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Abstract

Protection from infection with respiratory viruses such as influenza A virus (IAV) requires T 

cell-mediated immune responses initiated by conventional dendritic cells (cDCs) that reside in 

the respiratory tract. Here, we show that effective induction of T cell responses against IAV in 

mice requires reinforcement of the resident lung cDC network by cDC progenitors. CCR2-binding 
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chemokines produced during IAV infection recruit pre-cDCs from blood and direct them to foci 

of infection, increasing the number of progeny cDCs next to sites of viral replication. Ablation 

of CCR2 in the cDC lineage prevents this increase and results in a deficit in IAV-specific T 

cell responses and diminished resistance to re-infection. These data suggest that the homeostatic 

network of cDCs in tissues is insufficient for immunity and reveal a chemokine-driven mechanism 

of expansion of lung cDC numbers that amplifies T cell responses against respiratory viruses.

Introduction

Conventional dendritic cells (cDCs) in tissues act as immune sentinels to detect viruses 

and microbes and migrate to draining lymph nodes to initiate innate and adaptive immune 

responses against pathogens (1). Although the number of cDCs in any given tissue is small, 

the cells can form a semi-continuous network at mucosal surfaces that allows surveillance 

of a large surface area, increasing the likelihood that pathogen entry will not go undetected. 

However, it is unknown whether this pool of resident cDCs in the tissue suffices for 

effective immunity or whether the cells need to increase in number at sites of infection 

in order to maximise local sampling of pathogen antigens and sustain induction of adaptive 

immune responses in lymph nodes. An inflammation-dependent increase in cDC numbers in 

tissues has been reported, including during corneal infection with herpes virus (2), chronic 

Salmonella infection (3), Plasmodium infection (4), cerebral ischemia and infection with 

pneumonia virus of mice or influenza A virus (IAV) (5–8). The latter is of particular interest 

as IAV is a major human pathogen and often used as a model for studying immunity to 

respiratory viruses (9).

cDCs are derived from proliferating pre-cDCs that leave the bone marrow (BM) and migrate 

via the blood to seed tissues (1, 10, 11). There, pre-cDC1s and pre-cDC2s terminally 

differentiate while maintaining residual mitotic activity, giving rise to small clones of sister 

cDC1s and cDC2s (7). The inflammation-dependent increase in tissue cDCs could reflect 

an increase in proliferative capacity but, in the case of IAV infection, proliferation does not 

account for local cDC expansion, which correlates instead with accelerated BM pre-cDC 

egress into the blood and an increase in pre-cDC influx into the lungs (7). Similarly, a 

population termed inflammatory cDC2s (inf-cDC2s), presumably derived from pre-cDC, 

was recently shown to be recruited to lungs after infection with pneumovirus in mice 

(5). Thus, inflammation can expand the network of tissue-resident cDCs by augmenting 

recruitment of blood-borne progenitors, which we have termed “emergency cDCpoiesis” (7). 

However, how pre-cDCs are recruited to infected lungs, whether they home to infection sites 

and the significance of emergency cDCpoiesis for antiviral immunity remain unclear.

Here, we set out to understand the mechanisms that underlie lung recruitment of pre­

cDCs during IAV challenge and assess its impact on adaptive immunity to the virus. 

We report directional recruitment of pre-cDCs to specific foci of IAV infection in lungs. 

This directional recruitment is depended on pre-cDC expression of the chemokine receptor 

CCR2, which was upregulated in BM pre-cDCs upon IAV infection, enabling them to 

respond to CCR2 ligands. Of these ligands, we found that CCL2 is mainly produced 

by activated monocytes, which are positioned at infection foci and thereby contribute to 
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reinforcement of the cDC network next to the antigen source. Notably, ablation of CCR2 

expression in the cDC lineage selectively compromised expansion of the cDC network 

in IAV-infected lungs and limited the size of the migratory cDC (mig-cDC) population 

in lung draining lymph nodes (LNs). This resulted in diminished T cell responses to 

IAV, compromised establishment of a T cell memory population and reduced protection 

from re-infection. These findings suggest that the number of resident cDCs in tissues is 

insufficient for sustaining immune responses to respiratory virus infections in the absence of 

BM backup, highlighting the importance of emergency cDCpoiesis in immunity.

Results

Defining lung pre-cDCs by flow cytometry

To assess pre-cDC recruitment to the lungs in uninfected and IAV (X31 strain)-infected 

mice, we first validated strategies to identify the cells in lung cell suspensions by flow 

cytometry (12, 13). Mouse pre-cDCs are generally defined as leukocytes that are negative 

for many lineage-restricted markers (CD3, Ly6G, SiglecF, B220, CD19, NK1.1 and Ter119), 

as well as negative/low for surface expression of MHC class II, but positive for CD11c, 

CD135 and CD43 (Fig. 1A, gates 1-3) (14, 15). CD11b is often included as one of the 

lineage markers used as exclusion criteria (7, 12, 15). However, we found that the pre-cDC 

gate (Fig. 1A, gate 3) contained cells that expressed variable levels of CD11b, ranging 

from negative, low/intermediate to high levels (Fig. 1A, gates 4). We also found that the 

same pre-cDC gate contained cells that expressed Ly6D (Fig. 1A, gates 4), a marker of 

progenitors committed to giving rise to plasmacytoid cells (PCs) (16, 17).

To assess the cDC-generating potential of these populations, we FACS sorted them from 

the lungs of non-infected (Ni) C57BL/6 mice (Fig. 1A, gates 4: CD11b- Ly6D+, CD11b- 

Ly6D-, CD11blo Ly6D- and CD11bhi Ly6D- cells) and cultured them on OP9-DL1 stromal 

cells for 3 days in the presence of Flt3L (18). We found that both the CD11b- Ly6D- 

and CD11blo Ly6D- but not CD11b- Ly6D+ or the CD11bhi Ly6D- gave rise to cDCs 

(Fig. 1B), comprising both cDC1 (XCR1+) and cDC2 (Sirpα+) subsets (Fig. 1C). The 

CD11b- Ly6D+ population gave rise only to PCs whereas CD11bhi Ly6D- cells gave rise 

to neither (Fig. 1B). This suggested that a) Ly6D can be used to exclude pre-PCs from 

the pre-cDC gate, and b) pre-cDCs can express intermediate levels of CD11b, cautioning 

against the stringent use of that marker as a exclusion criterion. We therefore altered our 

lineage cocktail for pre-cDC definition to include anti-Ly6D and omit anti-CD11b. This 

approach failed to exclude from the pre-cDC gate a CD11bhi population that expressed 

relatively high levels of many monocyte/macrophage markers, including CD16/32 (Fig. 1D). 

We therefore also used CD16/32 to help exclude CD11bhi cells from the pre-cDC gate, 

leading to the gating strategy shown in Fig. 1E, starting from CD45+ Lin- (CD3, Ly6G, 

Siglec-F, B220, CD19, NK1.1, Ly6D and Ter119) cells. This strategy allowed further sub­

classification of pre-cDCs into uncommitted pre-cDCs (gate 0; Lin-, CD11c+ MHCII-/low, 

CD11b-/low CD16/32-, CD135+ CD43+, Ly6C- SiglecH+), pre-cDC1 (gate 1; Lin-, CD11c+ 

MHCII-/low, CD11b-/low CD16/32-, CD135+ CD43+, Ly6C- SiglecH-) and pre-cDC2 (gate 

2; Lin-, CD11c+ MHCII-/low, CD11b-/low CD16/32-, CD135+ CD43+, Ly6C+ SiglecH-/+) 

subsets as previously described (12, 13). In addition, we incorporated markers to allow 
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for reliable separation of cDCs, inf-cDC2s, PCs, Ly6C+ monocytes and CD11c+ MHC-II+ 

monocyte-derived cells (MCs) (Fig. 1E, S1A), following the recently proposed guidelines 

(5).

