Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Bromophenyl)-2-methyl-2,3-dihydroguinazolin-4(1H)-one

Mei-Mei Zhang,^a Ke Yang^b and Xiang-Shan Wang^b*

^aKey Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou, Jiangsu 221116, People's Republic of China Correspondence e-mail: xswang1974@yahoo.com

Received 27 March 2010; accepted 4 April 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.087; data-to-parameter ratio = 13.1.

In the title compound, $C_{15}H_{13}BrN_2O$, the pyrimidine ring adopts a skew boat conformation. The amino H atom forms an intermolecular hydrogen bond with the carbonyl O atom of an adjacent molecule, forming an inversion dimer. Another lone pair of electrons on the same carbonyl O atom acts as acceptor for another $N-H \cdots O$ intermolecular hydrogen bond with a neighbouring molecule, forming chains along the c axis.

Related literature

For biological properties of quinazolinone derivatives, see: Alagarsamy et al. (2006, 2007); Hwang et al. (2008); Na et al. (2008); Nandy et al. (2006). For related structures, see: Wang et al. (2008); Zhang et al. (2009).

Experimental

Crystal data

C15H13BrN2O $M_r = 317.18$ Monoclinic, $P2_1/c$ a = 12.2106 (3) Å b = 9.0507 (2) Å c = 12.4046 (3) Å $\beta = 101.719 (1)^{\circ}$

V = 1342.31 (5) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 3.06 \text{ mm}^{-1}$ T = 296 K0.39 \times 0.31 \times 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.343, T_{\max} = 0.801$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.087$	
S = 1.05	
2369 reflections	
181 parameters	
2 restraints	

16905 measured reflections 2369 independent reflections 2068 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.025$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.86 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O1^{i}$ $N2 - H2 \cdots O1^{ii}$	0.85 (1) 0.85 (1)	2.08 (1) 2.04 (1)	2.932 (3) 2.870 (3)	179 (3) 164 (3)
			1	

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Natural Science Foundation (grant No. 08KJD150019) and the Oing Lan Project (grant No. 08QLT001) of the Jiangsu Education Committee for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2270).

References

- Alagarsamy, V., Giridhar, R., Yadav, M. R., Revathi, R., Ruckmani, K. & De Clercq, E. (2006). Indian J. Pharm. Sci. 68, 532-535.
- Alagarsamy, V., Raja, S. V. & Dhanabal, K. (2007). Bioorg. Med. Chem. 15, 235-241
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hwang, S. H., Rait, A., Pirollo, K. F., Zhou, Q., Yenugonda, V. M., Chinigo, G. M., Brown, M. L. & Chang, E. H. (2008). Mol. Cancer Ther. 7, 559-568.
- Na, Y. H., Hong, S. H., Lee, J. H., Park, W.-K., Baek, D.-J., Koh, H. Y., Cho, Y. S., Choo, H. & Pae, A. N. (2008). Bioorg. Med. Chem. 16, 2570-2578.
- Nandy, P., Vishalakshi, M. T. & Bhat, A. R. (2006). Indian J. Heterocycl. Chem. 15 293-294
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, H.-L., Yang, X.-H. & Wu, M.-H. (2008). Acta Cryst. E64, o2325.
- Zhang, G.-F., Ma, Z. & Yang, X.-H. (2009). Acta Cryst. E65, 034-035.

supplementary materials

Acta Cryst. (2010). E66, o1069 [doi:10.1107/S1600536810012584]

2-(4-Bromophenyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one

M.-M. Zhang, K. Yang and X.-S. Wang

Comment

The synthesis of quinazolinone derivatives has been the focus of great interest, because it was reported that its derivatives possessed a broad spectrum of biological properties. Some of these activities include antidepressant (Na *et al.*, 2008), anticancer (Hwang *et al.*, 2008), anti-inflammatory (Alagarsamy, *et al.*, 2007), antibacterial (Alagarsamy *et al.*, 2006), and antitubercular activity (Nandy *et al.*, 2006). The title compound may be used as a new precursor for obtaining bioactive molecules. We report here the crystal structure of the title compound, (I).

In the title molecule the pyrimidine ring of the quinazolinone moiety is slightly distorted and adopts a skew conformation (Fig. 1). The atoms C1 and N1 deviate from the basal plane defined by the atoms C2/C3/C8/N2 by 0.631 (4) and 0.222 (4) Å, respectively. Similar structures were observed in the structures of 2-(4-chloroanilino)-3-(2-hydroxyethyl)-quinazolin-4(3H)-one (Wang *et al.*, 2008) and 3-(2-hydroxyethyl)-2-(*p*-tolylamino)-quinazolin-4(3*H*)-one (Zhang *et al.*, 2009). In (I), the basal plane of the pyrimidine ring is nearly parallel to the phenyl ring C3/C4/C5/C6/C7/C8, forming a dihedral angle of 4.5 (2)°, and is nearly perpendicular to another 4-bromophenyl ring, forming a dihedral angle of 82.2 (1)°.

