S1, Section 2). We considered a binary outcome and 20 independent covariates (16 of

http://wileyonlinelibrary.com
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these affected the outcome). Further, we defined the treatment under investigation as ineffective, that is, null treatment
effect.

We considered three scenarios to evaluate the performance of stacked regressions. For all scenarios, we generated five
historical cohorts with 50 events (ie, rare outcome).

• Scenario A: The historical cohorts varied systematically with respect to their baseline risk. More specifically, there was
between-study heterogeneity in the intercept term of the data generation model from each historical cohort.

• Scenario B: The historical cohorts varied systematically with respect to their baseline risk and the overall magnitude of
their predictor effects. More specifically, there was between-study heterogeneity in the intercept term and the overall
slope of the data generation model from each historical cohort.

• Scenario C: The historical cohorts varied systematically with respect to their baseline risk and their individual predictor
effects. More specifically, there was between-study heterogeneity in the intercept term and the coefficients of the data
generation model from each historical cohort.

The historical cohorts were used to derive the “previously published” PGSs following a backward selection proce-
dure (ie, risk of omitting important confounders). Finally, we generated a nonrandomized study where the covariate
distribution was unbalanced between treated and control patients (ie, confounding). We used this sample to estimate
the ATT.

Results demonstrated that stacked regressions helped reduce bias and stabilize treatment effect estimates (see Data
S1, Section 2.3). Stacked regressions outperformed traditional PGS analysis even when historical cohorts differed with
respect to baseline risk and relative strength of predictor effects (scenarios A and B). When historical cohorts were less
related to the study population (scenario C), the aggregation of published PGSs showed a benefit over the traditional
estimator only when the study sample at hand was relatively small.

6 DISCUSSION

We have proposed and assessed an extension of stacked regressions to PGS analysis, when multiple historical scores are
available. We demonstrated through extensive simulations that this approach facilitated an unbiased estimation of causal
treatment effects in nonrandomized studies, even if the historical PGSs omitted important covariates and/or predicted
different (but related) outcomes.

Since the treatment assignment mechanism in observational studies is often based on clinical decisions (which are
likely to vary across practitioners), to have an exhaustive set of confounders at disposal would suppose (i) knowing,
comprehensively, the underlying mechanism of treatment assignment and (ii) recording and accessing to all recognized
confounders—a scenario which could be deemed “utopian”. A major advantage of PGS analysis (over propensity score
analysis) is that it no longer requires to predict the treatment allocation and adopts a less restrictive positivity assumption.
However, PGS analysis (propensity score analysis alike) assumes the absence of unmeasured confounding (“hidden bias”),
and therefore requires to adjust for as many (possible) confounders as possible.6,9 This may become problematic when
relatively few patient-level data are available.

Although we show that ridge regression may improve the estimation of PGSs in small samples, further improvement
is possible by considering evidence synthesis strategies. In particular, aggregation of multiple published PGSs allows to
account for a wide set of confounding covariates (at a limited expense in terms of required degrees of freedom), and thus
diminishes the potential for hidden bias in nonrandomized studies. Across our simulations, we show that aggregation
outperforms traditional penalization methods and enables an unbiased treatment effect estimation, even when the PGSs
include different covariates or predict different outcomes from that being investigated. Aggregation is most advantageous
when the sample available for treatment effect estimation is small, likely because same-sample PGS is prone to overfitting
(when using ML regression) or residual confounding (when selecting covariates by LASSO regression).

Interestingly, prognostic research is increasing, and prediction models are becoming abundant in the medical
literature.27,43 Nowadays, clinical observational datasets often include prognostic models aiming at predicting patient out-
comes that are used in daily practice routine. For instance, in intensive care units some prognostic models (eg, simplified
acute physiology score II44) are routinely recorded (therefore available in observational datasets), whilst the individuals
model variables are not necessarily reported (eg, natremia level or patient temperature).
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Stacked regressions require no raw (individual participant) data from the historical cohorts; they only need access
to the previously published models. These may be available as part of the study results and be presented as estimated
regression coefficients, or (adjusted) relative risks or odds ratios. It is also possible to combine literature models, which
are presented as score charts or risk scores (eg, TENOR risk score in our illustrative example), or which have been imple-
mented in a web app. To critically appraise previously published prognostic models that may be relevant for aggregation,
we recommend the use of PROBAST and CHARMS tools.45-47 Both were developed to help researchers assess the risk
of bias and applicability of published prognostic models, and thus infer whether their inclusion would be beneficial. If
considered at low risk of bias and applicable to the question at hand, published prediction models can be externally vali-
dated in the available data. Because stacked regressions involve a default update of the common intercept and slope, the
inclusion of miscalibrated models may not necessarily be problematic.

An important result from our simulation study is that using historical PGSs without considering any form of updat-
ing might be treacherous and lead to substantial bias. This practice has, however, often been recommended in the
literature where it is common to assume that historical PGSs developed from very large samples (N ≥ 10 000) remain
perfectly valid when applied to new patients.3-5,8 It is, however, likely that historical scores are derived in differ-
ent (but related) settings, under suboptimal conditions, which may include different covariate sets, consider different
outcomes, or adopt different variable definitions. As a result, a single external PGS can be miscalibrated in the non-
randomized data at hand and result in biased treatment effect estimates. We therefore recommend to update published
PGSs before their implementation, and propose to borrow strength across multiple PGSs by combining and updating
them in the control arm of the study sample through stacked regressions. Recent extensions of stacked regressions
allow to recalibrate multiple prediction models while concurrently revising specific covariates and adopting a penalized
likelihood.48

As raised by an anonymous reviewer, stacked regressions bear some similarities with Super Learning.49-51 Both
approaches create a weighted sum of candidate models (possibly derived using various modelling methods, such as gen-
eralized linear regression, neural networks, or random forests). However, rather than combining multiple models that
are developed in a single dataset, we propose to combine published models previously developed in different (and possi-
bly larger) datasets. As a result, the candidate models for stacked regressions may exhibit more diversity and provide new
information that cannot be derived from the data at hand. Because these candidate models are more likely to be miscal-
ibrated, stacked regressions simultaneously update their predictions to the study population and estimate their optimal
combination. In a way akin to Super Learning, the performance of stacked regressions could further be improved by
expanding the set of candidate models with additional models derived from the nonrandomized data at hand.

Our study has to be considered in light of some limitations. First, we restricted our simulations to scenarios of small to
medium sample sizes, and did not explore the benefit of aggregating PGSs over direct application of external PGSs derived
from very large settings. The major interest of the latter resides in addressing the overfitting issues to which same-sample
approaches may be prone. Given that aggregating multiple PGSs enables to gather a large amount of information from
the medical literature at the expense of but a very few parameters to be estimated, we hypothesize that integrating PGSs
originating from large historical cohorts into meta-scores may all the more contribute to the robustness of our approach.
Second, we did not investigate the scenario in which meta-scores did not cover all true confounders. If the analyst rec-
ognizes that confounders are left aside, one strategy to adopt may be to include those confounders into the meta-score,
along with the external PGSs. Finally, methods for estimating standard errors of treatment effect estimates obtained from
our approach are needed; one of which might be the adoption of bootstrapping as we conducted in our illustrative study.
We did not investigate this in the current simulation study as it requires substantial computational power.

In conclusion, this article proposes a method for aggregating PGSs for causal inference. Through extensive simula-
tions, we demonstrate the robustness of this approach, in particular, to misspecification. We show and discuss how our
method could, interestingly, limit both the bias due to unmeasured confounders and that related to overfitting in PGS
analysis.
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