CD11b-, CD11blo and inf-cDC2s belong to the cDC lineage

We validated our cDC and pre-cDC identification strategy in three ways. First, we confirmed 

that pre-cDCs and cDCs, as identified by our gating strategy, were greatly reduced in 

mice lacking the essential cDC growth factor Flt3L (1), regardless of whether the mice 

were infected or not with IAV (Fig. 1F and G). In contrast, numbers of CD16/32+ 

(CD11c+ MHC-II- CD11bhigh) cells that contaminate the pre-cDC gate, of MCs that fall 

in the CD11c+ MHC-II+ gate and of canonical Ly6C+ monocytes were the same in Flt3l­
sufficient and -deficient mice (Fig. 1F and G). Second, using cDC lineage-tracing mice 

(Clec9aCre/Cre × Rosa26tdTomato/tdTomato, abbreviated Clec9atdTomato; (15)), we found that 

all pre-cDCs, cDC1s, cDC2s as defined by our gating strategy were equally labelled with 

tdTomato, confirming that they all belong to the cDC lineage (Fig. 1H). In contrast, Ly6C+ 

monocytes, CD16/32+ (CD11c+ MHC-II- CD11bhigh) cells and CD11c+ MHC-II+ MCs were 

poorly labelled with tdTomato but expressed CD88, a marker recently proposed to allow 

identification of monocytic cells (5) (Fig. 1H, I). These observations held in IAV infected 

mice, which further revealed the recently-described CD64+ CD26high CD88- inf-cDC2 

population to be tdTomato+, as expected from a bona fide cDC type (5) (Fig. 1H, I).

Third, to test the cDC-generating capacity of CD11blo and CD11b- pre-cDC populations 

in an inflammatory setting, we sorted them (as indicated in Fig 1A, gates 4), as well as 

CD16/32+ (CD11c+ MHC-II- CD11bhigh) cells (Fig. 1E) and Ly6C+ monocytes (Fig. S1A; 

used as a control), from the lungs of CD45.1 mice at 1 day post-infection (dpi) with IAV. 

We adoptively transferred the sorted cells i.v. into CD45.2 congenic mice infected 1 day 

earlier with IAV and analysed the recipient mice at 5 dpi when cDC lung numbers peak. 

We observed that CD11b- and CD11blo pre-cDCs generated all cDC subsets, including 

inf-cDC2s, in both lungs and the mediastinal lymph nodes (mdLN) that drain the lung (Fig. 

1J and K). In contrast, CD16/32+ (CD11c+ MHC-II- CD11bhigh) cells and Ly6C+ monocytes 

did not give rise to cDC1s, cDC2s or inf-cDC2s (Fig. 1J and K) but to CD88+ CD64+ 

macrophage-like cells (Fig. S1B and C).

The latter were found predominantly in the lung (Fig. S1B and C), consistent the limited 

capacity of macrophage-like cells to migrate from lungs to lymph node during respiratory 

virus infection (5). In mdLNs, cells derived from transferred CD11b- and CD11blo pre­

cDCs contributed to both the resident and mig-cDC pool (Fig. S1D). Altogether, these 

data reassure that we can identify by flow cytometry most lung pre-cDCs and cDCs, 

including cells that have been previously ignored because of expression of CD11b or CD64. 

Furthermore, we confirm that CD11b- and CD11blo pre-cDCs and inf-cDC2s are bona 
fide cDC lineage cells. CD11b- and CD11blo pre-cDCs likely represent different stages of 

differentiation as suggested by their relative proximity to fully differentiated cDCs in UMAP 

analysis (Fig. 1G).

Cabeza-Cabrerizo et al. Page 4

Sci Immunol. Author manuscript; available in PMC 2021 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



cDC subsets increase in lungs of IAV-infected mice through increased recruitment of 
pre-cDCs

After validating our flow cytometry strategy, we sought to analyse myeloid cell infiltration 

in lungs during IAV infection. Ly6C+ monocyte infiltration occurred early during infection, 

as expected (19), giving rise to an increase in MCs at 2 dpi (Fig. 2A). The number of 

PCs (gating strategy in Fig. S1A) did not change appreciably during the course of infection 

(Fig. 2A). In contrast, we observed a net increase in total lung cDCs and cDC subsets 

that became significant at 5 dpi (Fig. 2B) and was preceded by an earlier increase in total 

pre-cDCs and pre-cDC1/2 subsets at 4 and 5 dpi (Fig. 2C). Uncommitted pre-cDCs were 

almost absent from the lungs irrespective of infection (Fig. 1E), consistent with the notion 

that, even though such cells can be found in BM (12, 13), peripheral tissues are colonised 

predominantly by committed pre-cDC1s and pre-cDC2s (7). The increase in pre-cDCs and 

cDCs in the lung was mirrored in the lung mdLN (Fig. S2A) but not in the spleen (Fig. 

S2B). This tissue tropism suggests directional movement of pre-cDCs to the lung and 

lung-associated lymphoid tissues, likely guided by soluble mediators.

To investigate the latter point, we examined which chemokines were induced in the lung at 3 

dpi, before pre-cDC recruitment is apparent. Using a semi-quantitative chemokine array, we 

found 17 chemokines increased in the bronchoalveolar lavage fluid (BALF) from infected 

animals compared to non-infected controls (Fig. 2D). To narrow down which might be 

relevant, we analysed the repertoire of chemokine receptors in pre-cDCs sorted from bone 

marrow and found highest expression of Ccr2 transcripts, followed by Cx3cr1 and Cxcr4 
(Fig. 2E), in line with previous observations (12). Mouse CCR2 recognises CCL2, CCL7 

and CCL12, of which, CCL2 has the highest affinity for the receptor (20). Ccl2, Ccl7 and 

Ccl12 transcripts were all elevated in lung homogenates as measured by RT-qPCR (Fig. 2F) 

after IAV infection. CCL2 and CCL12 protein were represented in the chemokine array and 

elevated in BALF at 3 dpi (Fig. 2D). We confirmed that levels of CCL2 protein in lung tissue 

and BALF increased after infection, peaking at 5 dpi (Fig. 2G and H), the time of maximal 

pre-cDC influx (Fig. 2C). Interestingly, all BM pre-cDC subsets upregulated CCR2 after 

IAV infection, reaching highest intensity at 2dpi, which coincided with the peak of pre-cDC 

exit from the BM (Fig. 2I and S2C) (7). We therefore hypothesised that CCR2 mediates lung 

recruitment of pre-cDCs during IAV infection.

Generation of a conditional CCR2 knockout mouse specific to the cDC lineage

To test this hypothesis, we crossed Clec9Cre/Cre mice (15) with Ccr2fl-eGFP/fl-eGFP mice 

(21). In progeny animals (Clec9aCre/+Ccr2fl-eGFP/+), cells expressing Clec9a recombine 

the Ccr2 locus to excise exon 3 from the Ccr2 gene, allowing expression of enhanced 

green fluorescent protein (eGFP), which reports on targeted cells (Fig. S3A). Mice 

carrying two copies of the engineered Ccr2 locus generate a non-functional truncated 

CCR2 protein in Cre-expressing cells (21). Therefore, Clec9aCre/+Ccr2fl-eGFP/fl-eGFP (here 

termed Clec9aΔCCR2 or C9aΔCCR2) can be used to ablate CCR2 in Clec9a-expressing 

cells and compared to Clec9aCre/+Ccr2fl-eGFP/+ (here termed Clec9aWTCCR2 or C9aWTCCR2) 

littermates whose Clec9a-expressing cells express normal levels of CCR2 because the locus 

is haplosufficient (22).
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Clec9a-expressing cells include cDC1s, PCs, conventional DC progenitors (CDPs) and 

pre-cDCs (7, 15). To identify targeted cells in Clec9aWTCCR2 and Clec9aΔCcr2 mice, we 

analysed the myeloid compartments of BM and lung for eGFP+ cells. Pre-cDCs and cDCs 

were prominent among labelled cells in the BM, both in frequency (> 75% penetrance) and 

mean fluorescence intensity (Fig. 3A and B), which remained unaltered by IAV infection 

(Fig. 3B and S3B). As expected, monocytes were not labelled (Fig. 3A, B). Consistent with 

these results, a large reduction in CCR2 positivity, at its peak of expression in pre-cDCs 

(2dpi; Fig. 2I), was seen in all BM pre-cDC (Fig. 3C) and lung cDC subsets (Fig. S3C) from 

Clec9aΔCCR2 mice when compared to the same cells in Clec9aWTCCR2 controls. In contrast, 

expression of CCR2 by PCs (Fig. 3C) or monocytes (Fig. S3D) was not significantly 

altered in Clec9aΔCCR2 mice vs Clec9aWTCCR2 controls. Further, CCR2-dependent exit of 

monocytes from BM was similar in the two strains, both at steady-state and after IAV 

infection (Fig. S3D). We conclude that Clec9aWTCCR2 mice allow eGFP marking of pre­

cDCs and cDCs while Clec9aΔCCR2 mice constitute a useful tool to selectively ablate CCR2 

expression in the cDC lineage.