Intermolecular N1—H1…O1 hydrogen bonds (Table 1) are formed between the amino and carbonyl groups, and link the molecules forming dimers (Fig. 2). Another intermolecular N2—H2…O1 hydrogen bond links the neighbouring molecules forming polymeric chains along the *c*-axis.

Experimental

The title compound was prepared by the reaction of 2-aminobenzamide (0.272 g, 2 mmol) and 4'-bromoacetophenone (0.398 g, 2 mmol) in the presence of iodine (0.026 g) in tetrahydrofuran at 323 K for 6 h (yield 86%, m.p. 494–496 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a dimethylformamide solution.

Refinement

The H atoms bonded to C atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.93 and 0.96 Å, for aryl and methyl H atoms, respectively; the H atoms bonded to N atoms were allowed to refine. The $U_{iso}(H)$ were allowed at $1.2U_{eq}$ (parent atoms). The final difference map was essentially featurless with the residual electron density located in the close proximity of the Br1 atom. **Figures**

Fig. 1. The molecular structure drawing for (I) showing 30% probability of displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The molecular packing diagram of (I).

F(000) = 640

 $\theta = 2.8 - 27.1^{\circ}$

 $\mu = 3.06 \text{ mm}^{-1}$ T = 296 K

Block, colourless

 $0.39 \times 0.31 \times 0.07 \text{ mm}$

 $D_{\rm x} = 1.570 {\rm ~Mg} {\rm ~m}^{-3}$

Melting point = 494–496 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 7144 reflections

2-(4-Bromophenyl)-2-methyl-2,3-dihydroquinazolin-4(1H)-one

Crystal data $C_{15}H_{13}BrN_{2}O$ $M_r = 317.18$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.2106 (3) Å b = 9.0507 (2) Å c = 12.4046 (3) Å $\beta = 101.719$ (1)° V = 1342.31 (5) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2369 independent reflections
Radiation source: fine-focus sealed tube	2068 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.343, T_{\max} = 0.801$	$k = -10 \rightarrow 10$
16905 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.087$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0402P)^2 + 1.4299P]$ where $P = (F_o^2 + 2F_c^2)/3$
2369 reflections	$(\Delta/\sigma)_{max} < 0.001$
181 parameters	$\Delta \rho_{max} = 0.89 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{min} = -0.86 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.39200 (3)	0.15530 (4)	0.53610(3)	0.06231 (16)
01	0.12331 (16)	0.5903 (2)	-0.02983 (14)	0.0438 (5)
N2	0.14117 (19)	0.7611 (2)	0.27005 (18)	0.0356 (5)
C2	0.1400 (2)	0.6296 (3)	0.0687 (2)	0.0331 (6)
C10	0.1575 (2)	0.4972 (3)	0.3192 (2)	0.0305 (5)
N1	0.07053 (18)	0.5872 (3)	0.13329 (17)	0.0341 (5)
C15	0.1462 (2)	0.4648 (3)	0.4258 (2)	0.0423 (6)
H15A	0.0918	0.5136	0.4550	0.051*
C8	0.2278 (2)	0.7955 (3)	0.2193 (2)	0.0339 (6)
C7	0.3078 (2)	0.9022 (3)	0.2615 (2)	0.0430 (7)
H7A	0.3047	0.9501	0.3271	0.052*
C11	0.2387 (2)	0.4209 (3)	0.2788 (2)	0.0371 (6)
H11A	0.2471	0.4391	0.2071	0.045*
C3	0.2318 (2)	0.7284 (3)	0.1177 (2)	0.0342 (6)
C9	-0.0294 (2)	0.6307 (3)	0.2795 (2)	0.0418 (6)
H9A	-0.0752	0.6953	0.2278	0.050*
H9B	-0.0224	0.6699	0.3525	0.050*
Н9С	-0.0633	0.5346	0.2760	0.050*
C1	0.0863 (2)	0.6182 (3)	0.2514 (2)	0.0312 (5)
C13	0.2944 (2)	0.2903 (3)	0.4473 (2)	0.0396 (6)
C14	0.2138 (3)	0.3620 (3)	0.4894 (2)	0.0462 (7)
H14A	0.2046	0.3415	0.5605	0.055*
C4	0.3171 (2)	0.7652 (3)	0.0637 (2)	0.0417 (6)

