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Abstract

With multiple genome-wide association studies (GWAS) performed across autoimmune diseases, there is a great
opportunity to study the homogeneity of genetic architectures across autoimmune disease. Previous approaches have been
limited in the scope of their analysis and have failed to properly incorporate the direction of allele-specific disease
associations for SNPs. In this work, we refine the notion of a genetic variation profile for a given disease to capture strength
of association with multiple SNPs in an allele-specific fashion. We apply this method to compare genetic variation profiles of
six autoimmune diseases: multiple sclerosis (MS), ankylosing spondylitis (AS), autoimmune thyroid disease (ATD),
rheumatoid arthritis (RA), Crohn’s disease (CD), and type 1 diabetes (T1D), as well as five non-autoimmune diseases. We
quantify pair-wise relationships between these diseases and find two broad clusters of autoimmune disease where SNPs
that make an individual susceptible to one class of autoimmune disease also protect from diseases in the other autoimmune
class. We find that RA and AS form one such class, and MS and ATD another. We identify specific SNPs and genes with
opposite risk profiles for these two classes. We furthermore explore individual SNPs that play an important role in defining
similarities and differences between disease pairs. We present a novel, systematic, cross-platform approach to identify allele-
specific relationships between disease pairs based on genetic variation as well as the individual SNPs which drive the
relationships. While recognizing similarities between diseases might lead to identifying novel treatment options, detecting
differences between diseases previously thought to be similar may point to key novel disease-specific genes and pathways.

Citation: Sirota M, Schaub MA, Batzoglou S, Robinson WH, Butte AJ (2009) Autoimmune Disease Classification by Inverse Association with SNP Alleles. PLoS
Genet 5(12): e1000792. doi:10.1371/journal.pgen.1000792

Editor: David B. Allison, University of Alabama at Birmingham, United States of America

Received July 24, 2009; Accepted November 25, 2009; Published December 24, 2009

Copyright: � 2009 Sirota et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Lucile Packard Foundation for Children’s Health, National Institute of General Medical Sciences (R01 GM079719), US
National Library of Medicine (K22 LM008261 and T15 LM007033), Howard Hughes Medical Institute, and Pharmaceutical Research and Manufacturers of America
Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: abutte@stanford.edu

Introduction

Autoimmune diseases share many genetic factors resulting in

similarity of disease mechanisms. For instance the HLA region is

known to be associated with several autoimmune diseases

including T1D, MS, RA as well as others [1,2]. Certain

autoimmune diseases, such as MS and ATD [3], T1D and celiac

disease [4] commonly co-occur in patients [5,6]. Classes of drugs,

for instance steroids, are known to treat groups of inflammatory

and autoimmune conditions such as RA, CD, MS and systemic

lupus erythematosus.

Despite these similarities, there is evidence that points towards

genetic differences between autoimmune diseases. For instance

rs2076530 (A/G), a single nucleotide polymorphism (SNP) in

BTNL2 (butyrophilin-like 2, a MHC class II associated gene), has

been shown to be strongly associated with several autoimmune

diseases such as MS, RA, T1D, sarcoidosis and systemic lupus

erythematosus (SLE) [7–12]. A more in depth analysis shows that

while the G allele of the polymorphism was more frequent among

patients with T1D and RA than healthy controls, the A allele was

more frequent in patients with SLE than in healthy individuals

[12]. This example demonstrates the idea that while a single SNP

might be significantly associated with several disorders, an allele

could make an individual susceptible to one disease, but be

protective of another. Finally we know that despite the common

mechanisms of autoimmune diseases, there are drugs that treat

one autoimmune condition, but unexpectedly worsen another. For

instance infliximab, an anti-TNF agent, has been demonstrated to

offer benefits for the treatment of some autoimmune disorders,

such as RA and AS [13,14], but it fails or even exacerbates the

condition in patients with other disorders such as MS [15].

Similarly interferon-beta, which is widely used to treat MS, has no

effect on RA patients [16].

With multiple genome-wide association studies (GWAS) per-

formed across autoimmune diseases, we have an ideal setup to

study the homogeneity of genetic architectures across autoimmune

disease. By sampling specific locations in the genome, the

technology behind GWAS allows us to quickly and accurately

analyze samples for genetic variations that contribute to disease

predisposition. Since being introduced in 2007, GWAS have

helped identify several hundred common marker alleles that are

associated with over seventy different conditions [17]. Integrative
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meta-analyses have been carried out to analyze several GWAS to

study a single disease of interest such as type II diabetes [18].

Genome-wide association (GWA) data has also been integrated

with gene expression data to prioritize genes for disease association

[19].

In this work, we define a novel concept of a disease variation

profile and carry out comparative analyses to find similarities and

differences in the genetic architectures of common diseases.

Studying genetic variation in autoimmune diseases in particular

allows us to systematically define a disease classification based on

allele-specific relationships. We find individual polymorphisms

where the same alleles are significantly associated with multiple

autoimmune conditions as well as polymorphisms where different

alleles are significantly associated with multiple conditions.

Several measures of association are commonly used to quantify

the relationship between a SNP and a disease phenotype. A p-

value measures how much evidence there is against the hypothesis

that the allele distribution in the control and disease populations is

the same. An odds-ratio is the ratio of the probability that a disease

individual has a certain allele to the probability of a healthy

control having that allele. An odds-ratio of 1 implies that the allele

is equally likely in both groups. An odds-ratio greater than one

implies that the allele is more likely in the disease group. Similarly,

an odds-ratio less than one implies that the allele is less likely in the

disease group. While the odds-ratio doesn’t reflect the sample size

of the study, the width of the confidence interval on the odds-ratio

is reflective of sample size. The odds-ratio furthermore allows us to

specify which allele is associated with the disease and how strong

that association is.