CCR2 mediates recruitment of pre-cDCs to infected lungs

Comparison of uninfected Clec9aWTCCR2 and Clec9aΔCCR2 mice revealed a similar number 

of pre-cDCs and cDCs in the BM and lungs (Fig. 3D-F). This is in line with a report 

that CCR2 is dispensable for lung seeding by pre-cDCs at steady state (23) and consistent 

with the low levels of CCR2 ligands in that organ in the absence of inflammation (Fig. 

2F, G). We next asked next whether the reduction in CCR2 expression in pre-cDCs from 

Clec9aΔCCR2 mice affects their lung recruitment upon IAV infection. Interestingly, CCR2 

ablation in Clec9aΔCCR2 mice did not affect pre-cDC BM exit after IAV infection, as BM 

pre-cDCs were equally reduced in mice of both genotypes (Fig. 3D). However, at 5dpi, we 

observed significantly fewer total pre-cDCs, including pre-cDC1 and pre-cDC2 subsets, in 

lungs of Clec9aΔCCR2 mice compared to Clec9aWTCCR2 controls (Fig. 3E). This correlated 

with reduced infection-induced expansion in lung cDC1, cDC2 and inf-cDC2 numbers in 

Clec9aΔCCR2 mice (Fig. 3F). Dimensionality reduction analysis of flow cytometry data 

confirmed that eGFP+ cells lacking lineage-restricted markers (CD3, Ly6G, SiglecF, B220, 

CD19, NK1.1, Ly6D and Ter119) expressing low levels of CD11b (corresponding to pre­

cDCs and cDCs) increased to a smaller extent in lungs of infected Clec9aΔCCR2 mice 

compared to Clec9aWTCCR2 controls (Fig. 3G, H). This could not be explained by changes 

in eGFP labelling during infection as BM pre-cDCs and lung pre-cDCs were equally 

targeted in both genotypes regardless of infection status (Fig. 3B). PCs, Ly6C+ monocytes 

and CD11c+ MHC-II+ MCs were found in equal numbers in the lungs of uninfected 

Clec9aWTCCR2 and Clec9aΔCCR2 mice (Fig. 3I). Importantly, the latter two cell populations 

markedly increased in abundance after infection irrespective of mouse genotype (Fig. 3I), 

confirming that monocyte mobilization is not affected in Clec9aΔCCR2 mice.

When examining the lung draining mdLNs, we observed that CCR2 ablation in 

Clec9aΔCCR2 mice also compromised the infection-associated increase in mig-cDCs (Fig. 

S3E). This is likely an indirect consequence of the decreased recruitment of Clec9aΔCCR2 

pre-cDCs to infected lungs, which results in fewer differentiated cDCs able to emigrate 

via afferent lymph to mdLNs, a process driven by CCR7. To establish this point (and 
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exclude a direct effect of CCR2 ablation on the ability of lung cDC to migrate from lung 

to mdLNs), we measured surface expression of CCR2, CCR7 and the activation marker 

CD86 on lung cDCs at 3dpi, around the point of maximal cDC migration to mdLN. As 

expected, all cDC subsets upregulated CD86 upon IAV infection (Fig. S3F). Cells poised 

to emigrate also upregulated CCR7 and a clear fraction of cDC1, cDC2 and inf-cDC2 was 

positive for CCR7 in lungs from IAV-infected animals (Fig. S3G, H). Importantly, CCR7+ 

cells downregulated CCR2 (Fig. S3G, H), indicating that CCR7 and CCR2 expression in 

cDC subsets are mutually exclusive and implying that the CCR2 axis might actually oppose 

cDC migration to lymph nodes. Supporting this notion, we observed that induction of 

CCR2 ligands in mdLN was much lower than in lungs (Fig. S3I), suggesting that infection 

induces a CCR2 ligand gradient that is high in the lungs and lower in mdLN, thereby 

retaining CCR2-expressing cells in the infected tissue rather than promoting their migration 

to draining mdLNs.

Finally, we tested whether CCR2 was required for pre-cDC homing to the lungs in 

different types of inflammation. We infected Clec9aWTCCR2 and Clec9aΔCCR2 mice with 

Nippostrongylus brasiliensis, a lung-migrating nematode that induces acute tissue injury 

followed by a strong type 2 inflammatory response (24). Like IAV, parasite infection 

induced pre-cDC recruitment to lungs (Fig. S4A) but, in contrast to infection with the virus, 

this was unaffected by loss of CCR2 in cDC precursors (Fig. S4B).

Overall, these data suggest that, during IAV infection, pre-cDCs in blood follow a gradient 

of CCR2 ligands to find their way into IAV-infected lungs where they expand the network 

of cDC1s, cDC2s and inf-cDC2s. Those cDCs can then become activated to downregulate 

CCR2 and upregulate CCR7 in order to migrate to draining mdLNs, presumably carrying 

IAV antigens.

Clec9aCreCcr2fl-eGFP mice can be used to visualise pre-DCs by microscopy

IAV infection of the lung is known to be heterogeneous and virally-infected cells remain 

localised to discrete foci (7, 25). We wondered whether recruited pre-cDCs were directed 

to such foci. We confirmed that most pre-cDCs arriving in lungs of Clec9aCreCcr2fl-eGFP 

mice express eGFP (Fig. S5A), as noted in BM (Fig. 3B). We therefore used this eGFP 

expression to visualise pre-cDCs in situ in lung tissue sections from Clec9aCreCcr2fl-eGFP 

mice, excluding any cells that stained with AF594-conjugated anti-MHC class II, anti-B220 

and anti-CD64 antibodies (AF594+ cells) to eliminate eGFP+ cDCs, PCs, monocytes and 

macrophages from our analysis (Fig. 4A; S5B, C). Co-staining for IAV matrix (M) and 

nucleoprotein (NP) identified the foci of infection, and visual inspection suggested that they 

contained higher numbers of pre-cDCs than adjacent areas (Fig. 4B, C). This was confirmed 

by quantitating pre-cDC numbers in defined lung 3D volumes with high vs low virus 

burden (Fig. 4D). Volumes with high virus burden also contained more MHC-II+ CD64+ 

and/or B220+ cells irrespective of eGFP marking (Fig. 4D; referred to as AF594+), likely 

corresponding to inflammatory cells, such as CD64high monocytes and MHC-II+ cDCs.
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CCR2 specifically recruits pre-cDCs to infection foci in the lung

We then tested whether CCR2 is necessary for pre-cDC localisation at infection foci 

by measuring co-localisation between pre-cDC surfaces (eGFP+ MHC-II- CD64- B220-) 

and IAV-infection foci (M+ NP+) in Clec9aWTCCR2 versus Clec9aΔCCR2 lung slices (Fig. 

4E). We used a form of statistical analysis that is robust within the range of population 

sizes observed in images and therefore unaffected by lower pre-cDC numbers in the 

infected lungs of Clec9aΔCcr2 mice (Fig. 4E). Notably, the co-localisation score of pre­

cDCs and IAV was consistently higher in Clec9aWTCCR2 compared to Clec9aΔCCR2 lung 

sections when quantified by two statistical distance metrics (Jensen-Shannon and Hellinger 

distances; Fig. 4F). Conversely, using the same distance metrics, the “randomness” of pre­

cDC positioning (measured by comparison of actual pre-cDC distribution to a theoretical 

distribution uniformly spread across the whole tissue) was greater in Clec9aΔCCR2 compared 

to Clec9aWTCCR2 lungs (Fig. 4F) even though the infection foci were positioned to an 

equally random extent between genotypes (Fig. S5D, E). In contrast to pre-cDCs, there was 

no difference between the two mouse strains in the number of AF594+ cells in regions of 

high or low IAV infiltration (Fig. S5F). These data suggest that CCR2 is used by pre-cDCs 

not only to migrate into IAV-infected lungs but specifically to home to the areas of active 

infection.

Ccl2 is predominantly expressed by activated monocytes during IAV infection

To investigate sources of CCR2 ligands that might underlie recruitment of pre-cDCs to 

infection foci, we used PrimeFlow analysis to quantify Ccl2 transcripts by flow cytometry. 

