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Abstract 

Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in 
critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the 
history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in 
COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients 
with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple 
inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive 
protein (CRP), TGF-β signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, 
treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against 
IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-β OT-101, and the use of CRRT in 
critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients. 
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Introduction 
COVID-19 is a progressive viral pneumonia with 

a broad spectrum of clinical manifestations, ranging 
from asymptomatic to mild (80%), severe (10-15%) or 
critical and death (2-5%) [1, 2]. Among critically ill 
COVID-19 patients, acute respiratory distress 
syndrome (ARDS) and multiorgan failure including 
acute kidney injury (AKI) are the most common 
co-morbidities [3-5]. In this review article, we are 
focusing on SARS-CoV-2-associated AKI. The 
possible mechanisms and pathways related to 
SARS-CoV-2-associated AKI are discussed. 

Epidemiology of AKI in COVID-19 
patients 

Increasing evidence shows that there is high 
prevalence of AKI in COVID-19 patients [6, 7]. The 
manifestations of AKI are diverse, from proteinuria, 

hematuria, elevated serum creatinine (Scr) or blood 
urea nitrogen (BUN) levels to acute renal failure. A 
meta-analysis shows that more than half (57%) of 
COVID-19 patients develop proteinuria, accompanied 
by elevated serum levels of Scr (9.6%-15.5%) and BUN 
(13.7-14.1%) [5, 6]. The CT scan also shows renal 
inflammation and edema [8]. Pathologically, diffuse 
proximal tubule injury with loss of brush border and 
frank necrosis is found in COVID-19 patients with 
AKI [9, 10]. 

Compared to patients with Severe Acute 
Respiratory Syndrome (SARS) and Middle East 
Respiratory Syndrome (MERS) in which the incidence 
of AKI is 6.7% and 42% respectively [11, 12]. The 
incidence of AKI in COVID-19 patients is highly 
variable. In the early reports from China, COVID-19 
patients with AKI was rare [13, 14], but increased to 

 
Ivyspring  

International Publisher 



Int. J. Biol. Sci. 2021, Vol. 17 
 

 
http://www.ijbs.com 

1498 

10% in a later study [15], and became more severe 
with the incident rate of 25%-29% in those admitted to 
ICU [16, 17]. The large cohort studies in the western 
countries revealed that the incidence of AKI was 
27%-37% [18, 19] and became more severe (68%) in 
critically ill COVID-19 patients who were admitted to 
ICU in the New York city [20]. Nevertheless, it is now 
clear that the incidence of AKI in COVID-19 patients 
is associated with the age, smoking, the cytokine 
storm, the severity of disease, the ethnicity, and the 
history of diabetes, hypertension, and cardiovascular 
disease [7]. Thus, AKI is an independent risk factor for 
the poor long-term renal outcome and mortality in 
critically ill COVID-19 patients [21, 22]. During the 
follow-up study, AKI is a major cause of in-hospital 
mortality. In addition, the complete kidney recovery 
rate of AKI in COVID-19 infection is only about 
30-45% based on the recent reports [15, 20, 23]. Thus, 
AKI is one of severe complications and mortality of 
in-hospital COVID-19 patients, however, mechanisms 
of COVID-19-associated AKI remain largely unclear 
and need further studies. 

Inflammation may be a mechanism of 
AKI in COVID-19 patients 

Multiple factors such as direct virus infection, 
cytokine storm, hypoxia, sepsis shock, hemodynamic 
instability and rhabdomyolysis, hypertension, and 
diabetes may be associated with AKI in COVID-19 
patients. Of these factors, inflammation stress may be 
a mechanism of AKI in COVID-19 patients, which is 
discussed below. 

Angiotensin II (Ang II) and hypertensive stress 
Kidney is a target organ of SARS-COV-2 virus 

infection due to the high expression levels of 
angiotensin-converting enzyme 2 (ACE2), a receptor 
for SARS-COV-2 virus [24], in the kidney tissues, 
particularly in renal tubular epithelial cells (TECs) 
[25-27]. Thus, SARS-COV-2 may be able to directly 
bind to ACE2 and infect kidney cells, which is 
supported by high levels of SARS-COV-2 spike (S) 
and nucleoprotein (N protein) in COVID-19 patients 
with AKI [9, 10, 28]. In the kidney, renin- 
angiotensin-aldosterone system (RAAS) maintains 
renal hemodynamic and regulates renal sodium 
transport in both normal physiological states and 
pathological conditions. Ang II and Ang 1-7 are the 
two major effectors of RAAS and are tightly 
controlled by two major enzymes of ACE and ACE2 
[29]. Ang II acts via its receptor-1 (AT1) to mediate 
renal inflammation and fibrosis by activating NF-kB 
and Smad signaling crosstalk pathways, whereas Ang 
1-7 binds receptor Mas to counter-regulate these 
pathological effects of Ang II [29]. The primary 