Recent studies explored the genetic relationships between seven

common diseases studied by Wellcome Trust Case Control

Consortium (WTCCC) [20] based on similarities of associated

genes and their pathways [21–23]. Previous approaches use p-

values to measure the significance of the association between a

SNP and a single disease from genome-wide association data, and

compute a measure of similarity between these p-values in pairs of

diseases. While these approaches are able to identify pairs of

diseases that have similar genetic variation profiles based purely on

strength of association of each loci, the metric is not allele-specific,

meaning it does not distinguish between which of the two alleles is

associated with a disease. In our own previous work, we have used

a classifier approach in order to discover similarities in disease

variation profiles [24] by examining a large number of SNPs for

each individual instead of analyzing the significance of individual

SNPs across diseases. While successful in finding similarities

between diseases, the classifier approach requires individual

genotype data to be carried out on the same platform.

In this paper, we present a novel, allele-specific, cross-platform

method for comparing genetic architecture of disease for which

GWA data is available. Our approach relies on the raw summary

statistics of genome-wide association studies and does not require

obtaining individual level genotype data. As a result, our approach

allows for data to be combined across different platforms. We

define a genetic variation score (GVS) for each SNP-disease pair as

a combination of the p-value to represent the strength of

association between the SNP and the disease phenotype and the

odds-ratio to specify which allele is the one associated with the

disease (see Methods). We define a genetic variation profile for a

disease as a vector of the GVS values across all the measured

SNPs. We use the genetic variation profiles to discover allele-

specific relationships between disease pairs.

We apply our method to a combined dataset of two WTCCC

[20,25] studies to uncover positive and negative disease relation-

ships within six autoimmune diseases, multiple sclerosis (MS),

ankylosing spondylitis (AS), autoimmune thyroid disease (ATD),

rheumatoid arthritis (RA), Crohn’s disease (CD), and type 1

diabetes (T1D), and five non-autoimmune diseases, bipolar

disorder (BD), coronary artery disease (CAD), hypertension

(HT), type 2 diabetes (T2D), and breast cancer (BC). Applying

our method to this broad panel, we expected to find all the known

autoimmune diseases clustered similarly. However, we find two

separate classes of autoimmune disease. RA and AS fall into one

class, while MS and ATD into the other. T1D is similar to ATD,

but not MS and therefore is difficult to classify. CD is similar to

none of the other five autoimmune diseases and thus is not further

discussed with the other autoimmune diseases. We identify specific

SNPs and genes with similar and opposite risk profiles for these

two classes of autoimmune disease and suggest differing mecha-

nisms of disease and strategies for future drug development for the

two classes.

Results

In this work, we analyze genome-wide association data across a

set of eleven conditions to find allele-specific similarities and

differences across disease. Our combined dataset includes six

autoimmune diseases (MS, AS, ATD, RA, CA and T1D) and five

non autoimmune diseases (BC, BD, CAD, HT and T2D). We

added independent GWA studies for two autoimmune diseases:

RA from North American Rheumatoid Arthritis Consortium

(NARAC) and the Swedish Epidemiological Investigation of

Rheumatoid Arthritis (EIRA) [26] and MS from the International

Multiple Sclerosis Genetics Consortium (IMSGC) [27]. In order to

be able to compare genetic variation profiles across eleven diseases

on different platforms, we only consider 573 SNPs that are

commonly measured in these datasets (see Methods). The

distribution of these SNPs throughout the genome (Figure S1)

does not exhibit a visible bias. We furthermore carry out several

experiments in order to assess the validity of using a small subset of

SNPs to obtain our findings (see Discussion).

By examining the strength of association of each SNP with each

disease (p-value), we found a set of SNPs which are significantly

associated with all 5 autoimmune diseases in our dataset (Table 1).

Author Summary

In this work, we define a novel concept of a disease
variation profile and carry out comparative analyses to find
similarities and differences in the genetic architectures of
common diseases. Studying genetic variation across
autoimmune disease in particular allows us to systemat-
ically identify allele-specific relationships. We find poly-
morphisms where the alleles are significantly similarly
associated with multiple autoimmune conditions as well as
polymorphisms where alleles are significantly differentially
associated with multiple conditions. We apply this method
to compare genetic variation profiles of six autoimmune
diseases: multiple sclerosis (MS), ankylosing spondylitis
(AS), autoimmune thyroid disease (ATD), rheumatoid
arthritis (RA), Crohn’s disease (CD), and type 1 diabetes
(T1D), as well as five non-autoimmune diseases. We find
two autoimmune disease groups where SNPs that make an
individual susceptible to one class of autoimmune disease
also protect from diseases in the other autoimmune class.
As more genome-wide association data becomes available,
future studies could be done across tens or hundreds of
diseases yielding the commonalities and differences in
genetic architectures across all of human disease.

Inverse Allelic Association in Autoimmune Diseases
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When we examined the odds-ratios for these SNPs, we saw

that individual alleles are oppositely associated with different

autoimmune diseases. Our analysis supports the fact that simple

consideration of p-values as a genetic variation profile of a

disease is not sufficiently representative of the potential disease

mechanisms.