At 5dpi, more than 90% of Ccl2+ cells were of hematopoietic origin (CD45+) (Fig. 5A), 

in contrast with earlier time points at which CCL2 is produced by CD45−epithelial cells 

(19). Among CD45+ Ccl2-expressing cells, the majority corresponded to Ly6C+ monocytes 

(Fig. 5B, C), which are recruited earlier than pre-cDCs during IAV infection (Fig. 2A). This 

is consistent with the notion that monocytes recruited to inflammatory sites can produce 

CCL2 in a positive feedback amplification loop that recruits additional cells (26). Around 

40% of Ly6C+ monocytes expressed Ccl2 at 5dpi (Fig. 5D) but there was a noticeable skew 

in staining towards monocytes with higher CD64 expression (Fig. 5E). CD64+ monocytes 

correspond to those with a more activated phenotype (27) and might explain the observation 

that pre-cDCs co-localise at foci of infection with higher numbers of MHC-II, B220 and 

CD64-positive cells (see above; Fig. 4D). Overall, these data suggest that early recruited 

monocytes, activated adjacent to IAV infection foci, produce CCL2 that attracts not only 

additional monocytes but also pre-cDCs.

Acute T cell responses are impaired in Clec9aΔCCR2 mice

To assess the immunological relevance of these observations, we examined T cell priming 

and viral clearance in Clec9aWTCCR2 versus Clec9aΔCCR2 mice. In uninfected mice, we 

did not observe any differences in immune cell composition in spleen and lung draining 

mediastinal LNs (mdLNs) between Clec9aΔCCR2 vs Clec9aWTCCR2 mice (Fig. S6A–D). 

However, upon IAV infection, Clec9aΔCCR2 mice displayed less weight loss at 8 and 9 d.p.i 

compared to controls (Fig. 6A), a timepoint that coincided with higher abundance of mRNA 

encoding IAV matrix protein in their lungs (Fig. 6B). These two observations are consistent 
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with the possibility that Clec9aΔCCR2 mice mount an impaired T cell response to IAV, which 

reduces their ability to clear the virus at late infection timepoints but spares them from T 

cell-induced immunopathology causing weight loss (28).

To examine this in more detail, we re-stimulated cell suspensions taken from mdLNs or 

infected lungs with peptides corresponding to known H-2b MHC class I- or II-restricted 

IAV epitopes. Cultures of mdLN or lung cells from Clec9aΔCCR2 mice accumulated less 

IFN-γ than those from Clec9aWTCCR2 controls in response to IAV peptides (Fig. 6C, 

S7A). Consistent with those findings, the frequency and number of IAV NP-specific 

H-2Db-restricted CD8+ T cells were reduced in mdLNs and lungs from Clec9aΔCCR2 mice 

compared to Clec9aWTCCR2 controls at 7 and 10 dpi (Fig. 6D, E). In contrast, IgM and IgG 

antibody responses to IAV were unaffected in Clec9aΔCCR2 mice (Fig. S7B). To rule out 

an intrinsic defect in T cell priming in Clec9aΔCCR2 mice, we measured T cell responses 

after infection with N. brasiliensis and found that they were similar to those in control 

mice (Fig. S7C). Therefore, the defect in the T cell response to IAV likely reflects the fact 

that, in the absence of cDC network expansion around virus infection foci, the number of 

activated mig-cDCs carrying IAV antigens from lung to mdLNs becomes limiting and, as 

a consequence, T cell priming is compromised (29). Consistent with this notion, at 5dpi 

there was a smaller population of mig-cDCs in mdLNs from infected Clec9aΔCCR2 mice 

compared to controls (Fig. S3E) and they appeared less activated as measured by CD86 

expression (Fig. S7D). These data suggest that acute T cell responses against IAV are 

curtailed if lung cDC numbers are not sufficiently boosted via CCR2-mediated pre-cDC 

recruitment.

Clec9aΔCCR2 mice are more susceptible to IAV reinfection

cDCs are also key for the induction of long term memory responses to viral infection, 

including generating tissue resident memory T cells (TRMs) (30). When examining T cell 

memory formation in Clec9aΔCCR2 mice, we found that 1 month after IAV infection the 

number of IAV-specific CD8+ T cells in circulation and in the lungs, including canonical 

CD103+ TRMs, was reduced compared to Clec9aWTCCR2 controls (Fig. 7A, B). In contrast, 

the quantity and neutralising ability of anti-IAV antibodies were either unaffected or, if 

anything, slightly increased in Clec9aΔCCR2 mice (Fig. 7C). Importantly, re-infection of 

mice with a heterologous IAV strain (PR8; H1N1) (Fig. 7D), which is not neutralised by 

antibodies against X31 (H3N2), induced increased acute weight loss in Clec9aΔCCR2 mice 

compared to Clec9aWTCCR2 controls (Fig. 7D), which was accompanied by reduced ability 

to clear the re-challenge virus (Fig. 7E). Together, these data indicate that expansion of the 

lung cDC network by pre-cDCs recruited via CCR2 to infection foci is necessary to support 

the effective generation of effector and memory T cell responses against IAV that protect 

from re-infection (29).

Discussion

cDCs are positioned at barrier sites to ensure the early detection of infection. Upon pathogen 

encounter, they migrate to draining lymph nodes to prime T cells and die 1-3 days thereafter 

(1, 31). In order to support and diversify T cell priming, the influx of tissue-derived mig­
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cDCs carrying antigen needs to be sustained (30, 32). However, the basal density of cDCs in 

tissues is low and it is therefore reasonable to speculate that cDC numbers need to increase 

at the site of pathogen challenge in order to meet dLN demand for mig-cDCs. During 

inflammation, monocytes can differentiate into cells that have many cDC features, but it 

is clear that such monocyte-derived DC-like cells are distinct from those that arise from 

regular cDCpoiesis and cannot substitute for them, for example in anti-viral or anti-tumour 

immunity (1). We have previously shown that local proliferation of cDCs and pre-cDCs 

is decreased during IAV challenge (7) and acute demand for cDCs at sites of infection 

therefore requires increased recruitment of cDC progenitors. Here, we show that, in the 

context of IAV infection in mice, this increased local demand is met by recruiting pre-cDCs 

to lung infection foci in a CCR2-dependent manner. The terminal differentiation of recruited 

pre-cDCs sustains cDC accumulation next to the antigen source, offsetting cDC emigration 

to draining lymph nodes and maintaining antigen sampling to induce robust T cell immunity.

CCR2 is generally considered a monocyte marker, although it has been previously 

reported on some cDC2s, especially inf-cDC2s (5, 23, 33). Ablation of CCR2 in cDCs 

in Clec9aΔCCR2 mice, could, in theory, impact cDC migration from lung infection foci to 

lymph nodes. However, we show that activated lung CCR7+ cDCs downregulate CCR2 

as they initiate migration to mdLN, presumably to become desensitized to the high levels 

of CCR2 ligands in lung tissue that would oppose such migration. As for possible CCR2­

dependent mobilization of differentiated cDCs from BM to infected lungs, we cannot 

formally exclude it due to the lack of genetic models to specifically target cDCs without 

affecting their precursors (or vice versa). However, tissue seeding with cDCs is mediated by 

migratory precursors (pre-cDCs) rather than by differentiated cells (11). Our data indicate 

that expression of CCR2 by pre-cDCs does not affect steady-state colonisation of the lungs 

but is responsible for the increased seeding observed in inflammatory conditions. Consistent 

with that notion, CCR2 expression is upregulated in BM pre-cDCs during IAV infection, as 

are CCR2 ligands in the lung, suggesting the existence of an axis where both the receptor 

and ligand are induced at distant locations to attract target cells to the site of infection. The 

finding that CCR2 can mediate pre-cDC recruitment suggests caution is warranted when 

using CCR2-deficient mice or anti-CCR2 antibodies to interrogate the role of monocytes in 

immunity and inflammation (34, 35).

Interestingly, recent work has revealed a role for CCR2 in increasing numbers of cDCs in 

lymph nodes draining sites of intramuscular immunisation with AS01-adjuvanted antigens 

(36). Global loss of CCR2 resulted in decreased CD4+ T cell, CD8+ T cell and antibody 

responses to the antigens, suggesting a specific role for inf-cDC2s (36). By restricting 

receptor loss to the cDC lineage, we find that CCR2 is required for lung increases not only 

in inf-cDC2s but also in cDC1s and cDC2s in a model of IAV infection and that this is 

essential for effective T cell-based but not humoral immunity. Which cDC type contributes 

predominantly to the CCR2-dependence of the T cell response remains unclear although 

CD8+ T cell priming to IAV in mice has been proposed to be particularly dependent on 

cDC1s (6, 37).