supplementary materials

H4A	0.3202	0.7199	-0.0030	0.050*
C5	0.3972 (2)	0.8676 (4)	0.1070 (3)	0.0494 (7)
H5A	0.4546	0.8906	0.0707	0.059*
C12	0.3077 (2)	0.3185 (3)	0.3416 (2)	0.0416 (6)
H12A	0.3623	0.2693	0.3129	0.050*
C6	0.3913 (3)	0.9364 (3)	0.2060 (3)	0.0500(7)
H6A	0.4447	1.0067	0.2352	0.060*
H2	0.146 (2)	0.794 (3)	0.3350 (12)	0.042 (8)*
H1	0.0147 (16)	0.535 (3)	0.103 (2)	0.035 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0575 (2)	0.0674 (3)	0.0598 (2)	0.01474 (16)	0.00690 (16)	0.02754 (17)
01	0.0550 (12)	0.0520 (12)	0.0237 (10)	-0.0116 (9)	0.0066 (8)	-0.0021 (8)
N2	0.0477 (13)	0.0326 (11)	0.0280 (12)	-0.0021 (10)	0.0111 (10)	-0.0048 (9)
C2	0.0381 (14)	0.0331 (13)	0.0269 (13)	0.0041 (11)	0.0038 (10)	0.0031 (10)
C10	0.0313 (12)	0.0325 (13)	0.0277 (13)	-0.0051 (10)	0.0064 (10)	-0.0031 (10)
N1	0.0361 (12)	0.0392 (12)	0.0257 (11)	-0.0056 (10)	0.0030 (9)	-0.0014 (9)
C15	0.0455 (16)	0.0506 (17)	0.0340 (15)	0.0063 (13)	0.0156 (12)	0.0007 (13)
C8	0.0374 (14)	0.0318 (13)	0.0311 (14)	0.0028 (11)	0.0036 (11)	0.0024 (11)
C7	0.0515 (17)	0.0393 (15)	0.0359 (15)	-0.0041 (13)	0.0030 (12)	-0.0031 (12)
C11	0.0417 (14)	0.0418 (15)	0.0301 (14)	0.0035 (12)	0.0129 (11)	0.0039 (11)
C3	0.0374 (14)	0.0353 (13)	0.0294 (13)	0.0018 (11)	0.0057 (11)	0.0016 (11)
C9	0.0376 (14)	0.0474 (16)	0.0416 (16)	0.0047 (12)	0.0111 (12)	0.0009 (13)
C1	0.0346 (13)	0.0338 (13)	0.0257 (13)	-0.0010 (10)	0.0075 (10)	-0.0022 (10)
C13	0.0366 (14)	0.0401 (15)	0.0394 (15)	-0.0012 (12)	0.0013 (11)	0.0088 (12)
C14	0.0519 (17)	0.0572 (18)	0.0307 (15)	0.0038 (14)	0.0116 (13)	0.0083 (13)
C4	0.0403 (15)	0.0485 (16)	0.0370 (15)	0.0016 (13)	0.0100 (12)	0.0010 (12)
C5	0.0365 (15)	0.0568 (19)	0.056 (2)	-0.0031 (13)	0.0116 (13)	0.0052 (15)
C12	0.0381 (15)	0.0444 (15)	0.0438 (16)	0.0054 (12)	0.0120 (12)	0.0021 (13)
C6	0.0428 (16)	0.0477 (17)	0.0556 (19)	-0.0108 (13)	0.0011 (14)	0.0004 (14)

Geometric parameters (Å, °)