For each disease-SNP pair, we define a new genetic variation

score (GVS) by combining both the uncorrected p-value to capture

the strength of association, and the odds-ratio, to account for

which allele is associated with a given disease (see Methods). For

each disease, a genetic variation profile consists of GVS for all the

SNPs commonly measured across our input GWAS. We use

Pearson correlation to measure allele-specific similarities and

differences between disease pairs. In order to test the significance

of our findings, we compute the false discovery rate (FDR) for the

correlations by comparing the actual distribution of correlations to

that calculated on a randomized dataset (see Methods). To identify

relationships between groups of diseases, hierarchical cluster

analysis is applied to the data using the computed Pearson

correlation coefficients as a distance metric between disease pairs.

In order to confirm our findings, we included additional

independent studies of RA and MS in our analysis [26,27].

The comparison between genetic variation profiles of 11

diseases is shown in Figure 1 (Table S1) with the corresponding

FDR (Table S2). We can see that there are two main groupings of

autoimmune diseases, with T1D showing similarity to both

groupings, and CD to neither. Although CD is an inflammatory

disease affecting the gastrointestinal tract with an autoimmune

component, as we did not see a strong relationship between CD

and the other set of autoimmune diseases in our analysis, we did

not consider it with the rest of the autoimmune diseases in our

further discussion. We also notice that the non-autoimmune

diseases are clustered together. HT, BD, T2D, CAD and BC are

all slightly positively correlated. One implication of the positive

correlations between these diseases is that there might be a

common underlying genetic variation profile of disease. While we

are interested in exploring this notion in the future, we focus our

discussion here on the stronger and more surprising relationships

between autoimmune diseases that we find.

Both RA datasets and AS have similar genetic variation profiles

(Pearson correlation 0.340 and 0.357) and are negatively

correlated with genetic variation profiles of both MS datasets

and ATD (Pearson correlation 20.42 and 20.353). Out of 573

SNPs that are commonly measured in all the datasets, we find a set

of nine SNPs such that one allele predisposes an individual to one

class of autoimmune diseases, but protects from the other class

(Table 2). When a similar analysis was carried out on randomized

null data, over 100 trials, on average less than a single SNP is

found using the same criteria. While this relationship has been

previously established for rs2076530 in BTNL2 in a subset of the

autoimmune diseases [12], we systematically identify all such SNPs

which are significantly associated with at least one disease per class

(Table 2). Some of these regions have previously been associated

with autoimmunity; for example rs10484565 falls in a gene called

TAP2, which encodes a membrane-associated protein that is a

member superfamily of ATP-binding cassette (ABC) transporters.

While mutations in this gene have been previously associated with

ankylosing spondylitis, insulin-dependent diabetes mellitus, and

Grave’s Disease [28–30], the inverse allelic relationship has not

been previously recognized. rs1265048 falls near CDSN and

PSORS1C1 both of which have previously been associated with

susceptibility to psoriasis [31,32]. rs151719 falls in HLA-DMB, an

MHC class II molecule that has been previously associated with

T1D [33]. We hypothesize that there are loci which pre-dispose

individuals to autoimmune disease in general (such as rs1132200 in

TMEM39A in Table 1) and other loci that determine which class

or more specifically which autoimmune disease an individual is

more likely to get (Table 2).

In discovering these two classes of autoimmune disease, we find

positive and negative pair-wise relationships between genetic

Table 1. SNPs significantly associated with RA, AS, T1D, MS, and ATD (p,0.05).

SNP - Allele Gene Symbol Sign of the Odds-Ratio | P-value

RA AS T1D ATD MS

rs1063635 – A LOC100129668 2 6.01E-08 + 1.83E-59 2 8.65E-10 2 8.30E-03 2 9.27E-05

rs1132200 – A TMEM39A 2 2.24E-02 2 1.77E-02 2 8.28E-03 2 4.02E-03 2 4.56E-03

rs1634717 – A 2 1.80E-04 + 6.00E-13 + 4.94E-14 + 1.68E-06 + 3.34E-03

rs204991 – C GPSM3 2 3.67E-08 2 9.34E-13 + 9.40E-24 + 5.04E-11 2 1.70E-03

rs2076530 – G BTNL2 + 3.50E-57 + 8.76E-15 + 2.64E-14 2 3.93E-07 2 3.00E-19

rs2242655 – C C6orf47 + 1.21E-03 + 5.75E-23 + 1.53E-05 2 1.13E-02 2 7.42E-05

rs2248462 – A 2 1.33E-03 + 1.09E-99 2 5.00E-25 2 1.45E-05 2 5.94E-19

rs2299851 – T MSH5 + 4.91E-02 + 1.10E-22 + 1.04E-04 2 4.69E-02 2 5.52E-06

rs2517646 – G TRIM10 2 1.98E-04 2 2.29E-03 2 1.86E-06 2 1.26E-02 + 7.59E-06

rs2844463 – T BAT3 2 6.40E-07 2 1.56E-04 + 1.47E-05 2 1.15E-02 + 3.70E-02

rs3129953 – T BTNL2 2 2.54E-11 2 2.13E-09 + 1.47E-40 + 2.66E-15 2 4.18E-05

rs3135363 – C 2 5.69E-22 2 7.21E-04 + 9.81E-12 + 4.46E-15 2 5.11E-07

rs4428528 – C 2 1.01E-18 2 2.19E-03 + 8.16E-23 + 7.11E-12 2 1.22E-03

rs887464 – A PSORS1C3 + 3.20E-03 + 7.89E-09 + 7.43E-28 + 2.03E-05 2 7.28E-10

rs9267954 – T + 2.89E-38 + 3.27E-13 + 4.40E-12 2 2.50E-02 2 2.17E-14

SNPs that are significantly associated with all five autoimmune diseases (based on p-values previously reported by the WTCCC). While these SNPs are commonly
significantly associated with five autoimmune diseases in our dataset, by examining the signs of the odds-ratios we see that for the same SNP, often different alleles are
associated with different diseases.
doi:10.1371/journal.pgen.1000792.t001