It is likely that not all emergency cDCpoiesis is exclusively dependent on CCR2. Indeed, 

RNAseq analysis revealed that pre-cDCs in BM also express Ccr1, Ccr5 and Cxcr4, the 
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ligands for which are also increased in mouse lungs during IAV infection. Those receptors 

could potentially contribute to pre-cDC recruitment to IAV-infected lungs as accumulation 

of the cells was not fully abrogated in Clec9aΔCCR2 mice (although this might also reflect 

incomplete penetrance of the recombination event (15)). The expression of other chemokine 

receptors could also explain why CCR2-deficiency does not prevent the increase in lung 

pre-cDCs numbers after N. brasiliensis infection. Interestingly, the egress of pre-cDCs from 

BM into blood in IAV-infected mice is not affected by CCR2-deficiency, which is in contrast 

to monocytes (39). It is therefore likely that BM exit of pre-cDCs and subsequent homing 

to tissues involves distinct signals and context-specific chemokines, both in steady-state and 

in emergency cDCpoiesis. The reliance on multiple mechanisms allied to the redundancy of 

the chemokine system (38) likely ensures robustness and increases resistance to pathogen 

interference with cDC-driven immunity.

Lung architecture presumably prevents fully-differentiated cDCs scattered around airways 

and alveoli from migrating through the tissue to coalesce at foci of infection. Therefore, 

as for other lung resident cells such as macrophages, increasing local cell density requires 

acute focal recruitment of precursors from the blood (39). Consistent with this hypothesis, 

we were able to visualise pre-cDCs clustering around IAV infected foci. Our data suggest 

a model in which challenge of the respiratory tract with IAV rapidly communicates to the 

BM a need for emergency cDCpoiesis. Pre-cDCs acutely released from BM (7) in a CCR2­

independent manner circulate via blood and extravasate from lung capillaries adjacent to 

foci of infection in response to CCR2 ligands. These include CCL2 produced by CD64high 

monocytes that were recruited by a prior wave of CCL2 expression by epithelial cells (19). 

Pre-cDCs then differentiate locally at sites of infection to expand the number of cDCs in 

close proximity to the antigen source. Newly-generated cDCs expressing CCR2 are retained 

at foci of infection by CCL2 until they contact virus or virus-infected cells, which act as 

a source of antigen and activation signals (1). Activation leads to a switch in chemokine 

receptor expression characterised by upregulation of CCR7 and downregulation of CCR2, 

allowing the antigen-laden cells to migrate to mdLNs (1, 31). This is dispensable for the 

antibody response but sustains T cell priming and supports generation of a productive 

memory response that confers T cell mediated cross-strain protection to heterologous IAV 

strains. Additional studies will be necessary to establish to what extent pre-cDC back-up 

is important for immunity to other immune challenges. Such studies could reveal whether 

emergency cDCpoiesis is an integral part of robust immune responses to infection that could 

be exploited in vaccine design or, conversely, inhibited in some settings in order to dampen 

immunopathology caused by T cells.

Methods

Study design

The aim of this study was to examine the requirement for cDC expansion to achieve 

effective adaptive immunity against respiratory viruses. We used IAV as a widely-studied 

respiratory virus and the mouse as model organism. Mouse experiments were planned 

in accordance with the principles of the 3Rs (Replacement, Reduction and Refinement) 

following UK Home Office guidelines. The X31 strain of IAV (H3N2) was used as a 
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mouse-adapted strain for infections and the PR8 strain (H1N1) as a re-infection virus to 

look at T cell-mediated protection. Different immune cells were examined in lung, blood 

and bone marrow by flow cytometry and fluorescence confocal microscopy. In addition, 

chemokines, viral content and antibodies were measured using techniques such ELISA, 

CBA and qPCR. T cell responses were monitored by ex vivo re-stimulation with defined 

IAV epitopes. All experiments were performed at least twice. During analysis no individual 

data points were excluded under any circumstances other than technical failure to process 

the sample.

Mice

Ccr2fl-eGFP (21), Clec9aCre (here sometimes abbreviated C9aCre) (15), Flt3l-/- (Taconic 

Biosciences), Rosa26LSL-tdTomato (abbreviated R26LSL-tdTomato; The Jackson Laboratory) 

and C57BL/6J mice were bred at The Francis Crick Institute in specific pathogen-free 

conditions. All genetically modified mouse lines were backcrossed to C57BL/6J. Six to 

twelve-week-old male and female mice were age and sex-matched in all experiments. 

Sample sizes were determined so as to include the minimum number of mice necessary to 

achieve statistical robustness when assessing differences in pre-cDC/cDC numbers caused 

by influenza A virus infection (7). Mice were not randomized in cages, but each cage 

was randomly assigned to a treatment group. Investigators were not blinded to mouse 

identity during necropsy and sample analysis. Male and female mice were used to perform 

the experiments. However, we did not observe differences between sexes. All animal 

experiments were performed in accordance with national and institutional guidelines for 

animal care.

Pre-cDC differentiation assays

Flt3L-driven differentiation of pre-cDCs was carried out by culturing 2 × 104 OP9-DL1 

(18) cells into twelve-well plates in RPMI medium supplemented with L-glutamine (Gibco), 

penicillin-streptomycin (Gibco), non-essential amino acids (Gibco), 10% FCS (Sigma) and 

β-mercaptoethanol (Gibco). The following day, 1-5 × 103 sorted cells were added to the 

OP9-DL1 monolayer after removing the medium and replacing it with fresh medium 

containing 300 ng/ml of mouse Flt3L. Progeny cells were assessed by flow cytometry 

three days later. cDC differentiation was assessed by MHC-II upregulation, whereas PC 

differentiation was quantified by the expression of B220 and SiglecH. cDC1s were defined 

as XCR1+ and cDC2s as SIRPα+.

Infection

Mice were anesthetised by isoflurane inhalation and were infected intranasally with 35,000 

tissue culture infectious doses 50 (TCID50) of influenza A X31 (H3N2) in 30μl PBS. For 

heterosubtypic challenge, mice were infected with X31 influenza at the same dose followed 

by i.n. administration of 10,000 TCID50 of H1N1 PR8 IAV (in 30μl PBS), 28 days after 

primary infection. Mice were monitored daily for weight loss and signs of infection. N. 

brasiliensis was maintained by serial passage through rats, as described previously (24). 

Mice were infected subcutaneously with 250 N. brasiliensis L3 larvae.

Cabeza-Cabrerizo et al. Page 12

Sci Immunol. Author manuscript; available in PMC 2021 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Adoptive transfers

Bone marrow was isolated from the legs, arms, hipbone, sternum and spinal cord of CD45.1 

C57BL/6J mice at 1 day post infection with IAV. CD11bhi, CD11blo and CD11b- cells and 

monocytes were sorted as indicated in Fig. 1A (gates 4) and Fig.S2A. 70,000-150,000 cells 

were injected intravenously into CD45.2 C57BL/6J mice 1dpi with IAV. Lung and mdLN 

cells were analysed 4 days later (5dpi).

In vitro re-stimulation

For IAV-specific T cells, 5 x105 freshly-isolated mdLN or lung cells were plated and re­

stimulated with 1μM, 1nM or 1pM of IAV PA224-233, NP366-373 or NP276-290 peptides 

(all from Crick Peptide Synthesis facility, Table S4) at 37°C and 5% CO2.in RPMI with 10% 

FCS, 1uM β-mercaptoethanol and 1% PenStrep Glutamine. For N. brasiliensis-specific T 

cells, mdLN cells were re-stimulated with parasite extract (1 μg/ml) or Dynabeads™ Mouse 

T-Activator CD3/CD28 (8 million per well, Gibco). After 72h, cells were lysed by freezing 

the plate at -80°C. Supernatants were analysed for IFN-γ, IL-4, IL-5 or IL-13 content by 

CBA (as for CCL2 quantification, see below; BD Biosciences)

Preparation of single cell suspensions

Spleens, mdLNs, iLNs and lungs were cut into small pieces and digested with Collagenase 

VIII (1mg/ml, Sigma) or VI (400U/ml, Worthington) and DNase I (0.4mg/ml, Roche) in 

RPMI for 15-30 min (spleen and LNs) or 20-60 min (lung) at 37°C. Digested tissues were 

strained through a 70μm cell strainer (BD Bioscience) and washed with FACS buffer (3% 

foetal calf serum, 5mM EDTA in PBS). For lung, leukocytes were enriched by Percoll 

gradient centrifugation (GE Healthcare) as previously described (7). For BM, femur and 

tibia extremities were cut and spun for 30s at 10,000 rpm. Cells were resuspended in final 

volume of 500μl.