function of ACE2 is to covert Ang II to Ang 1-7 to 
exert its anti-inflammatory, vasodilatory and 
natriuretic properties [30] (Figure 1). After binding to 
ACE2, SARS-COV-2 significantly downregulates 
ACE2 expression [31, 32], resulting in a inhibition or 
loss of Ang 1-7 while enhancing Ang II-AT1- 
dependent renal inflammation, vasoconstriction, 
thrombosis and anti-diuresis effects [33] (Figure 1). It 
has been well documented that Ang II is a key 
mediator of AKI [34-36], whereas, the ACE2-Ang-1-7- 
Mas axis is renoprotective [37]. Thus, SARS-COV-2 
viral infection to the kidney may downregulate ACE2- 
Ang1-7-Mas signaling while promoting the Ang 
II-AT1 signaling to mediate renal inflammation and 
AKI. A similar mechanism is also found in patients 
with ARDS [38]. Thus, the interaction between 
SARS-COV-2 virus and ACE2 may eventually impair 
the ACE2-Ang 1-7 while enhancing Ang II signaling, 
resulting in hypertension and inflammatory stress 
both systemically and locally in the kidney. This may 
well explain that hypertension is an independent risk 
factor in COVID-19 patients [39]. However, the role of 
Ang II signaling in COVID-19 patients with 
progressive renal injury remains yet to be determined. 

 

 
Figure 1. Alterations of Ang II and Ang 1-7 signaling in COVID-19 
associated AKI. SARS-COV-2 binds and downregulates ACE2, which may result in 
downregulation of Ang 1-7 while upregulating Ang II-AT signaling to promote AKI. 

 

Diabetes and metabolic stress 
Diabetes is also a risk factor for AKI [40]. Patients 

with diabetes are associated with the severity and 
death in pandemic influenza (H1N1) [41], SARS-COV 
[42] and MERS-COV [43]. Recent studies also reported 
that COVID-19 patients with diabetes have higher 
AKI and mortality rate than those with non-diabetes 
[14, 44]. This is also confirmed in a recent meta- 
analysis in 5497 COVID-19 patients [45]. 
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It is now well accepted that metabolic stress 
including hyperglycemia, obesity, insulin resistance 
and high levels of glycosylation end products (AGEs) 
in patients with diabetes can trigger the production of 
pro-inflammatory cytokines and promotes the 
oxidative stress [46]. Hyperglycemia is a risk factor for 
AKI in patients with diabetes [21]. The IκB kinase-β 
(IKKβ)/NF-κB axis is a key inflammatory pathway in 
diabetes in response to hyperglycemia and insulin 
resistance [47]. AGEs can also induce activation of 
NF-κB, resulting in production of pro-inflammatory 
cytokines [48]. By comparing with non-diabetic 
COVID-19 patients, COVID-19 patients with diabetes 
have significantly higher levels of IL-6 and CRP [49]. 
In addition, patients with diabetes also develop 
hypertension, which is associated with activation of 
Ang II-AT1 while inhibiting ACE2-Ang 1-7 signaling 
[50]. In addition, since ACE2 is also expressed in 
pancreas, infection of SARS-COV-2 may also damage 
pancreatic islet β-cells and aggravate hyperglycemia 
[51]. Thus, enhanced metabolic inflammation in the 
diabetic kidney may be another mechanism 
contributing to the development of AKI in COVID-19 
patients. However, mechanisms responsible for the 
metabolic stress in AKI after COVID-19 infection 
remain yet to be explored. 