Br1—C13	1.896 (3)	С7—Н7А	0.9300
O1—C2	1.249 (3)	C11—C12	1.382 (4)
N2—C8	1.372 (3)	C11—H11A	0.9300
N2—C1	1.453 (3)	C3—C4	1.389 (4)
N2—H2	0.851 (10)	C9—C1	1.526 (4)
C2—N1	1.336 (3)	С9—Н9А	0.9600
C2—C3	1.466 (4)	С9—Н9В	0.9600
C10—C11	1.384 (4)	С9—Н9С	0.9600
C10-C15	1.388 (4)	C13—C14	1.368 (4)
C10—C1	1.538 (3)	C13—C12	1.378 (4)
N1—C1	1.466 (3)	C14—H14A	0.9300
N1—H1	0.854 (10)	C4—C5	1.375 (4)
C15—C14	1.381 (4)	C4—H4A	0.9300
C15—H15A	0.9300	C5—C6	1.391 (4)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C7	1.397 (4)	С5—Н5А	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C3	1.409 (4)	C12—H12A	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С7—С6	1.376 (4)	С6—Н6А	0.9300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N2—C1	120.2 (2)	Н9А—С9—Н9В	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—N2—H2	116 (2)	С1—С9—Н9С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N2—H2	114 (2)	Н9А—С9—Н9С	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01—C2—N1	120.5 (2)	Н9В—С9—Н9С	109.5
$\begin{split} & \text{N1}-\text{C2}-\text{C3} & \text{I16.8} (2) & \text{N2}-\text{C1}-\text{C9} & \text{I08.4} (2) \\ & \text{C1}-\text{C10}-\text{C1} & \text{I17.2} (2) & \text{N1}-\text{C1}-\text{C9} & \text{I07.6} (2) \\ & \text{C1}-\text{C10}-\text{C1} & \text{I21.6} (2) & \text{N2}-\text{C1}-\text{C10} & \text{I10.9} (2) \\ & \text{C2}-\text{N1}-\text{C1} & \text{I25.0} (2) & \text{C9}-\text{C1}-\text{C10} & \text{I12.0} (2) \\ & \text{C2}-\text{N1}-\text{C1} & \text{I25.0} (2) & \text{C9}-\text{C1}-\text{C10} & \text{I12.0} (2) \\ & \text{C2}-\text{N1}-\text{C1} & \text{I16.3} (19) & \text{C14}-\text{C13}-\text{C12} & \text{I20.6} (3) \\ & \text{C1}-\text{N1}-\text{H1} & \text{I18.5} (19) & \text{C14}-\text{C13}-\text{Br1} & \text{I20.0} (2) \\ & \text{C14}-\text{C15}-\text{C10} & \text{I21.6} (3) & \text{C12}-\text{C13}-\text{Br1} & \text{I20.0} (2) \\ & \text{C14}-\text{C15}-\text{C15} & \text{I19.4} (2) \\ & \text{C14}-\text{C15}-\text{H15A} & \text{I19.2} & \text{C13}-\text{C14}-\text{H14A} & \text{I20.2} \\ & \text{N2}-\text{C8}-\text{C7} & \text{I22.1} (2) & \text{C15}-\text{C14}-\text{H14A} & \text{I20.2} \\ & \text{N2}-\text{C8}-\text{C7} & \text{I22.1} (2) & \text{C5}-\text{C4}-\text{C3} & \text{I21.1} (3) \\ & \text{C7}-\text{C8}-\text{C3} & \text{I18.9} (2) & \text{C5}-\text{C4}-\text{C3} & \text{I21.1} (3) \\ & \text{C7}-\text{C8}-\text{C3} & \text{I18.9} (2) & \text{C5}-\text{C4}-\text{H4A} & \text{I19.5} \\ & \text{C6}-\text{C7}-\text{H7A} & \text{I20.0} & \text{C4}-\text{C5}-\text{C6} & \text{I19.1} (3) \\ & \text{C3}-\text{C7}-\text{H7A} & \text{I20.0} & \text{C4}-\text{C5}-\text{H5A} & \text{I20.4} \\ & \text{C12}-\text{C11}-\text{C10} & \text{I22.0} (2) & \text{C6}-\text{C5}-\text{H5A} & \text{I20.4} \\ & \text{C12}-\text{C11}-\text{H11A} & \text{I19.0} & \text{C13}-\text{C12}-\text{H12A} & \text{I20.5} \\ & \text{C4}-\text{C3}-\text{C2} & \text{I22.1} (2) & \text{C7}-\text{C6}-\text{C6} & \text{I21.1} (3) \\ & \text{C1}-\text{C1}-\text{H1A} & \text{I19.0} & \text{C13}-\text{C12}-\text{C11} & \text{I19.0} (3) \\ & \text{C1}-\text{C1}-\text{H1A} & \text{I19.0} & \text{C13}-\text{C1}-\text{C1} & \text{I19.4} \\ & \text{I20.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{I09.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{I09.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{I09.