Inverse Allelic Association in Autoimmune Diseases
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variation profiles of diseases. In this paper, we present the top ten

disease pairings that are significantly correlated (FDR,0.01) from

our dataset: NARAC RA and ATD (Pearson correlation 20.433),

WTCCC RA and ATD (Pearson correlation 20.353), NARAC

RA and WTCCC MS (Pearson correlation 20.367), WTCCC RA

and WTCCC MS (Pearson correlation 20.42), AS and WTCCC

MS (Pearson correlation 20.322), AS and IMSGC MS (Pearson

correlation 20.256), WTCCC MS and T1D (Pearson correlation

20.229), T1D and ATD (Pearson correlation 0.49), WTCCC RA

and NARAC RA (Pearson correlation 0.935), and WTCCC MS

and IMSGC MS (Pearson correlation 0.717) (Table S1, highlight-

ed in red).

Figure 1. Disease heatmap based on genetic variation profiles. This diagram shows correlations between disease genetic variation profiles.
Positive relationships between a pair of diseases are shown in brown, negative relationships are shown in purple. The diseases highlighted in blue
have an autoimmune component. Hierarchical clustering using these correlations as a distance metric is shown on the left. Approximately Unbiased
(AU) probability values (%) for each cluster indicating how strongly the cluster is supported by data are shown in red. Clusters with AU larger than
95% are strongly supported by data.
doi:10.1371/journal.pgen.1000792.g001

Table 2. SNPs with opposite risk profiles in two autoimmune classes.

SNP - Allele Gene Symbol Genetic Variation Score (GVS)

RA (NARAC) RA AS T1D ATD MS (IMSGC) MS

rs11752919 - C ZSCAN23 23.48 23.21 29.39 1.10 0.70 3.25 2.99

rs3130981 - A CDSN 20.46 21.00 29.47 24.94 0.33 10.00 13.41

rs151719 - G HLA-DMB 26.71 24.77 21.08 213.63 0.34 8.58 17.76

rs10484565 - T TAP2 25.52 8.37 1.34 15.74 21.36 20.56 20.30

rs1264303 - G VARS2 11.51 7.36 18.76 0.89 21.76 21.85 21.75

rs1265048 - C CDSN 6.59 2.97 50.13 6.34 20.85 22.39 24.16

rs2071286 - A NOTCH4 5.30 0.78 6.42 4.04 20.03 21.89 22.45

rs2076530 - G BTNL2 67.49 56.46 14.06 13.58 26.41 29.50 218.52

rs757262 - T TRIM40 14.58 9.11 6.27 1.56 20.79 22.05 27.34

SNPs such that one allele predisposes an individual to one class of autoimmune diseases (RA and AS), but protects from the other class (MS and ATD) or vice versa. Each
SNP in this set has a significant association (p,0.05) with at least one disease per class. The SNPs where the minor allele has a negative odds-ratio (protective) are
underlined to show the separation more clearly.
doi:10.1371/journal.pgen.1000792.t002

Inverse Allelic Association in Autoimmune Diseases
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Negative Disease–Disease Relationships
A negative correlation between two genetic variation profiles

means that while the two phenotypes have strong association with

the same SNPs, alleles are oppositely responsible for predisposing

an individual to each of the diseases. Therefore if two phenotypes

have negatively correlated genetic variation profiles, some alleles

that are susceptible to one phenotype are protective of the other

and vice versa.

The strongest negatively correlated disease pair is ATD and the

NARAC RA study with a correlation score of 20.433. This

finding is supported by a strong negative correlation between ATD

and the WTCCC RA genetic variation profiles (Pearson

correlation 20.353). The average lowest negative correlation on

randomized data from 100 trials was 20.13 with a standard

deviation 0.09. RA is a chronic, systemic autoimmune disorder in

which the immune system attacks the joints, causing joint

inflammation and destruction. ATD, also referred to as Grave’s

Disease, is caused by an antibody-mediated autoimmune reaction

resulting in neck swelling, bulging eyes and hyperthyroidism.

There is a known association between rheumatologic and thyroid

disorders [34]. Early studies of autoimmune thyroid disease and

thyroid auto-antibodies in rheumatoid arthritis patients suggest

that there may be a common genetic link between RA and

autoimmune thyroid disease [35,36]. More recently it has been

suggested that the abnormalities of the joints and thyroid gland are

related most probably due to a genetic predisposition determined

by the affiliation to a certain HLA type, most often HLA-DR

[37–39]. We find a set of SNPs which are strongly associated with

both ATD and RA but when we look at the allele-specific

genotype counts for these loci, we see that while one of the alleles is

more common in RA patients, the other is more common in ATD

patients. The negative association trend between WTCCC RA

and ATD and the individual SNPs contributing to the correlation

are shown in Figure 2. Those include polymorphisms in

complement factor B (CFB), nuclear envelope membrane protein

(NRM), heat shock protein (HSPA1B) as well as others. Similarly,

the significant negative association trend between NARAC RA

and ATD is shown in Figure S2.

Multiple sclerosis (WTCCC) and rheumatoid arthritis (WTCCC)

are significantly negatively correlated (Pearson correlation 20.42,

Figure 3). This finding is supported by a significant negative

correlation between NARAC RA and the WTCCC MS genetic

variation profiles (Pearson correlation 20.367, Figure S3) as well as

a weaker negative correlations between WTCCC RA and IMGSC

MS as well as NARAC RA and IMSGC MS genetic variation

profiles (Pearson correlations 20.204 and 20.141 respectively).