Cytokine storm 
Inflammatory cytokines has been recognized as a 

critical factor in the progression of COVID-19 [52, 53]. 
The inflammatory response triggered by SARS-COV, 
MERS-COV or SARS-COV-2 can recruit and activate 
monocytes, macrophage and dendritic cells to 
produce inflammatory cytokines [54, 55], which may 
be essential in controlling the viral replication and 
cleaning the infected cells [56]. However, overactive 
immune responses may cause excessive and 
persistent cytokine production that leads to cytokine 
storm and results in multiple organ dysfunction as 
seen in patients with severe SARS [57], MERS [58] and 
COVID-19 infection [59]. In these patients, a number 
of proinflammatory cytokines such as interleukin 
(IL)-1β, IL-6, IL-12, interferon γ (IFN-γ) and monocyte 
chemoattractant peptide (MCP-1) are associated with 
extensive lung damage in SARS patients [60]. The 
blood levels of IL-10, IL-15 and TGF-β1 are also 
positively correlated with the disease severity in 
patients with MERS [61]. In COVID-19 patients, levels 
of IL-1β, IL-1RA, IL-7, IL-8, IL-9, IL-10, granulocyte 
colony stimulating factor (G-CSF), IFN-γ, interferon γ 
inducible protein (IP)-10, tumor necrosis factor-alpha 
(TNF-α) and MCP-1 are also increased over the 
healthy controls and become worsen in those 
admitted to ICU with severe acute lung injury [62, 63]. 

Cytokine storm can also trigger AKI under 

various clinical conditions including secondary 
haemophagocytic lymphohistiocytosis (sHLH) 
[64-68]. sHLH is also found in patients with SARS and 
COVID-19 [69, 70]. In addition, cytokine storm may 
also result in the development of antiphospholipid 
syndrome in AKI patients with COVID-19 [71, 72]. Of 
these inflammatory cytokines, IL-6 has been 
recognized as a key mediator in COVID-19 patients, 
which is further described below.  

IL-6 
Many studies have demonstrated that among the 

inflammatory cytokines, IL-6 is a most strong and 
important mediator in COVID-19 patients [73, 74]. 
Meta-analysis involving 12681 COVID-19 patients 
confirms that IL-6 is significantly higher in those with 
severe disease conditions [75, 76]. Indeed, serum 
levels of IL-6 positively correlate with the severity of 
COVID-19 [75, 77, 78] and also predict the mechanical 
ventilation need for COVID-19 patients [79]. In 
COVID-19 patients with older age, IL-6 is an 
independent risk factor for in-hospital mortality [80]. 

IL-6 is also a predictor for AKI in patients under 
various clinical conditions including cardiovascular 
disease, kidney diseases and liver transplantation 
[81-83]. This is also found in ischemic AKI animal 
model [84]. In response to injury, IL-6 is upregulated 
and released from renal TECs and plays an important 
role in the pathophysiology of AKI [85]. Increasing 
evidence shows that IL-6 is not only a biomarker but 
also a mediator for AKI as mice lacking IL-6 are 
resistant to HgCl2-induced AKI [85-88]. In patients 
with COVID-19, serum levels of IL-6 are elevated in 
those with AKI [89], and become further increased in 
those with critically ill [71, 90]. In addition, serum 
levels of IL-6 can also predict the clinical outcomes of 
AKI as it is significantly reduced in those when AKI is 
recovered after effective treatment [91]. 
Mechanistically, JAK-STAT3 is a downstream signal 
transduction of IL-6-membrane-bound-IL-6 receptor 
(mIL-6R)/soluble-bound-IL-6 receptor (sIL-6R). The 
IL-6-mIL-6R/sIL-6R-JAK-STAT3 signing pathways 
are activated during cytokine storm in severe 
COVID-19 patients [54], which is outlined in Figure 2. 
However, the functional role and molecular 
mechanisms of IL-6 in the pathogenesis of COVID-19 
associated AKI remain largely unclear. 

C-reactive protein (CRP) 
CRP, produced by liver and many inflammatory 

cells, is an acute phase protein. It has been widely 
used in clinical settings as an acute inflammation 
biomarker. CRP is proved as a predictor of 
postoperative AKI in patients undergoing Coronary 
Artery Bypass Graft (CABG) [92]. High sensitive CRP 
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is associated with AKI in patients with acute 
myocardial infarction [93, 94]. Meanwhile, it is an 
independent predictor for AKI among ST elevation 
myocardial infarction patients undergoing primary 
percutaneous intervention [95]. Increasing evidence 
has suggested that CRP is also a pathogenic factor 
contributing to the development of inflammatory 
diseases including atherosclerosis [96] and AKI 
[97-101]. The mechanisms of CRP in the progression 
of AKI include stimulating macrophage activation 
[97], inducing cell death by causing G1 cell cycle 
arrest and autophagy [99], and promoting 
inflammation [101] (Figure 3). The activation of 
NF-κB/p65 and TGF-β/Smad3 signaling pathways 
are the major mechanisms through which CRP 
mediates AKI [98, 100, 101]. 