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{I09.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{I09.5} & \text{C5}-\text{C6}-\text{C1}-\text{N1} & \text{35.6} \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -72.64 & \text{C2}-\text{N1}-\text{C1}-\text{C1} & -78.83 \\ & \text{C1}-\text{C9}-\text{H9A} & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -71.6 & 39.6 \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & -72.64 & (11-\text{C1}-\text{C1}-\text{C1}-\text{N1} $	O1—C2—C3	122.6 (2)	N2—C1—N1	107.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—C2—C3	116.8 (2)	N2—C1—C9	108.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C15	117.2 (2)	N1—C1—C9	107.6 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C1	121.6 (2)	N2-C1-C10	110.9 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15-C10-C1	121.1 (2)	N1-C1-C10	110.8 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—C1	125.0 (2)	C9—C1—C10	112.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—N1—H1	116.3 (19)	C14—C13—C12	120.6 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1—N1—H1	118.5 (19)	C14—C13—Br1	120.0 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14-C15-C10	121.6 (3)	C12—C13—Br1	119.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C14—C15—H15A	119.2	C13—C14—C15	119.6 (3)
$\begin{split} & \text{N2} - \text{C8} - \text{C7} & \text{122.1 (2)} & \text{C15} - \text{C14} - \text{H14A} & \text{120.2} \\ & \text{N2} - \text{C8} - \text{C3} & \text{118.9 (2)} & \text{C5} - \text{C4} - \text{C3} & \text{121.1 (3)} \\ & \text{C7} - \text{C8} - \text{C3} & \text{128.9 (2)} & \text{C5} - \text{C4} - \text{H4A} & \text{119.5} \\ & \text{C6} - \text{C7} - \text{C8} & \text{120.1 (3)} & \text{C3} - \text{C4} - \text{H4A} & \text{119.5} \\ & \text{C6} - \text{C7} - \text{H7A} & \text{120.0} & \text{C4} - \text{C5} - \text{C6} & \text{119.1 (3)} \\ & \text{C8} - \text{C7} - \text{H7A} & \text{120.0} & \text{C4} - \text{C5} - \text{H5A} & \text{120.4} \\ & \text{C12} - \text{C11} - \text{C10} & \text{122.0 (2)} & \text{C6} - \text{C5} - \text{H5A} & \text{120.4} \\ & \text{C12} - \text{C11} - \text{C10} & \text{122.0 (2)} & \text{C6} - \text{C5} - \text{H5A} & \text{120.4} \\ & \text{C12} - \text{C11} - \text{H11A} & \text{119.0} & \text{C13} - \text{C12} - \text{C11} & \text{119.0 (3)} \\ & \text{C10} - \text{C11} - \text{H11A} & \text{119.0} & \text{C13} - \text{C12} - \text{H12A} & \text{120.5} \\ & \text{C4} - \text{C3} - \text{C8} & \text{119.6 (2)} & \text{C11} - \text{C12} - \text{H12A} & \text{120.5} \\ & \text{C4} - \text{C3} - \text{C2} & \text{122.1 (2)} & \text{C7} - \text{C6} - \text{C5} & \text{121.1 (3)} \\ & \text{C4} - \text{C3} - \text{C2} & \text{118.1 (2)} & \text{C7} - \text{C6} - \text{C5} & \text{121.1 (3)} \\ & \text{C1} - \text{C9} - \text{H9A} & \text{109.5} & \text{C5} - \text{C6} - \text{H6A} & \text{119.4} \\ & \text{C1} - \text{C9} - \text{H9B} & \text{109.5} & \text{C5} - \text{C6} - \text{H6A} & \text{119.4} \\ & \text{C1} - \text{C9} - \text{H9B} & \text{109.5} & \text{C5} - \text{C6} - \text{H6A} & \text{119.4} \\ & \text{C1} - \text{C1} - \text{C1} & -7.2 (4) & \text{C2} - \text{N1} - \text{C1} - \text{C9} & \text{149.4 (2)} \\ & \text{C1} - \text{C10} - \text{C15} - \text{C14} & -176.5 (3) & \text{C1} - \text{C1} - \text{C1} & \text{C1} & -88.1 (3) \\ & \text{C1} - \text{N2} - \text{C8} - \text{C7} & -156.5 (2) & \text{C15} - \text{C10} - \text{C1} - \text{N2} & \text{88.9 (3)} \\ & \text{C1} - \text{N2} - \text{C8} - \text{C7} & -156.5 (2) & \text{C15} - \text{C10} - \text{C1} - \text{N2} & \text{88.9 (3)} \\ & \text{C1} - \text{N2} - \text{C8} - \text{C7} - \text{C6} & -178.0 (3) & \text{C1} - \text{C10} - \text{C1} - \text{C9} & -32.4 (3) \\ & \text{C1} - \text{C10} - \text{C1} - \text{C1} & -152.5 (2) \\ & \text{C3} - \text{C8} - \text{C7} - \text{C6} & -2.4 (4) & \text{C11} - \text{C10} - \text{C1} - \text{C9} & -32.4 (3) \\ & \text{C1} - \text{C10} - \text{C1} - \text{C1} & -152.5 (2) \\ & \text{C3} - \text{C8} - \text{C3} - \text{C4} & 178.1 (2) & \text{Br1} - \text{C13} - \text{C14} - \text{C15} & -0.8 (5) \\ & \text{N2} - \text{C8} - \text{C3} - \text{C4} & 178.1 (2) $	C10-C15-H15A	119.2	C13-C14-H14A	120.2
$\begin{split} & \text{N2}-\text{C8}-\text{C3} & \text{I18.9} (2) & \text{C5}-\text{C4}-\text{C3} & \text{I21.1} (3) \\ & \text{C7}-\text{C8}-\text{C3} & \text{I18.9} (2) & \text{C5}-\text{C4}-\text{H4A} & \text{I19.5} \\ & \text{C6}-\text{C7}-\text{C8} & \text{I20.1} (3) & \text{C3}-\text{C4}-\text{H4A} & \text{I19.5} \\ & \text{C6}-\text{C7}-\text{C7} & \text{I20.0} & \text{C4}-\text{C5}-\text{C6} & \text{I19.1} (3) \\ & \text{C8}-\text{C7}-\text{H7A} & \text{I20.0} & \text{C4}-\text{C5}-\text{H5A} & \text{I20.4} \\ & \text{C12}-\text{C11}-\text{C10} & \text{I22.0} (2) & \text{C6}-\text{C5}-\text{H5A} & \text{I20.4} \\ & \text{C12}-\text{C11}-\text{H11A} & \text{I19.0} & \text{C13}-\text{C12}-\text{C11} & \text{I19.0} (3) \\ & \text{C10}-\text{C11}-\text{H11A} & \text{I19.0} & \text{C13}-\text{C12}-\text{H12A} & \text{I20.5} \\ & \text{C4}-\text{C3}-\text{C8} & \text{I19.6} (2) & \text{C11}-\text{C12}-\text{H12A} & \text{I20.5} \\ & \text{C4}-\text{C3}-\text{C2} & \text{I22.1} (2) & \text{C7}-\text{C6}-\text{C5} & \text{I21.1} (3) \\ & \text{C8}-\text{C3}-\text{C2} & \text{I18.1} (2) & \text{C7}-\text{C6}-\text{C5} & \text{I21.1} (3) \\ & \text{C8}-\text{C3}-\text{C2} & \text{I18.1} (2) & \text{C7}-\text{C6}-\text{C6} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9A} & \text{109.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9B} & \text{109.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9B} & \text{109.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9B} & \text{109.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C9}-\text{H9B} & \text{109.5} & \text{C5}-\text{C6}-\text{H6A} & \text{I19.4} \\ & \text{C1}-\text{C1}-\text{C1}-\text{C1} & \text{C1} & \text{C1}$	N2—C8—C7	122.1 (2)	C15-C14-H14A	120.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N2—C8—C3	118.9 (2)	C5—C4—C3	121.1 (3)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C7—C8—C3	118.9 (2)	С5—С4—Н4А	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7—C8	120.1 (3)	C3—C4—H4A	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С6—С7—Н7А	120.0	C4—C5—C6	119.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С8—С7—Н7А	120.0	С4—С5—Н5А	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—C10	122.0 (2)	С6—С5—Н5А	120.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C12—C11—H11A	119.0	C13—C12—C11	119.0 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10-C11-H11A	119.0	C13—C12—H12A	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C8	119.6 (2)	C11—C12—H12A	120.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—C2	122.1 (2)	C7—C6—C5	121.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8—C3—C2	118.1 (2)	С7—С6—Н6А	119.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С1—С9—Н9А	109.5	С5—С6—Н6А	119.4