Multiple sclerosis is an autoimmune condition in which the immune

system attacks the myelin sheaths of the central nervous system. We

have not been able to find any recorded co-occurrence of the two

disorders from previous research. With the exception of the HLA

region there has been very little work linking genetic susceptibility of

these two immunological disorders. We identify a set of SNPs for

which an allele predisposes an individual to RA while being

protective of MS and vice versa. The negative association trend

between RA and MS and the individual SNPs contributing to the

correlation are shown in Figure 3. Those include polymorphisms in

HLA-B associated transcript 3 (BAT3), E74-like factor 1 (ELF1),

HLA-DMB, VARS2, BTNL2, TRIM40, ZSCAN23 and CDSN.

Similarly, the genetic variation profiles of AS and WTCCC MS

are negatively correlated (Pearson correlation 20.322, Figure 4).

Figure 2. Genetic Variation Scores for RA (WTCCC) and ATD. Genetic Variation Scores (GVS) for SNPs that are significantly associated with
both diseases (p,0.05) are shown in black. The non-significant GVS are shown in gray. The best fit linear model of the data is shown in red.
doi:10.1371/journal.pgen.1000792.g002

Inverse Allelic Association in Autoimmune Diseases
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This finding is supported by a significant negative correlation

between AS and the IMSGC MS genetic variation profiles

(Pearson Correlation -0.256, Figure S4). Ankylosing spondylitis is a

systemic rheumatic disease resulting in chronic inflammation of

the spine and the sacroiliac joints. Several individual loci have

been linked to both disorders but overall association has not been

previously established. For instance, while association of the IL23R

gene with inflammatory bowel disease, psoriasis and ankylosing

spondylitis [25] has been shown before, only recently has its

involvement also been linked to MS [40]. We identify a set of

SNPs for which one allele predisposes an individual to AS while

being protective of MS, and vice versa. These include polymor-

phisms in mediator of DNA-damage checkpoint 1 (MDC1), HLA-

B associated transcript 2 (BAT2), as well as others.

Positive Disease–Disease Relationships
A positive correlation between two genetic variation profiles

means that not only the same SNPs, but also the same alleles lead

an individual to be more susceptible to both phenotypes.

The highest non-obvious positive correlation of 0.481 is

between T1D and ATD. The average highest positive correlation

on randomized data from 100 trials was 0.12 with a standard

deviation 0.08. The positive association trend as well as individual

data points can be seen on Figure 5. T1D is an autoimmune

disease that results in destruction of insulin-producing beta cells of

the pancreas. Several recent studies reported shared variants

among these autoimmune disorders [41,42]. There is increasing

evidence that autoimmune thyroid disease is frequent in patients

with T1D [43,44]. Co-occurrence of T1D and ATD in the same

patient or family has also been studied from the epidemiological

perspective resulting in finding several common susceptibility

genes [45]. Two loci that have previously been reported to be

associated with T1D were recently shown to also be significant risk

factors for the co-occurrence of ATD and T1D in Japanese

individuals [46]. We identify over a dozen other loci, mostly in the

HLA region, which are commonly associated between the two

diseases.

The overall strongest positive correlations, as expected, are

those between the two RA (WTCCC and NARAC) and the two

MS (WTCCC and IMSGC) datasets (Pearson correlation

coefficients of 0.935 and 0.717 respectively), which confirms our

hypothesis. Figures S5 and Figure S6 show the strong positive

correlation between the genetic variation profiles of the two RA

and MS studies respectively. This result supports the proposed

design for a disease-specific genetic variation profile and the

comparison metric used in the analysis.

Discussion

In this work, we present a novel notion of a genetic variation

profile and apply it to carry out comparative analysis of a set of

eleven diseases. Half of these diseases are known to have an

autoimmune component including RA, T1D, AS, MS and ATD.

Our analysis yields several significant positive and negative

relationships between these diseases. We identify two broader

classes of autoimmune disease (RA and AS fall into one, and MS

and ATD into the other) as well as a set of SNPs which when

predisposing an individual to one class of the diseases protects

from the second. We explore individual SNPs and genes that play

an important role in defining similarities and differences between

disease pairs.

Figure 3. Genetic Variation Scores for RA (WTCCC) and MS (WTCCC). Genetic Variation Scores (GVS) for SNPs that are significantly associated
with both diseases (p,0.05) are shown in black. The non-significant GVS are shown in gray. The best fit linear model of the data is shown in red.
doi:10.1371/journal.pgen.1000792.g003

Inverse Allelic Association in Autoimmune Diseases
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We find that p-values, as a measure of association, fail to

capture which allele is susceptible and which is protective and are

thus not a good metric for studying similarities and differences in

disease genetic variation profiles. We introduce a novel notion of a

genetic variation score (GVS) which captures both the strength of

association of a given SNP and whether an allele is protective or

susceptible. Using this measure we are able to identify new positive

and negative relationships between disease pairs as well as identify

individual SNPs which drive the relationships such as previously

reported rs2076530 in BTNL2, in which the G allele predisposes to

RA, AS and T1D, but protects from MS and ATD [12].

