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Abstract
Clinical trials increasingly employ medical imaging data in conjunction with supervised clas-

sifiers, where the latter require large amounts of training data to accurately model the sys-

tem. Yet, a classifier selected at the start of the trial based on smaller and more accessible

datasets may yield inaccurate and unstable classification performance. In this paper, we

aim to address two common concerns in classifier selection for clinical trials: (1) predicting

expected classifier performance for large datasets based on error rates calculated from

smaller datasets and (2) the selection of appropriate classifiers based on expected perfor-

mance for larger datasets. We present a framework for comparative evaluation of classifiers

using only limited amounts of training data by using random repeated sampling (RRS) in

conjunction with a cross-validation sampling strategy. Extrapolated error rates are subse-

quently validated via comparison with leave-one-out cross-validation performed on a larger

dataset. The ability to predict error rates as dataset size increases is demonstrated on both

synthetic data as well as three different computational imaging tasks: detecting cancerous

image regions in prostate histopathology, differentiating high and low grade cancer in breast

histopathology, and detecting cancerous metavoxels in prostate magnetic resonance spec-

troscopy. For each task, the relationships between 3 distinct classifiers (k-nearest neighbor,

naive Bayes, Support Vector Machine) are explored. Further quantitative evaluation in

terms of interquartile range (IQR) suggests that our approach consistently yields error rates

with lower variability (mean IQRs of 0.0070, 0.0127, and 0.0140) than a traditional RRS ap-

proach (mean IQRs of 0.0297, 0.0779, and 0.305) that does not employ cross-validation

sampling for all three datasets.

Introduction
A growing amount of clinical research employs computerized classification of medical imaging
data to develop quantitative and reproducible decision support tools [1–3]. A key issue during
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the development of image-based classifiers is the accrual of sufficient data to achieve a desired
level of statistical power and, hence, confidence in the generalizability of the results. Computer-
ized image analysis systems typically involve a supervised classifier that needs to be trained on
a set of annotated examples, which are often provided by a medical expert who manually labels
the samples according to their disease class (e.g. high or low grade cancer) [4]. Unfortunately,
in many medical imaging applications, accumulating large cohorts is very difficult due to (1)
the high cost of expert analysis and annotations and (2) because of overall data scarcity [3, 5].
Hence, the ability to predict the amount of data required to achieve a desired classification ac-
curacy for large-scale trials, based on experiments performed on smaller pilot studies is vital to
the successful planning of clinical research.

Another issue in utilizing computerized image analysis for clinical research is the need to se-
lect the best classifier at the onset of a large-scale clinical trial [6]. The selection of an optimal
classifier for a specific dataset usually requires large amounts of annotated training data [7]
since the error rate of a supervised classifier tends to decrease as training set size increases [8].
Yet, in clinical trials, this decision is often based on the assumption (which may not necessarily
hold true [9]) that the relative performance of classifiers on a smaller dataset will remain the
same as more data becomes available.

In this paper, we aim to overcome the major constraints on classifier selection in clinical tri-
als that employ medical imaging data, namely (1) the selection of an optimal classifier using
only a small subset of the full cohort and (2) the prediction of long-term performance in a clini-
cal trial as data becomes available sequentially over time.

To this end, we aim to address crucial questions that arise early in the development in a clas-
sification system, namely:

• Given a small pilot dataset, can we predict the error rates associated with a classifier assuming
that a larger data cohort will become available in the future?

• Will the relative performance between multiple classifiers hold true as data cohorts grow
larger?

Traditional power calculations aim to determine confidence in an error estimate using re-
peated classification experiments [10], but do not address the question of how error rate
changes as more data becomes available. Also, they may not be ideal for analyzing biomedical
data because they assume an underlying Gaussian distribution and independence between vari-
ables [11]. Repeated random sampling (RRS) approaches, which characterize trends in classifi-
cation performance via repeated classification using training sets of varying sizes, have thus
become increasingly popular, especially for extrapolating error rates in genomic datasets [6, 11,
12]. Drawbacks of RRS include (1) no guarantee that all samples will be selected at least once
for testing and (2) a large number of repetitions required to account for the variability associat-
ed random sampling. In particular, traditional RRS may suffer in the presence of highly hetero-
geneous datasets (e.g. biomedical imaging data [13]) due to the use of fixed training and testing
pools. This is exemplified in Fig 1 by the variability in calculated (black boxes) and extrapolated
(blue curves) error rates resulting from the use of different training and testing pools from the
same dataset. More recently, methods such as repeated independent design and test (RIDT)
[14] have aimed to improve RRS by simultaneously modeling the effects of different testing set
sizes in addition to different training set sizes. This approach, however, requires allocation of
larger testing sets than RRS, thereby reducing the number of samples available in the training
set for extrapolation. It is important to note that the concept of predicting error rates for large
datasets should not confused with semi-supervised learning techniques, e.g. active learning
(AL) [15], that aim to maximize classifier performance while mitigating the costs of compiling
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large annotated training datasets [5]. Since AL methods are designed to optimize classification
accuracy during the acquisition of new data, they are not appropriate for a priori prediction of
classifier performance using only a small dataset.