01C2N1C1 175.6 (2) $C2N1C1N2$ 33.1 (3) $C3C2N1C1$ -7.2 (4) $C2N1C1C9$ 149.4 (2) $C11C10C15C14$ 0.6 (4) $C2N1C1C10$ -87.8 (3) $C1C10C15C14$ -176.5 (3) $C11C10C1N2$ -88.1 (3) $C1N2C8C7$ -156.5 (2) $C15C10C1N2$ 88.9 (3) $C1-N2C8C3$ 27.8 (4) $C11C10C1N1$ 30.5 (3) $N2C8C7C6$ -178.0 (3) $C15C10C1N1$ -152.5 (2) $C3C8C7C6$ -2.4 (4) $C11C10C1C9$ 150.7 (2) $C15C10C11C12$ -1.2 (4) $C15C10C1C9$ -32.4 (3) $C1C10C11C12$ 175.9 (2) $C12C13C14C15$ -0.8 (5) $N2C8C3C4$ 178.1 (2) $Br1C13C14C15$ -0.8 (5) $N2C8C3C4$ 2.4 (4) $C10C15C14C13$ 0.4 (5) $N2C8C3C2$ 2.7 (4) $C8C3C4C5$ -0.8 (4) $C7C8C3C2$ -173.1 (2) $C2C3C4C5$ -0.8 (4) $O1C2C3C4$ -11.0 (4) $C3C4C5C6$ -0.8 (4) $N1C2C3C4$ 171.9 (2) $C14C13C12C11$ 0.3 (4)	С1—С9—Н9В	109.5		
C3-C2-N1-C1-7.2 (4)C2-N1-C1-C9149.4 (2)C11-C10-C15-C140.6 (4)C2-N1-C1-C10-87.8 (3)C1-C10-C15-C14-176.5 (3)C11-C10-C1-N2-88.1 (3)C1-N2-C8-C7-156.5 (2)C15-C10-C1-N288.9 (3)C1-N2-C8-C327.8 (4)C11-C10-C1-N130.5 (3)N2-C8-C7-C6-178.0 (3)C15-C10-C1-N1-152.5 (2)C3-C8-C7-C6-2.4 (4)C11-C10-C1-C9150.7 (2)C15-C10-C11-C12-1.2 (4)C15-C10-C1-C9-32.4 (3)C1-C10-C11-C12175.9 (2)C12-C13-C14-C15-0.8 (5)N2-C8-C3-C4178.1 (2)Br1-C13-C14-C15177.2 (2)C7-C8-C3-C42.4 (4)C10-C15-C14-C130.4 (5)N2-C8-C3-C22.7 (4)C8-C3-C4-C5-0.8 (4)C7-C8-C3-C2-173.1 (2)C2-C3-C4-C5174.5 (3)O1-C2-C3-C4171.9 (2)C14-C13-C12-C110.3 (4)	01—C2—N1—C1	175.6 (2)	C2—N1—C1—N2	33.1 (3)
C11—C10—C15—C140.6 (4)C2—N1—C1—C10 $-87.8 (3)$ C1—C10—C15—C14 $-176.5 (3)$ C11—C10—C1—N2 $-88.1 (3)$ C1—N2—C8—C7 $-156.5 (2)$ C15—C10—C1—N2 $88.9 (3)$ C1—N2—C8—C327.8 (4)C11—C10—C1—N1 $30.5 (3)$ N2—C8—C7—C6 $-178.0 (3)$ C15—C10—C1—N1 $-152.5 (2)$ C3—C8—C7—C6 $-2.4 (4)$ C11—C10—C1—C9 $150.7 (2)$ C15—C10—C11—C12 $-1.2 (4)$ C15—C10—C1—C9 $-32.4 (3)$ C1—C10—C11—C12 $175.9 (2)$ C12—C13—C14—C15 $-0.8 (5)$ N2—C8—C3—C4 $178.1 (2)$ Br1—C13—C14—C15 $177.2 (2)$ C7—C8—C3—C4 $2.4 (4)$ C10—C15—C14—C13 $0.4 (5)$ N2—C8—C3—C4 $2.7 (4)$ C8—C3—C4—C5 $-0.8 (4)$ C7—C8—C3—C2 $-173.1 (2)$ C2—C3—C4—C5 $174.5 (3)$ O1—C2—C3—C4 $-11.0 (4)$ C3—C4—C5—C6 $-0.8 (4)$ N1—C2—C3—C4 $171.9 (2)$ C14—C13—C12—C11 $0.3 (4)$	C3—C2—N1—C1	-7.2 (4)	C2—N1—C1—C9	149.4 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11—C10—C15—C14	0.6 (4)	C2-N1-C1-C10	-87.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C1-C10-C15-C14	-176.5 (3)	C11-C10-C1-N2	-88.1 (3)
C1-N2-C8-C3 $27.8 (4)$ $C11-C10-C1-N1$ $30.5 (3)$ $N2-C8-C7-C6$ $-178.0 (3)$ $C15-C10-C1-N1$ $-152.5 (2)$ $C3-C8-C7-C6$ $-2.4 (4)$ $C11-C10-C1-C9$ $150.7 (2)$ $C15-C10-C11-C12$ $-1.2 (4)$ $C15-C10-C1-C9$ $-32.4 (3)$ $C1-C10-C11-C12$ $175.9 (2)$ $C12-C13-C14-C15$ $-0.8 (5)$ $N2-C8-C3-C4$ $178.1 (2)$ $Br1-C13-C14-C15$ $177.2 (2)$ $C7-C8-C3-C4$ $2.4 (4)$ $C10-C15-C14-C13$ $0.4 (5)$ $N2-C8-C3-C2$ $2.7 (4)$ $C8-C3-C4-C5$ $-0.8 (4)$ $C7-C8-C3-C2$ $-173.1 (2)$ $C2-C3-C4-C5$ $174.5 (3)$ $O1-C2-C3-C4$ $-11.0 (4)$ $C3-C4-C5-C6$ $-0.8 (4)$ $N1-C2-C3-C4$ $171.9 (2)$ $C14-C13-C12-C11$ $0.3 (4)$	C1—N2—C8—C7	-156.5 (2)	C15-C10-C1-N2	88.9 (3)
N2-C8-C7-C6 $-178.0 (3)$ C15-C10-C1-N1 $-152.5 (2)$ C3-C8-C7-C6 $-2.4 (4)$ C11-C10-C1-C9 $150.7 (2)$ C15-C10-C11-C12 $-1.2 (4)$ C15-C10-C1-C9 $-32.4 (3)$ C1-C10-C11-C12 $175.9 (2)$ C12-C13-C14-C15 $-0.8 (5)$ N2-C8-C3-C4 $178.1 (2)$ Br1-C13-C14-C15 $177.2 (2)$ C7-C8-C3-C4 $2.4 (4)$ C10-C15-C14-C13 $0.4 (5)$ N2-C8-C3-C2 $2.7 (4)$ C8-C3-C4-C5 $-0.8 (4)$ C7-C8-C3-C2 $-173.1 (2)$ C2-C3-C4-C5 $174.5 (3)$ O1-C2-C3-C4 $-11.0 (4)$ C3-C4-C5-C6 $-0.8 (4)$ N1-C2-C3-C4 $171.9 (2)$ C14-C13-C12-C11 $0.3 (4)$	C1—N2—C8—C3	27.8 (4)	C11—C10—C1—N1	30.5 (3)