Flow Cytometry analysis

Cells were preincubated with blocking anti-CD16/32 in PBS for 10 min at 4°C and then 

stained for 20 min at 4°C with antibody cocktail and LIVE/DEAD Fixable Blue Dead Cell 

Stain Kit (ThermoFisher) in PBS. Lineage (Lin) markers included CD3, Ly6G, SiglecF, 

B220, CD19, NK1.1, Ly6D and Ter119, unless otherwise specified. Antibodies (Abs) 

used for flow cytometry are listed in Table S2. PE conjugated pentamer comprising H2-Db­

ASNENMETM (ProImmune) was used to detect IAV NP-specific CD8+ T cells. Data was 

analysed using FlowJo. Uniform manifold approximation and projection (UMAP) analysis 

(40) of flow cytometry data were generated on the basis of CD11b, CD11c, CD16/32, 

CD26, CD43, CD64, CD88, CD135, Sirpα, MHCII, Ly6C, SiglecH and XCR1 expression. 

Annotation of clusters on the UMAP plots was done by using defining markers for each 

immune population. The accuracy of our manual gating was confirmed on the UMAPs by 

overlaying different immune populations identified as shown in Figure 1E and S2A.

RNA extraction, cDNA synthesis and RT-qPCR

mdLNs and lungs were collected in Trizol and subsequently homogenised in a TissueLyser 

LT (Qiagen). RNA was isolated using chloroform and precipitated with isopropanol. After 
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washing with ethanol, RNA was resuspended and used to synthesise cDNA using the 

Superscript II reverse transcriptase (Invitrogen). Quantitative real-time PCR (RT-qPCR) was 

performed using the TaqMan Universal PCR Master Mix (ThermoFisher) and primers (listed 

in Table S5). Analysis was performed on a QuantStudio (Thermo Fisher Scientific) using 

ΔCt quantification. RT-qPCR conditions were as per manufacturer’s instructions.

RNAseq

For Figure 2E, pre-cDCs were isolated from BM using a BD FACS Aria Fusion sorter. 

1-6 × 104 cells were sorted directly into lysis buffer to avoid loss of material. RNA was 

extracted using the RNeasy Mini Kit (Qiagen). NuGEN Ovation RNA-Seq System (v2) was 

used for cDNA synthesis followed by NuGEN UltraLow Library System (v2) for library 

preparation. Samples were normalised to 1 ng RNA for input and the preparation was 

performed according to the manufacturer’s guidelines. Sequencing was performed on the 

Illumina HiSeq 4000, with 100 base pair single end reads. After sequencing, samples were 

normalised and analysed.

Microscopy

Lungs were removed and the left lobe was fixed in 4% paraformaldehyde (Electron 

Microscopy Sciences) in PBS overnight at 4°C. Fixed lungs were incubated in PBS with 

30% sucrose at 4°C overnight and embedded in Tissue-Tek OCT compound (Sakura) at 

-80°C. The tissue was cut in a Leica 3050 cryostat to generate 60μm frozen sections. 

For antibody staining, sections were hydrated in 0.1M TRIS pH 7.4 and blocked for 1h 

at 25°C in 1% bovine serum albumin (Sigma), 1% normal mouse serum (Invitrogen) 

and 0.25% Triton TX-100 (Sigma). Sections were first stained overnight at 4°C with 

rabbit anti-CD64 (clone 027, Sino, 1:1000), rat anti-CD45R/B220 biotin (RA3-6B2, BD 

Pharmingen, 1:100), rat anti-I-Ab biotin (M5-114.14.2, BD Pharmingen, 1:100) and anti­

IAV NP+M FITC (Oxoid, 1:100) diluted in blocking buffer. Sections were subsequently 

stained with anti-FITC AF647 (1F8-1E4, Jackson ImmunoResearch, 1:400) and anti-rat 

IgG AF594 (Invitrogen, 1:400) or anti-rabbit IgG AF594 (Invitrogen, 1:400). Sections were 

counterstained in Hoechst 33342 solution (ThermoFisher, 1:500) and mounted in RapiClear 

1.47 (Sunjin Lab). Antibodies used for confocal microscopy are listed in Table S4. Imaging 

was performed in a Zeiss LSM 880 inverted confocal microscope with a 25x oil immersion 

objectives. Sequential excitation of fluorophores at 405nm, 488nm, 561nm and 633nm was 

provided by a combination of argon and helium lasers. Tile scans were acquired covering the 

entire surface area of the section at a step size of 3μm and a pinhole of 1 Airy unit. Images 

were acquired with 512x512 pixel resolution with a line averaging of 4. Tile stitching was 

performed using Zen software (Zeiss).

Pre-cDC localisation analysis

Three dimensional volumetric surfaces corresponding to lung pre-cDCs, IAV+ and lineage+ 

cells (lin = CD64, B220, I-Ab) were generated in Imaris 9.2 (BitPlane). Thresholding for 

pre-cDC surface generation was based on eGFP intensity and then an additional filter 

was added to exclude lin+ cells. Statistics were exported and analysed using GraphPad 

Prism. Surface coordinates were exported and plotted in two dimensions (X and Y). 

Non-parametric probability density functions (PDFs) for pre-cDCs and IAV+ cells in a 
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given lung section were generated using the ksdensity function from the Statistics and 

Machine Learning toolbox in MATLAB (MathWorks). Boundary correction of reflection 

and a bandwidth of 100 were selected; additional bandwidths were tested for robustness. 

Statistical distance metrics (Jensen Shannon distance and Hellinger distance) for continuous 

distributions were used to compare the similarity between pre-cDC and IAV PDFs and 

determine pre-cDC/IAV co-localization (42). All measures are bounded between zero and 

one. To assess the randomness of the distribution of pre-cDCs and IAV+ cells, these 

distance metrics were used to compare pre-cDC and IAV PDFs to tissue specific uniform 

distributions generated for each lung section based on saturated Hoechst staining. Each 

particular point within the stained tissue has an equal (uniform) probability of a pre-cDC or 

IAV+ cell being located there.

Haemagglutination inhibition assay

Haemagglutination inhibition (HAI) activity was evaluated using previously described 

protocols (41). IAV (X31 strain) diluted in PBS to give 8 haemagglutination activity 

units and serum samples (diluted 1:5 in Seiken Receptor Destroying Enzyme (Cosmos 

Biomedical Ltd.) followed by 1:2 serial dilutions in PBS) were incubated in V-bottom 

96 microtitre plates for 30 min at room temperature. Turkey red blood cells (0.75% 

(v/v); supplied by PHE, Colindale) were added to the antibody–virus mixture, mixed 

gently, and incubated for 30 min at room temperature. Wells were scored visually for 

haemagglutination. HAI titres were recorded as the reciprocal of the highest serum dilution 

that prevented haemagglutination.

Anti-haemagglutinin ELISA

Purified haemagglutinin (H3N2, strain X31, a gift from J. Skehel) was coated in high­

binding 96-well microtitre plates (Nunc) and after overnight incubation at 4 °C, plates 

were blocked with PBS plus 3% (v/v) FSC for 2 h. After blocking, plates were incubated 

for 2 h with serially diluted serum samples. Initial dilution of sera was 1:50 followed by 

1:2 serial dilutions when samples were collected 0-5 dpi with IAV and 1:100 followed by 

1:3 serial dilutions when samples were collected 28 dpi with IAV. Serum samples were 

washed, followed by HRP-conjugated goat anti-mouse IgG (Biorad, 170-6515, 1h; 1:3000) 

or anti-mouse IgM (Biorad, STAR86P, 1h; 1:1000). Plates were developed using TMB 

(3,3’,5,5’-Tetramethylbenzidine, Invitrogen) and reactions were stopped with the addition 

0.18M sulphuric acid. Absorbance at 450 nm was immediately recorded and background 

absorbance from negative control samples was subtracted. Titre (IC50) was calculated as the 

reciprocal of the dilution that gave the half-maximal absorbance value. Alternatively, area 

under curve (AUC) was calculated using GraphPad Prism.