We have shown that studying genetic variation across

autoimmune diseases in particular allows us to systematically

identify allele-specific pleiotropic effects. We find that the same

allele can be associated with multiple phenotypes. A likely

explanation for the same SNP allele being associated with different

phenotypes is that it interacts differentially with genetic and

environmental factors that change the biological context of the

SNP in different individuals. More importantly, we find that

certain alleles can be disease-associated in one setting and disease-

protective in another. We hypothesize that there are some loci

which pre-dispose individuals to disease in general, and other loci

that determine which class or more specifically which disease an

individual is more likely to get.

More specifically, we find that certain MHC polymorphisms

predispose individuals to one class of autoimmune disease but are

protective against the other (Table 2). We hypothesize that this

could be due to their involvement in peptide-MHC loading. For

instance HLA-DM (rs151719), a chaperone binder for nascent

MHC molecules, could differentially modulate peptide binding

and thus antigen presentation. TAP2 (rs10484565) is also involved

in transporting peptides from the cytoplasm to the ER to couple

them with nascent MHC molecules. Both HLA-DM and TAP2 are

involved in peptide-MHC loading, which could explain their

diametric effects. These MHC chaperone binders might load

pathogenic peptides for one disease but not another. CDSN

(rs1265048) is also located in the MHC on chromosome 6, but has

not been described to alter antigen presentation.

Phenotypic expression of variant alleles is influenced differen-

tially by environment, stochastic events, and interactions with

multiple other genetic loci. Traditional SNP analysis does not

account for gene interactions, however gene interactions are

instrumental for understanding principles for how, when and why

genetic variation is phenotypically expressed [47]. We show in this

report that genetic variants are expressed differentially, with

respect to human disease, presumably due to the combined action

of different alleles of several genes. However, the molecular basis

of such gene interactions remains only speculative [48]. Pheno-

typic expression depends on the environmental and genetic

context of a biological system. Borrowing from the literature in

microbial systems biology, these can be viewed as constraints on

the biological system in question [49]. The environmental and

genetic constraints of one disease may be highly inconsistent with

another. Though they share a common SNP, the particular allele

may act as an ‘on switch’ or alternatively an ’off’ switch in making

an individual more or less susceptible to disease.

Classification of diseases based on allelic differences may be

used in the future to illuminate potential new therapies. Certain

drugs like anti-TNF have positive effects in RA, psoriasis and

ankylosing spondylitis as compared to MS suggesting that certain

Figure 4. Genetic Variation Scores for AS and MS (WTCCC). Genetic Variation Scores (GVS) for SNPs that are significantly associated with both
diseases (p,0.05) are shown in black. The non-significant GVS are shown in gray. The best fit linear model of the data is shown in red.
doi:10.1371/journal.pgen.1000792.g004
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molecules may have diametric roles in different diseases [50].

Assuming specific alleles of genes that are useful for classifying

diseases reflect an underlying biological process, then it follows

that drugs useful for treating any particular disease may be useful

for treating another disease in its class. Thus, integration of clinical

correlates with genomic sub-classification of diseases could be a

useful and relatively straightforward strategy for personalized

medicine.

There are a few limitations to our current approach that should

be recognized. The data for the analysis is obtained from several

types of arrays. While our approach allows for data analysis across

multiple platforms, it is dependent on the intersection of coverage

between all those platforms. The overlap coverage in terms of

SNPs between all platforms that we currently analyze is minimal

(573 SNPs). A larger overlap could be obtained by using linkage

disequilibrium and taking advantage of SNPs in the same

haplotype blocks or by applying imputation techniques, but we

chose to rely solely on the data available to us, until confidence in

imputation methods improves. In addition while our current

approach relies solely on the summary statistics data, introducing

an imputation step in our pipeline would require us to obtain and

incorporate individual genotype data, which we see as a drawback.

In order to assess the validity of using a small subset of SNPs to

obtain our findings, we repeated the experiment considering only

the diseases (RA, HT, T1D, T2D, CAD, CD and BD) for which

the genotyping was done using Affymetrix GeneChip 500K

Mapping Array Set across nearly 500,000 measured SNPs. This

allowed us to compute similarities between genetic variation

profiles using all the SNPs on the array. We find that the pair-wise

correlations resulting from this analysis are very similar to those

obtained using only the 573 overlapping SNPs (Pearson correla-

tion 0.88). This also holds for the diseases (MS, AS, ATD and BC)

genotyped using the custom Illumina Infinium array across nearly

15,000 measured SNPs (Pearson correlation 0.98). Therefore we

show that the pair-wise disease correlations that we compute using

the common subset of 573 SNPs can be extrapolated to a genome-

wide scale to draw conclusions regarding disease classification.

The overlap problem will improve as more data on more common

platforms becomes available in the future, and as more individuals

are tested using whole genome sequencing. We also acknowledge

that there are other more sophisticated statistical methods to

compare genetic architectures and to cluster genetic variation

profiles, however we picked a simple parsimonious approach to

test our hypothesis.

In conclusion, we present a novel, systematic, cross-platform

methodology to identify allele-specific relationships between

disease pairs based on genetic variation as well as the individual

SNPs which drive the relationships. We apply this method to

compare genetic variation profiles of eleven diseases across several

independent studies. We find two autoimmune disease groups

where SNP alleles that make an individual susceptible to one class

of autoimmune disease also protect from diseases in the other

autoimmune class. Further integration of different types of

biomedical data will improve our ability to conjure biological

explanations for findings from GWAS. For instance, correlating

genetic variation to gene expression might help interpret the

molecular and genetic complexity of human disease [51]. As more

GWA data becomes available, our method could be applied across

tens or hundreds of diseases yielding the commonalities and

differences in genetic architectures across all of human disease.