C3-C8-C7-C6 -2.4 (4) $C11-C10-C1-C9$ 150.7 (2) $C15-C10-C11-C12$ -1.2 (4) $C15-C10-C1-C9$ -32.4 (3) $C1-C10-C11-C12$ 175.9 (2) $C12-C13-C14-C15$ -0.8 (5) $N2-C8-C3-C4$ 178.1 (2) $Br1-C13-C14-C15$ 177.2 (2) $C7-C8-C3-C4$ 2.4 (4) $C10-C15-C14-C13$ 0.4 (5) $N2-C8-C3-C2$ 2.7 (4) $C8-C3-C4-C5$ -0.8 (4) $C7-C8-C3-C2$ -173.1 (2) $C2-C3-C4-C5$ 174.5 (3) $O1-C2-C3-C4$ -11.0 (4) $C3-C4-C5-C6$ -0.8 (4) $N1-C2-C3-C4$ 171.9 (2) $C14-C13-C12-C11$ 0.3 (4)	N2—C8—C7—C6	-178.0 (3)	C15-C10-C1-N1	-152.5 (2)
C15-C10-C11-C12 -1.2 (4) $C15-C10-C1-C9$ -32.4 (3) $C1-C10-C11-C12$ 175.9 (2) $C12-C13-C14-C15$ -0.8 (5) $N2-C8-C3-C4$ 178.1 (2) $Br1-C13-C14-C15$ 177.2 (2) $C7-C8-C3-C4$ 2.4 (4) $C10-C15-C14-C13$ 0.4 (5) $N2-C8-C3-C2$ 2.7 (4) $C8-C3-C4-C5$ -0.8 (4) $C7-C8-C3-C2$ -173.1 (2) $C2-C3-C4-C5$ 174.5 (3) $O1-C2-C3-C4$ -11.0 (4) $C3-C4-C5-C6$ -0.8 (4) $N1-C2-C3-C4$ 171.9 (2) $C14-C13-C12-C11$ 0.3 (4)	C3—C8—C7—C6	-2.4 (4)	C11—C10—C1—C9	150.7 (2)
C1-C10-C11-C12 $175.9 (2)$ $C12-C13-C14-C15$ $-0.8 (5)$ $N2-C8-C3-C4$ $178.1 (2)$ $Br1-C13-C14-C15$ $177.2 (2)$ $C7-C8-C3-C4$ $2.4 (4)$ $C10-C15-C14-C13$ $0.4 (5)$ $N2-C8-C3-C2$ $2.7 (4)$ $C8-C3-C4-C5$ $-0.8 (4)$ $C7-C8-C3-C2$ $-173.1 (2)$ $C2-C3-C4-C5$ $174.5 (3)$ $O1-C2-C3-C4$ $-11.0 (4)$ $C3-C4-C5-C6$ $-0.8 (4)$ $N1-C2-C3-C4$ $171.9 (2)$ $C14-C13-C12-C11$ $0.3 (4)$	C15-C10-C11-C12	-1.2 (4)	C15—C10—C1—C9	-32.4 (3)
N2-C8-C3-C4 $178.1 (2)$ Br1-C13-C14-C15 $177.2 (2)$ C7-C8-C3-C4 $2.4 (4)$ $C10-C15-C14-C13$ $0.4 (5)$ N2-C8-C3-C2 $2.7 (4)$ $C8-C3-C4-C5$ $-0.8 (4)$ C7-C8-C3-C2 $-173.1 (2)$ $C2-C3-C4-C5$ $174.5 (3)$ O1-C2-C3-C4 $-11.0 (4)$ $C3-C4-C5-C6$ $-0.8 (4)$ N1-C2-C3-C4 $171.9 (2)$ $C14-C13-C12-C11$ $0.3 (4)$	C1—C10—C11—C12	175.9 (2)	C12—C13—C14—C15	-0.8(5)
C7-C8-C3-C4 2.4 (4) $C10-C15-C14-C13$ 0.4 (5) $N2-C8-C3-C2$ 2.7 (4) $C8-C3-C4-C5$ -0.8 (4) $C7-C8-C3-C2$ -173.1 (2) $C2-C3-C4-C5$ 174.5 (3) $01-C2-C3-C4$ -11.0 (4) $C3-C4-C5-C6$ -0.8 (4) $N1-C2-C3-C4$ 171.9 (2) $C14-C13-C12-C11$ 0.3 (4)	N2—C8—C3—C4	178.1 (2)	Br1-C13-C14-C15	177.2 (2)
N2-C8-C3-C2 $2.7 (4)$ C8-C3-C4-C5 $-0.8 (4)$ C7-C8-C3-C2 $-173.1 (2)$ $C2-C3-C4-C5$ $174.5 (3)$ $01-C2-C3-C4$ $-11.0 (4)$ $C3-C4-C5-C6$ $-0.8 (4)$ $N1-C2-C3-C4$ $171.9 (2)$ $C14-C13-C12-C11$ $0.3 (4)$	C7—C8—C3—C4	2.4 (4)	C10-C15-C14-C13	0.4 (5)
C7-C8-C3-C2 $-173.1(2)$ $C2-C3-C4-C5$ $174.5(3)$ $O1-C2-C3-C4$ $-11.0(4)$ $C3-C4-C5-C6$ $-0.8(4)$ $N1-C2-C3-C4$ $171.9(2)$ $C14-C13-C12-C11$ $0.3(4)$	N2—C8—C3—C2	2.7 (4)	C8—C3—C4—C5	-0.8 (4)
O1-C2-C3-C4 -11.0 (4) C3-C4-C5-C6 -0.8 (4) N1-C2-C3-C4 171.9 (2) C14-C13-C12-C11 0.3 (4)	C7—C8—C3—C2	-173.1 (2)	C2—C3—C4—C5	174.5 (3)
N1—C2—C3—C4 171.9 (2) C14—C13—C12—C11 0.3 (4)	O1—C2—C3—C4	-11.0 (4)	C3—C4—C5—C6	-0.8 (4)
	N1—C2—C3—C4	171.9 (2)	C14—C13—C12—C11	0.3 (4)

supplementary materials

01—C2—C3—C8	164.4 (2)	Br1-C13-C12-C11	-177.8 (2)
N1—C2—C3—C8	-12.8 (3)	C10-C11-C12-C13	0.7 (4)
C8—N2—C1—N1	-43.0 (3)	C8—C7—C6—C5	0.8 (5)
C8—N2—C1—C9	-158.8 (2)	C4—C5—C6—C7	0.8 (5)
C8—N2—C1—C10	77.9 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.85 (1)	2.08 (1)	2.932 (3)	179 (3)
N2—H2···O1 ⁱⁱ	0.85 (1)	2.04 (1)	2.870 (3)	164 (3)
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii) x , $-y+3/2$, $z+1/2$.				