Quantification of chemokines in lung homogenates and BALF

Lung homogenates were generated by mechanical tissue lysis in PBS with Halt protease 

inhibitor cocktail (ThermoFisher) and supernatants were stored at −80°C. For isolation of 

fluid from the bronchoalveolar space, mice were sacrificed and bronchoalveolar lavage was 

carried out by flushing with 2 × 0.6ml cold PBS using a needle inserted into the trachea. 

Cells were removed by centrifugation at 800g for 8 min at 4°C and supernatants were used 

for analysis. Chemokines and cytokines were analysed using the mouse chemokine array 
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ARY020 kit (R&D). Altenatively, mouse CCL2 Flex Set (BD Biosciences) was used for 

CCL2 quantification by cytometric bead array (CBA, BD Biosciences) in lung homogenates 

and BALF. Events were acquired on an LSRFortessa or FACSymphony flow cytometer 

(BD Biosciences). Analysis was carried out using FlowJo 10 software (TreeStar Inc). 

Flow Cytometry Standard (FCS) files were exported from FlowJo for analysis by Uniform 

Manifold Approximation and Projection (UMAP) performed in R (40).

Statistical Analysis

Statistical analyses were performed using GraphPad Prism software (GraphPad) or 

MATLAB (Mathworks). Results are depicted as means +/- SEM. The statistical test used 

is specified in each figure legend. When Student’s t test was perfomed, a two-side level was 

used and all data were checked for normality. When ANOVA was used, Tukey correction 

was performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One-sentence summary

Effective T cell-dependent immunity to influenza A virus requires recruitment of cDC 

progenitors to foci of infection via CCR2
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Figure 1. Defining the cDC lineage by flow cytometry in non-infected (Ni) and IAV-infected mice.
(A) Live single cells from lung cell suspensions were analysed as follows: gate 1 on 

Lin-CD45+ cells (lineage includes anti-CD3, Ly6G, SiglecF, B220, CD19, NK1.1 and 

Ter119); gate 2 on CD11c+MHC-II-; gate 3 (pre-cDC gate) on CD135+CD43+. The bottom 

right panel shows CD11b and Ly6D staining in cells from the pre-cDC gate revealing 4 

populations (gates 4): CD11b- Ly6D+, CD11b- Ly6D-, CD11blo Ly6D- and CD11bhi Ly6D- 

cells. (B) The populations shown in gate 4, were sorted from the lungs of Ni C57BL/6 mice 

and cultured for 3 days with OP9-DL1 stromal cells in the presence of Flt3L. cDC- and 
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PC-generating potential (a combination of cell recovery and subset differentiation) of these 

populations is shown in the left (see also Table S1). (C) cDC subset distribution from the 

experiment in B. cDC1s are defined as XCR1+ whereas cDC2s express SIRPα. (D) Heatmap 

comparing the expression of different monocyte markers, as measured by flow cytometry, in 

the CD11b-/lo vs CD11bhi gates 4 shown in (A). (E) Pre-cDC, cDC and CD11c+ MHC-II+ 

MC gating strategy in lung cell suspensions from naïve or IAV-infected mice. Panels shown 

have been pre-gated on single, live, CD45+ and lineage- cells. The lineage cocktail includes 

antibodies against the following markers: CD3, Ly6G, SiglecF, B220, CD19, NK1.1, Ly6D 

and Ter119. Ly6C and SIglecH are used to identify pre-cDC subsets. Uncommitted pre­

cDCs are SiglecH+ Ly6C- (gate 0, bottom), pre-cDC1 are SiglecH- Ly6C- (gate 1, bottom) 

and pre-cDC2 are SiglecH-/+ Ly6C+ (gate 2, bottom). MCs are CD26lo and CD64hi. CD26hi 

and CD64-/lo cDCs are divided into cDC1s (XCR1+) (gate 1, top), cDC2s (SIRPα+, CD64-) 

(gate 2, top) and inf-cDC2s (SIRPα+, CD64int) (gate inf, top). Coloring reflects backgating 

of the populations in question and arrows denote gate hierarchy. (F) Number of indicated 

myeloid cells per lung of naïve and IAV-infected (5dpi) WT vs. Flt3L-deficient mice. (G) 

Representative UMAPs of lung Lin- CD11c+ cells from WT and Flt3L-deficient mice. (H) 

Tdtomato labelling of indicated myeloid cells in the lungs of naïve or IAV-infected (5dpi) 

Clec9aCre R26LSL-tdTomato mice. (I) Panels show TdTomato and CD88 (monocytic marker) 

fluorescence intensity in cells of the cDC lineage vs. unrelated cells. (J) TdTomato labelling 

of pre-cDCs (CD11b- and CD11blo), cDC1s, cDC2s, inf-cDC2s, monocytes and CD11c+ 

MHC-II+ MCs in the lungs of Clec9aCre R26LSL-tdTomato mice at 5 dpi with IAV. Panels 

show TdTomato and CD88 fluorescence intensity in cells of the cDC lineage vs. unrelated 

cells. Left: Percentage of CD45.1 cDCs recovered from lungs of CD45.2 recipient mice after 

transferring the CD45.1 cells listed on the x-axis. Middle: Reprentative dot plots. Right: 

Pie charts depicting cDC subsets recovered after transferring CD11b- or CD11b+ pre-cDCs. 

(K) As in (J) but looking at mediastinal LN (mdLN). Each dot represents one mouse. 

Data in A-D is a pool of 2-3 experiments. F-K shows data pooled from two independent 

experiments. t test was used to compare WT and Flt3l-/- mice in F-G. * p ≤ 0.05, ** p ≤ 

0.01, *** p ≤ 0.001. Not significant when not indicated.
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Figure 2. The lung cDC network expands during IAV infection.
Flow cytometric determination of numbers of (A) Ly6C+ monocytes, CD11c+ MHC-II+ 

MCs and PCs, (B) cDCs and (C) pre-cDC subsets in lungs from mice infected with IAV. 

Cell populations were gated as described in Figure 1E and S2A. Each dot represents one 

mouse (n = 4-7). (D) Chemokine protein array showing the abundance of the indicated 

chemokines in BALF of a non-infected (upper panel) and an IAV-infected representative 

mouse at 3 dpi (lower panel). Black rectangles indicate duplicate blots in which an 

increase was observed between non-infected and infected mice. Purple rectangles indicate 

Cabeza-Cabrerizo et al. Page 23

Sci Immunol. Author manuscript; available in PMC 2021 November 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



chemokines that are CCR2 ligands. Dots without rectangles are ones with either no visible 

changes or corresponding to control proteins from the array. (E) Normalised expression 

of chemokine receptor transcripts in sorted bone marrow pre-cDCs. Each row represents 

data from 1 mouse. (F) qPCR quantification of Ccl2, Ccl12 and Ccl7 transcripts from 

lung homogenates of Ni and IAV infected mice at different time points. CCL2 protein 

quantification in (G) lung homogenates (H) bronchoalveolar lavage fluid (BALF) after IAV 

infection. (I) CCR2 Mean Fluorescence Intensity (MFI) in BM pre-cDCs (top) or pre-cDC 

numbers (bottom) from Ni or IAV-infected mice at different time points. Each dot represents 

one mouse (n = 3-8) and data were pooled from 2 experiments. Cells were sorted using 

the gating strategy depicted in Fig. 1A, excluding the subset gating step. One-way ANOVA 

statistical test was used comparing day 0 (non-infected mice) to each day post-infection. * p 
≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Not significant when not indicated.
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Figure 3. Expansion of the cDC network during IAV infection is CCR2 dependent.
(A) UMAP analysis of flow cytometry data showing CD45+ cells overlaid with different 

immune populations as identified with manual gating (top panel) and eGFP intensity 

(bottom panel) in BM of a C9aCre/Cre Ccr2fl-eGFP/+ mouse at steady state. (B) eGFP MFI 

(left) and percentage eGFP+ cells (right) for different cell populations from the BM of 

C9aCre/Cre Ccr2fl-eGFP/fl-eGFP mice uninfected (grey) or infected with IAV (purple). (C) 