Figure 5. Genetic Variation Scores for ATD and T1D. Genetic Variation Scores (GVS) for SNPs that are significantly associated with both
diseases (p,0.05) are shown in black. The non-significant GVS are shown in gray. The best fit linear model of the data is shown in red.
doi:10.1371/journal.pgen.1000792.g005
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Methods

The data for our analysis was obtained from two separate

Wellcome Trust Case Control Consortium (WTCCC) studies: a

GWA study of 2,000 cases and 3,000 shared controls for 7

complex human diseases (BD, CAD, CD, HT, RA, T1D and

T2D) carried out with the Affymetrix GeneChip 500K Mapping

Array Set, which comprises 500,568 SNPs and an association

study of 1,500 common controls 1,000 cases for each of BC, ATD,

AS, and MS carried out with a custom-made Illumina Infinium

array with 14,436 non-synonymous SNPs. We introduce a second

rheumatoid arthritis (1522 cases and 1850 controls) [26] as well as

another multiple sclerosis (931 cases and 2431 controls) [27] GWA

datasets to our analysis to further support our findings. The

rheumatoid arthritis study combines data from North American

Rheumatoid Arthritis Consortium (NARAC) and the Swedish

Epidemiological Investigation of Rheumatoid Arthritis (EIRA) to

genotype 317,503 SNPs using several versions of Illumina

Infinium BeadChips. 297,086 SNPs that passed filters in both

the NARAC and EIRA sample collections were merged into a

single dataset for analysis. The MS study, carried out by the

International Multiple Sclerosis Genetics Consortium (IMSGC)

examined a set of 334,923 SNPs using Affymetrix GeneChip 500K

Mapping Array Set.

We used the pre-computed p-values from the above experi-

ments in our analysis. The smaller and larger WTCCC studies

used the snpMatrix [52] and the PLINK [53] programs

respectively to calculate a p-value for the strength of association

between a SNP and a disease. For the independent RA analysis

PLINK program [53] was used to carry out Cochran-Mantel-

Haenszel stratified analysis and for the independent MS analysis

transmission disequilibrium test was applied using the Whole-

genome Association Study Pipeline (WASP) as well as PLINK

[53]. The odds-ratios were re-computed using the genotype counts

provided in the summary statistics for each experiment.

We start out by finding the SNPs common to both experiments.

Each SNP is mapped to Entrez GeneID and corresponding gene

symbol by querying dbSNP. SNPs that do not fall within a gene

are not assigned one. The intersection of the two WTCCC studies

as well as the two additional GWA datasets results in a set of 573

SNPs, which we use for our analysis. The distribution of these

SNPs in the genome is shown in Figure S1. We confirm that each

of the studies integrated in the pipeline have the data encoding on

the same DNA strand by keeping track which allele was measured

and comparing the counts of individuals with each measured allele

for the control populations. For each SNP we consider the disease

associations with respect to the minor allele. Please note that in

some studies, the major allele is actually the risk allele therefore

what we refer to as risk and protective may be different from the

published studies of these phenotypes.

We define the notion of a genetic variation profile as a

combination of log-odds scores and p-values for each SNP

measuring allele-specific association between the SNP and each

of the eleven diseases in the combined dataset. Using p-values

alone as proposed previously by Torkamani et al. [21] does not

capture which allele is associated with a given disease, as shown in

Table 1. Log odds-ratios alone do not account for significance of

association due to sample size. A typical relationship between log

odds-ratios and log p-values are shown by a volcano plot (see

Figure S7). The alleles for which the log odds-ratio is negative

signify that the allele tested is less likely to appear in a disease

individual (left half of the plot). The alleles for which the log odds-

ratio is positive signify that the allele tested is more likely to appear

in a disease individual (right half of the plot). From a volcano plot

we can also see that p-values and odds-ratios are not necessarily

correlated. One can envision a situation where a rare allele has a

high magnitude odds-ratio with respect to a disease phenotype, but

a poor p-value. These values fall into the lower corners of a

volcano plot (Figure S7). Similarly, if the sample size is very large,

a SNP that has a small effect might have a significant p-value, but

an odds-ratio close to 1. Such values would fall into the top center

of a volcano plot (Figure S7). A combination of p-values and odds-

ratios is needed in order to capture the strength and direction of

association between a SNP and a disease. Therefore we propose

combining these two measures of association to represent a disease

genetic variation profile. More specifically for each disease d and

SNP s, we define a genetic variation score GVS[d,s] where d

(number of diseases) = 1…n and s (number of SNPs) = 1…m:

GVS[d,s] = sign(log(odds-ratio[d,s]))*(log(p-value[d,s])).

With respect to the minor allele, an odds-ratio greater than one

implies that the minor allele is more likely in the disease group. An

odds-ratio less than one implies that the minor allele is less likely in

the disease group, which means that the major allele is more likely

in the disease group. Therefore by looking at the sign of the log of

the odds-ratio we can specify which allele is the one associated

with a disease. We capture the significance and strength of that

association by multiplying the sign of the log of the odds-ratio by

the log of the p-value. After computing the GVS for each disease-

SNP pair, we define a genetic variation profile for each disease as a

vector of the GVS for all the measured SNPs. This allows us to

capture strength of disease association across multiple SNPs in an

allele-specific fashion.

As a similarity metric between diseases, we compute the Pearson

correlation between disease-specific genetic variation profiles.