 

 
Figure 2. Possible mechanisms through which SARS-COV-2 may induce 
AKI by stimulating IL-6 signaling. SARS-COV-2 may activate IL-6-mIL-6/sIL6- 
JAK-STAT3 signaling, resulting in AKI, which can be blocked by Tocilizumab 
antibodies. 

 
COVID-19 patients with AKI show higher levels 

of serum CRP over those without AKI [102]. Serum 
levels of CRP are also a risk factor of AKI in 
COVID-19 patients [103]. Tan et al. reported that 
serum levels of CRP are significantly elevated after 
SARS-CoV-2 infection, which becomes further 
increased when the disease is progressive but declines 
dramatically when COVID-19 is recovered [104]. 
Thus, levels of serum CRP may be a predictor for the 
clinical outcomes of COVID-19 patients. 
Meta-analysis confirms this notion that in contrast to 
mild and survival subgroup of COVID-19 patients, 
high levels of CRP are associated with severe and 
death subgroup of COVID-19 patients [75, 76, 105]. In 
addition, CRP is also an indicator for renal 
replacement therapy and the need for mechanical 

ventilation in COVID-19 patients [106]. Thus, elevated 
CRP is independently associated with poor clinical 
outcomes in COVID-19 patients [107, 108]. However, 
the pathogenic role and mechanisms of CRP in 
COVID-19-associated AKI remain largely unknown. 

 

 
Figure 3. Possible role of CRP signaling in COVID-19-associated AKI. 
SARS-COV-2 infection may activate CRP signaling to cause AKI via TGF-β/Smad3- 
mediated G1 cell cycle arrest and NF-κB-dependent renal inflammation. 

 

TGF-β 
TGF-β is a pleiotropic cytokine and signals 

through its downstream canonical and non-canonical 
pathways to diversely regulate renal inflammation 
and fibrosis [109, 110]. It has been reported that 
SARS-COV nucleocapsid protein can interact with 
Smad3 to activate the canonical pathway [111]. 
Whereas, the non-canonical TGF-β signaling pathway 
is also activated by the papain-like protease of 
SARS-COV by inducing expression of TGF-β1 [112]. 
In COVID-19 patients, plasma levels of TGF-β are 
significantly elevated and associated with the disease 
severity and poor clinical outcomes [113, 114]. 
Elevated TGF-β2 mRNA is also found in the 
bronchoalveolar lavage (BAL) fluid of COVID-19 
patients [115], which may contribute to lung 
inflammation and fibrosis because TGF-β1 is also a 
growth factor associated with fibrosis [109.110]. It is 
reported that SARS-COV-2 encoded microRNAs are 
able to target TGF-β signaling pathway to induce 
TGF-β-dominated adaptive immune response [116]. 
Upregulation of TGF-β1 in COVID-19 patients is 
responsible for the recruitment of neutrophils into the 
site of inflammation [117]. TGF-β can also induce 
MCP-1 to activate macrophage-dependent 
inflammation in the diabetic kidney via a 
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Smad3-dependent LRNA9884 [118]. Induction of IL-6 
production by TGF-β1 also leads to systemic 
inflammation and “cytokine storm” [119]. 
Furthermore, TGF-β can induce IgA class switching, 
which may contribute to vasculitis in critically ill 
patients with COVID-19 [120]. Thus, TGF-β may 
significantly contribute to the immediate and 
long-term effects of COVID-19. 

Although the role of TGF-β in COVID-19 
associated AKI is still unclear, recent findings that 
conditional deletion of TGF-β receptor II from renal 
proximal tubules protects against mercuric chloride 
and cisplatin-induced AKI reveal a critical role of 
TGF-β signaling in AKI [121, 122]. Furthermore, mice 
specifically lacking bronchial epithelial TGF-β1 
(epTGFβKO) are protected against influenza-induced 
weight loss, airway inflammation, and viral 
replication [123], suggesting the impact of TGF-β in 
viral infection. Mechanistically, TGF-β1 may act via 
Smad3 to cause AKI as genetic deletion or 
pharmacological inhibition of Smad3 can block AKI in 
ischemic mice with or without high human CRP 
conditions [124]. Indeed, Smad3 can be activated by 
both TGF-β-dependent and independent mechanisms 
including Ang II, advanced end products (AGE), and 
CRP under various disease conditions such as 
hypertension and diabetes [125-127]. Thus, activation 
of Smad3 signaling may account for the clinical notion 
that patients with diabetes and hypertension are high 
risk for COVID-19 [7]. Mechanistically, Smad3 
promotes AKI by directly binding to p21/p27 to 

suppress CDKs/cyclin E to 
cause the G1 cell cycle arrest 
[128, 129] (Figure 4). Thus, it is 
highly possible that TGF-β/ 
Smad3 signaling may contri-
bute to COVID-19-associated 
AKI, which is warranted for 
further investigation. 