CCR2+ cells in different populations from the BM of C9aWTCCR2 (grey) or C9aΔCCR2 

(teal) mice at 2 dpi with IAV. (D) Number of BM pre-cDCs in C9aWTCCR2 (grey) or 
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C9aΔCCR2 (teal) Ni or 2dpi IAV-infected mice (E) Numbers of pre-cDCs and (F) cDCs in 

lungs from naïve and 5dpi IAV-infected C9aWTCCR2 (grey) or C9aΔCCR2 (teal) mice. (G) 

UMAP analysis of flow cytometry data showing Lin- CD11blow cells overlaid with different 

immune populations as identified with manual gating (left panel) and eGFP positive cells 

overlayed in samples from the lungs of naïve and infected C9aWTCCR2 or C9aΔCCR2 mice 

as indicated. (H) Quantification of Lin- eGFP+ cells in lungs from C9aWTCCR2 (grey) or 

C9aΔCCR2 (teal) mice Ni or 5dpi with IAV. Lineage was defined as in Figure 1. (I) Numbers 

of PCs, Ly6C+ monocytes and CD11c+ MHC-II+ MCs in lungs from naïve and 5dpi IAV­

infected C9aWTCCR2 (grey) or C9aΔCCR2 (teal) mice. Each dot in (B-F, H, I) represents one 

mouse (n = 5-10) and data were pooled from 2 experiments. Statistical analysis was done 

using a two-way ANOVA test comparing infected C9aWTCCR2 and C9aΔCCR2 mice. * p ≤ 

0.05, ** p ≤ 0.01, *** p ≤ 0.001. Not significant (ns).
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Figure 4. Pre-cDCs are specifically recruited to foci of IAV infection in a CCR2-dependent 
manner.
(A) Single z optical slices of C9aCre/+ Ccr2 fl-eGFP/+ mouse lung sections stained with 

AF594-conjugated anti-MHC class II (upper left), anti-B220 (middle left), anti-CD64 

(bottom left) or with a cocktail (right; 3D projection) of all three antibodies (AF594). Images 

on the left are examples of eGFP+ cells that co-stain for each marker. Image on the bottom 

right depicts an example of an eGFP+ cell that does not co-stain for AF594 and corresponds 

to a pre-cDC (inset). Hoechst was used to visualize cell nuclei. (B) 3D projection of a 
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whole C9aCre/+ Ccr2 fl-eGFP/+ mouse lung section 5 days post infection with IAV stained 

with Hoechst, anti-IAV M+NP and for AF594 exclusion markers (anti-MHC class II, 

anti-CD64, anti-B220) (left). Middle panel shows the localization of pre-cDCs (eGFP+ 

AF594−) and right panel that of IAV+ cells (M+NP staining) based on the coordinates 

of volumetric surfaces generated using Imaris software. Dashed lines delineate the outline 

of imaged lung tissue based on Hoechst staining. (C) 3D projection of a C9aCre/+ Ccr2 
fl-eGFP/+ mouse lung section 5 days post infection with IAV stained as in (B). Dashed 

rectangles and insets highlight regions of high and low staining for IAV M + NP. (D) 

Quantification of IAV M+NP+ cells, pre-cDCs and AF594+ (MHC-II, B220 and CD64) cells 

in volumes of high (purple) and low (grey) IAV burden (defined as in C). (E) Workflow 

for the analysis of pre-cDC distribution in IAV-infected lungs, including the generation of 

probability density functions (PDFs) corresponding to pre-cDC, IAV M+NP+ and Hoechst 

staining. (F) Pre-cDC vs. IAV M+NP co-localization (left) and pre-cDC randomness (right) 

scores for C9aWTCCR2 (grey) and C9aΔCCR2 (teal) IAV-infected mice calculated by Jensen­

Shannon (upper panels) and Hellinger (lower panels) distance metrics. Pre-cDC vs. IAV co­

localisation was determined by comparison of pre-cDC and IAV PDFs. Pre-cDC distribution 

randomness was determined by comparison of pre-cDC PDF and Hoechst PDF. Each dot 

corresponds to the analysis of one image from a lung section (n = 29 images from 10 mice). 

Statistical analyses were performed using unpaired t-test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 

0.001.
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Figure 5. Activated monocytes are the main source of Ccl2 transcripts during IAV infection
PrimeFlow analysis of Ccl2 transcripts in lung cells from non-infected and IAV-infected 

mice (5dpi). (A) CD45+ and CD45- lung cells as a percentage of live Ccl2+ cells (B) 

UMAP analysis of flow cytometry data indicating clusters of immune cell populations 

from a mouse lung 5 days post IAV infection, overlaid with Ccl2+ cells (purple) gated 

as indicated in the representative plot on the left. (C) Composition of lung Ccl2+ cells 5 

days post IAV infection (n = 4 mice). (D) Percentage of lung Ccl2+ monocytes (CD11b+ 

Ly6Chi) in non-infected and infected mice (5dpi) gated as indicated in the representative 

plot on the left. (E) Histogram showing modal intensity of Ccl2 mRNA PrimeFlow probe 

in CD11b+ Ly6Chi monocytes from non-infected mice (grey) and from CD64+ (teal) and 

CD64- (purple) monocytes. Plot shows percentage of Ccl2+ monocytes in CD64+ and CD64- 

monocyte populations in infected mice (5dpi) or in total monocytes in non-infected mice. 

Each dot represents one mouse (n = 3-4) and data shows 1 representative experiment out of 

3. Statistical analysis was done using a two-way ANOVA in A and one-way ANOVA in D, 

E. *** p ≤ 0.001. Not significant when not indicated.
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Figure 6. IAV-specific T cell responses are impaired in C9aΔCCR2 mice.
(A) Weight curves for C9aWTCCR2 (grey) and C9aΔCCR2 (teal) mice infected with IAV. Data 

are mean from 7 mice pooled from 2 experiments. Error bars represent SEM. (B) RT-qPCR 

for mRNA encoding IAV matrix protein in lungs of C9aWTCCR2 (grey) and C9aΔCCR2 (teal) 

mice at the indicated dpi. Each dot represents one mouse (n = 4-6) and data were pooled 

from 3 experiments. (C) Quantification of IFN-γ in supernatants following 72h of ex vivo 
re-stimulation of mdLN cells from infected C9aWTCCR2 (grey, continuous) or C9aΔCCR2 

(teal) mice or Ni controls (open circles, dotted) with the indicated doses of IAV PA or 
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NP peptides recognized by IAV-specific H-2b-restricted CD8+ or CD4+ T cells. Data in 

peptide re-stimulation treatments are mean from 2-3 mice from 1 experiment out of 2. Flow 

cytometry analysis of the number of IAV-specific CD8+ T cells per mediastinal lymph node 

(mdLN) (D) or lungs (E) of C9aWTCCR2 and C9aΔCCR2 mice at the indicated time points 

post infection with IAV. Data show responses in C9aWTCCR2 (grey) or C9aΔCCR2 (teal) 

mice at the specified time points after IAV infection with non-infected (Ni) mice serving as 

specificity controls. Each dot represents one mouse (n = 7-10) and data were pooled from 2 

experiments. CD8 T cells were gated as live, CD45+ cells, B220-, TCRβ+, CD8+ and CD4-. 

Statistical analysis was done using a two-way ANOVA test in A, C and one-way ANOVA 

test in B, D, E comparing infected C9aWTCCR2 and C9aΔCCR2 mice. * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001. Not significant when not indicated.
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Figure 7. C9aΔCCR2 mice are susceptible to re-infection with heterologous Influenza.
(A, B) Number of IAV NP-specific pentamer+ CD8+ T cells in lung (A) or in blood (B) 

during the memory phase of the response to IAV infection. Lung T cells gated as in 

Figure 6 were separated into CD103- (left) and CD103+ (right) populations. (C) IgG against 

haemagglutinin as measured by ELISA IC50 or HAI titres at 28 days after X31 infection. 

(D) Rechallenge schematic and weight curves for C9aWTCCR2 (grey) and C9aΔCCR2 (teal) 

mice during recall IAV challenge using PR8 strain. (E) RT-qPCR for mRNA encoding IAV 

matrix protein in lungs. Data show responses in C9aWTCCR2 (grey) or C9aΔCCR2 (teal) mice 
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at the specified time points after PR8 infection. Each dot represents one mouse (n = 7-10) 

and data were pooled from 2 experiments. Error bars represent SEM. Statistical test was 

done using one-way ANOVA test in A, B, E (weight loss) and t- test in C, F (IAV matrix). * 

p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001. Not significant (ns) or when not indicated in E.
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