Pearson correlation, ranging from 21 to +1, reflects the strength

of a linear relationship between two variables. The correlation

coefficient is positive between two diseases if the GVS for both

diseases tend to be simultaneously greater than, or simultaneously

less than, their respective means. The correlation coefficient is

negative if GVS for a pair of diseases tend to lie on opposite sides of

their respective means. Although other approaches might be

considered more robust to outliers, the method we choose to apply

relies on the actual GVS scores as opposed to a ranked ordering of

them. Since GVS scores directly reflect the strength of association

between SNPs and disease, computing a similarity metric on the

rank ordering of GVS would result in information loss. Multiple

hypothesis testing was not applied to the p-values prior to the

calculation of GVS to keep our methodology simple, since scaling

the p-values by a constant amount (such as in Bonferroni correction)

would not change our calculated correlation coefficients.

In order to measure significance of the computed correlation

coefficients, we re-compute the correlations on randomized data

and compute a false discovery rate (FDR) for each actual

correlation. Specifically we create the randomized distribution

by shuffling SNP labels for each disease and re-compute the pair-

wise Pearson correlations between the disease profiles. The

randomization is carried out 100 times. The density plot

comparison between the actual distribution of correlation

coefficients and the ones generated from randomized data are

shown in Figure S8.

When computing the false discovery rates, we consider the

positive and the negative correlations separately. For each actual

correlation score, we count the fraction of top correlations from all

randomizations which are at least as extreme as the one we are

examining. The false discovery rates based on the randomized

distribution are reported in Table S2. We conservatively consider

a correlation between two disease profiles to be significant at a

false discovery rate of 0.01.

Inverse Allelic Association in Autoimmune Diseases
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To identify disease classes, hierarchical cluster analysis is

applied to the data using the computed Pearson correlation

coefficients as a distance metric between disease pairs. Initially,

each disease is assigned to its own cluster. The algorithm proceeds

iteratively, at each stage joining the two most similar clusters, until

there is just a single cluster left. We use the Pvclust R package [54]

to compute a bootstrap analysis of the clusters. The bootstrap

probability of a cluster corresponds to the frequency with which

the cluster appears in bootstrap samples of the data. Approxi-

mately Unbiased (AU) probability values are computed using

bootstrap samples of various sizes and indicate how strongly the

cluster is supported by data (AU.95%).

Supporting Information

Figure S1 Distribution of Commonly Measured SNPs. The

distribution of the genomic locations of 573 SNPs that are

commonly measured across all the datasets we examine for our

analysis.

Found at: doi:10.1371/journal.pgen.1000792.s001 (0.17 MB PDF)

Figure S2 Genetic Variation Scores for RA (NARAC) and ATD

Datasets. Genetic Variation Scores (GVS) for SNPs that are

significantly associated with both datasets (p,0.05) are shown in

black. The non-significant GVS are shown in gray. The best fit

linear regression model of the data is shown in red.

Found at: doi:10.1371/journal.pgen.1000792.s002 (0.56 MB PDF)

Figure S3 Genetic Variation Scores for RA (NARAC) and MS

(WTCCC) Datasets. Genetic Variation Scores (GVS) for SNPs

that are significantly associated with both datasets (p,0.05) are

shown in black. The non-significant GVS are shown in gray. The

best fit linear regression model of the data is shown in red.

Found at: doi:10.1371/journal.pgen.1000792.s003 (0.64 MB PDF)

Figure S4 Genetic Variation Scores for MS (IMSGC) and AS

Datasets. Genetic Variation Scores (GVS) for SNPs that are

significantly associated with both datasets (p,0.05) are shown in

black. The non-significant GVS are shown in gray. The best fit

linear regression model of the data is shown in red.

Found at: doi:10.1371/journal.pgen.1000792.s004 (0.56 MB PDF)

Figure S5 Genetic Variation Scores for WTCCC and IMSGC

MS Datasets. Genetic Variation Scores (GVS) for SNPs that are

significantly associated with both datasets (p,0.05) are shown in

black. The non-significant GVS are shown in gray. The best fit

linear regression model of the data is shown in red.

Found at: doi:10.1371/journal.pgen.1000792.s005 (0.68 MB PDF)

Figure S6 Genetic Variation Scores for WTCCC and NARAC

RA Datasets. Genetic Variation Scores (GVS) for SNPs that are

significantly associated with both datasets (p,0.05) are shown in

black. The non-significant GVS are shown in gray. The best fit

linear model of the data is shown in red.

Found at: doi:10.1371/journal.pgen.1000792.s006 (0.70 MB PDF)

Figure S7 Volcano Plot (log-odds vs. log p-values) for RA

(WTCCC). This plot shows the typical relationship between log-

odds ratios and log p-values for an association study. There is no

clear relationship between the two measures, meaning that a SNP

with a good log-odds ratio, might have a non-significant p-

value and a SNP with a significant p-value might have a small

odds-ratio.

Found at: doi:10.1371/journal.pgen.1000792.s007 (0.18 MB PDF)

Figure S8 Randomization based on Genetic Variation. Distri-

bution of correlation scores between pairs of diseases. The

distribution based on actual data is shown in red. The distribution

of correlations based on randomized data is shown in blue. These

are used to compute the false discovery rate for individual pair-

wise disease correlations which are presented in Table S2.

Found at: doi:10.1371/journal.pgen.1000792.s008 (0.16 MB PDF)

Table S1 Pair-wise disease correlations based on Disease

Genetic Variation profiles. Values shown in red indicate FDR

less than or equal to 0.01.

Found at: doi:10.1371/journal.pgen.1000792.s009 (0.05 MB

DOC)

Table S2 False discovery rates (FDR) based on randomized

data. Values shown in red indicate FDR less than or equal to 0.01.

Found at: doi:10.1371/journal.pgen.1000792.s010 (0.04 MB

DOC)
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