Complement activation 
The complement system 

is the first response of host 
immune system that recog-
nizes and eliminates virus, 
such as SARS-COV or SARS- 
COV-2 [7, 130]. There are 
several pathways involving in 
systemic complement activa-
tion including the lectin 
pathway, classical pathway, 
and alternative pathway [130, 
131]. The lectin pathway is 
triggered by the binding of 
mannose-binding lectin (MBL) 

with SARS-COV spike (S) protein [132], which leads 
to the activation of mannan-binding lectin-associated 
serine protease 2 (MASP-2). The N protein of 
coronavirus is also associated with the severity of 
lung injury according to MASP-2-mediated 
complement overactivation. Thus, alteration of 
MASP-2-binding motif or blocking the MASP-2-N 
protein interaction attenuates lung injury [133]. The 
classical pathway is activated by the binding of 
antibodies, which forms the immune complexes with 
viral antigens to complement C1 complex [130, 131]. 
The classical, lectin and alternative pathways 
resulting in the formation of C3 convertase to activate 
the complement system, which is observed in the lung 
after SARS-COV infection [130, 131, 134]. The role of 
C3 in SARS-COV-induced lung injury is confirmed in 
C3 deficient mice in which deletion of C3 protects 
against ARDS with lower levels of cytokine and 
inflammatory monocytes infiltration [135]. 

The complement system is activated during the 
progression of COVID-19 [136]. The activation of 
complement system is related to the disease severity 
and the respiratory failure in COVID-19 patients [134, 
136, 137]. It has been shown that the C5a-C5aR1 axis 
plays an important role in the development of ARDS 
in COVID-19 [138], whereas, C4d and C5-9 are 
colocalized with the SARS-COV-2 S protein in the 
lung and skin vasculature [139]. 

The activation of alternative pathway of 
complement also participates in the pathogenesis of 
AKI [140, 141]. It has been reported that local 
synthesis or deposition and activation of complement 
by renal epithelium is an important cause of AKI [142, 
143]. In addition, strong C5b-9 staining has been 
demonstrated on the apical brush border of TECs of 
the kidney with SARS-COV-2 infection [10]. 
Activation of the classical complement pathway is 
also observed in the AKI kidney in critically ill 
children with COVID-19 [90]. However, the 
functional role and mechanisms of complement 
activation in COVID-19-assicated AKI remain largely 
unclear. 

The lung-kidney crosstalk pathway 
The crosstalk between the lung and kidney has 

been observed in patients with AKI and ARDS [144]. 
Clinically, acute lung injury and AKI are 
complications often encountered in patients with 
critical illness [145]. Mechanical ventilation can 
improve lung function but is a risk factor for AKI in 
critically ill patients [146, 147]. It has been reported 
that positive pressure of mechanical ventilation can 
increase the risk of AKI by almost 8-fold [106], which 
is associated with systemic hemodynamic and 
neurohormonal changes and biotrauma [65, 148, 149]. 

 

 
Figure 4. Proposed TGF-β 
signaling in COVID-19- 
associated AKI. SARS-COV- 
2 may induce G1 cell cycle 
arrest and cell death via TGF-β/ 
Smad3-p21/p27 mechanism. 
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ARDS can trigger AKI via mechanisms associated 
with systemic hypoxia, hypercapnia, systemic 
inflammatory response syndrome (SIRS), and 
mechanical ventilation. Severe hypoxemia in ICU 
patients is associated with AKI required for renal 
replacement therapy [145]. Kidney is susceptible to 
hypoxic injury due to the high rate of oxygen 
consumption [65, 150]. Thus, hypoxia can induce AKI 
and tubular necrosis or apoptosis [149]. Hypercapnia 
in COVID-19 patients can also affect the renal blood 
flow by stimulating renal vasoconstriction [151]. More 
importantly, the lung-kidney cross-talk is also 
associated with the cytokine storm [152]. The 
inflammatory reaction caused by the lung injury can 
damage the kidney to release abundant inflammatory 
cytokines, which, in turn, promotes the damage in the 
lung [8]. Thus, the approaches to limit 
ventilator-induced lung injury and decrease the 
duration of mechanical ventilatory support to protect 
against AKI in critically ill patients are proposed for 
treatment of critically ill COVID-19 with acute lung 
and kidney injury. 

Therapeutic potential for COVID-19- 
associated AKI 
Continuous renal replacement therapy 
(CRRT) 

CRRT is an advanced approach to treat patients 
with AKI by improving overload water status and 
removing inflammatory factors [153], particularly in 
those with septic AKI [154]. CRRT has been utilized in 
AKI patients with severe MERS and in critically ill 
COVID-19 [155]. However, whether the early 
initiation or high intensity of CRRT can improve the 
progression of AKI COVID-19 patients remains to be 
determined. 

Tocilizumab (TCZ) 
TCZ, a recombinant humanized monoclonal 

antibody against the human membrane and soluble 
IL-6 receptors, is widely used for treatment of 
immunoinflammatory rheumatic diseases [156, 157]. 
TCZ has been shown to block the IL-6/NF-κB/JNK 
pathway to have a protective effect against 
sepsis-induced acute lung injury and AKI [158]. As 
IL-6 is important in COVID-19, TCZ has been used to 
treat COVID-19 patients clinically (Figure 2). The 
early treatment with TCZ has been shown to 
effectively improve the oxygen status in COVID-19 
patients [156]. The meta-analysis of TCZ studies in a 
total of 1675 and 6279 COVID-19 patients with 
critically ill shows that TCZ treatment can 
significantly reduce the in-hospital mortality rate, 
although patients remain the need for hemodialysis 

and ventilation [159]. Thus, the therapeutic efficacy of 
TCZ on COVID-19-associated AKI needs to be further 
studied. 

Complement inhibitor 

A C3 inhibitor AMY-101 
AMY-101 is a highly selective and potent C3 

inhibitor and is currently tested in Phase II clinical 
trials in patients with sepsis, hemodialysis-induced 
inflammation or malarial anemia [160-163]. It is 
reported that treatment with AMY-101 is safe and can 
significantly improve the clinical manifestations in 
severe COVID-19 patients [164]. Further Phase II and 
III clinical trials are still going. 

An anti-C5 antibody 
An anti-C5 antibody has been clinically used in 

patients with C3 glomerulopathy and several types of 
AKI including atypical hemolytic uremic syndrome 
and paroxysmal nocturnal hemoglobinuria [165]. 
Treatment with the anti-C5 antibody has shown to 
improve the kidney function and ameliorate the 
intra-renal complement activation and systemic 
inflammation in ischemia reperfusion-induced AKI 
mouse model [165]. The first result of anti-C5 
treatment has also revealed a rapid and promising 
effect on COVID-19 patients [166]. However, more 
clinical trials are needed for the conclusive results of 
the anti-C5 antibody treatment on COVID-19 patients 
with AKI. 

Anti-TGF-β treatment 
As SARS coronavirus can upregulate TGF-β and 

patients with coronavirus infection have elevated 
levels of TGF-β [113, 114], it has been proposed that 
TGF-β could be a valid target for the treatment of 
COVID-19 [167, 168]. In a recent Phase II clinical trial, 
inhibition of TGF-β expression by OT-101, an 
anti-sense to TGF-β1, has been shown to suppress 
SARS-COV and SARS-COV-2 replication and allow 
patients to recover without going into respiratory 
crisis [169], suggesting that COVID-19 can be treated 
with TGF-β inhibition. However, it should be noted 
that TGF-β has diverse roles in renal inflammation 
and fibrosis [109, 110] and targeting the upstream of 
TGF-β may also cause adverse effects. Our recent 
studies showed that TGF-β can trigger AKI via the 
Smad3-dependent mechanism and treatment with 
Smad3 inhibitors such as SIS3 or a natural product of 
Traditional Chinese Medicine Quercetin can 
effectively suppress AKI even under high human CRP 
conditions [100, 170]. These findings suggest that 
targeting Smad3 specifically, rather than the entire 
TGF-β signaling, may represent as a novel and 
effective therapy for AKI in COVID-19 patients 
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clinically. 

Conclusion 
AKI is a common complication in critically ill 

COVID-19 patients. Inflammation may be a key 
mechanism triggering this process. Many 
inflammatory stress molecules and pathways 
including Ang II-associated hypertensive stress, 
diabetes-related metabolic stress, cytokine storm, high 
CRP, overreactive TGF-β signaling, complement 
activation, and lung-kidney crosstalk may promote 
AKI in COVID-19 patients. Thus, treatments by 
targeting these molecules and pathways may 
represent as a novel and specific therapy for AKI in 
COVID-19 patients. 
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