Due to the heterogeneity present in biomedical imaging data, we extend the RRS-based ap-
proach originally used to model gene microarray data [11] by incorporating a K-fold cross-vali-
dation framework to ensure that all samples are used for both classifier training and testing
(Fig 2). First, the dataset is split into K distinct, stratified pools where one pool is used for test-
ing while the remaining K − 1 are used for training. A bootstrap subsampling procedure is used
to create multiple subsets of various sizes from the training pool. Each subset is used to train a
classifier, which is then evaluated against the testing pool. The pools are rotated K times to en-
sure that all samples are evaluated once and error rates are averaged for each training set size.
The resulting mean error rates are used to determine the three parameters of the power-law
model (rate of learning, decay rate, and Bayes error) that characterize the behavior of error rate
as a function of training set size.

Application of the RRS model to patient-level medical imaging data, where each patient or
image is described by a single set of features, is relatively well-understood. Yet disease classifica-
tion in radiological data (e.g. MRI) occurs at the pixel-level, in which each patient has pixels
from both classes (e.g. diseased and non-diseased states) and each pixel is characterized by a
set of features [16]. In this work, we present an extension to RRS that employs two-stage sam-
pling in order to mitigate the sampling bias occurring from high intra-patient correlation

Fig 1. Traditional repeated random sampling (RRS) of prostate cancer histopathology leads to
unstable estimation of error rates. Application of RRS to the classification of cancerous and non-
cancerous prostate cancer histopathology (datasetD1) suggests that heterogeneous medical imaging data
can produce highly variable calculated (black boxes) and extrapolated (blue curves) mean error rates. Each
set of error rates is derived from and independent RRS trial that employs different training and testing pools
for classification. The yellow star represents the leave-one-out cross-validation error (i.e. the expected lower
bound on error) produced by a larger validation cohort.

doi:10.1371/journal.pone.0117900.g001
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between pixels. The first stage requires all partitioning of the dataset to be performed at the pa-
tient-level, ensuring that pixels from a single patient will not be included in both the training
and testing sets. In the second stage, pixel-level classification is performed by training the clas-
sifier using pixels from all images (and both classes) in the training set and evaluating against
pixels from all images in the testing set. The resulting error rates are used to extrapolate classifi-
er performance as previously described for the traditional patient-level RRS.

This paper focuses on comparing the performance of three exemplar classifiers: (1) the non-
parametric k-nearest neighbor (kNN) classifier [8], (2) the probabilistic naive Bayes (NB) clas-
sifier that assumes an underlying Gaussian distribution [8], and (3) a non-probabilistic Support
Vector Machine (SVM) classifier that aims to maximize class separation using a radial basis
function (RBF) kernel. Each of these classifiers has previously been used for a variety of com-
puterized image analysis tasks in the context of medical imaging [17, 18]. All classifiers are
evaluated on three distinct classification problems: (1) detection of cancerous image regions in
prostate cancer (PCa) histopathology [5], (2) grading of cancerous nuclei in breast cancer
(BCa) histopathology [19], and (3) detection of cancerous metavoxels on PCa magnetic reso-
nance spectroscopy (MRS) [16].

The novel contributions of this work include (1) more stable learning curves due to the in-
corporation of cross-validation into the RRS scheme, (2) a comparison of performance across
multiple classifiers as dataset size increases, and (3) enabling a power analysis of classifiers op-
erating on the pixel/voxel level (as opposed to patient/sample level), which cannot be currently
done via standard sample power calculators.

The remainder of the paper is organized as follows. First, theMethods section presents a de-
scription of the methodology used in this work. Experimental Design includes a description of

Fig 2. A flowchart describing the methodology used in this paper. First, a dataset is partitioned into training and testing pools using a K-fold sampling
strategy (red box). Each of the K training pools undergoes traditional repeated random sampling (RRS), in which error rates are calculated at different training
set sizes n via a subsampling procedure. A permutation test is used to identify statistically significant error rates, which are then used to extrapolate learning
curves and predict error rates for larger datasets. The extension to pixel-level data employs the same sampling and error rate estimation strategies shown in
this flowchart; however, the classifiers used for calculating the relevant error rates are trained and evaluated on pixel-level features from the training sets and
testing pool, respectively.

doi:10.1371/journal.pone.0117900.g002
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the datasets and experimental parameters used for evaluation. Results and Discussion are sub-
sequently presented for all experiments, followed by Concluding Remarks.

Methods

Notation
For all experiments, a datasetD is divided into independent trainingN�D and a testing T�
D pools, whereN\T = ;. The class label of a sample x 2D is denoted by yt 2 {ω1, ω2}. A set of
training set sizesN = {n1, n2, . . ., nN}, where 1� n� jNj and j�j denotes set cardinality.

Subsampling test to calculate error rates for multiple training set sizes
The estimation of classifier performance first requires the construction of multiple classifiers
trained on repeated subsampling of the limited dataset. For each training set size n 2 N, a total
of T1 subsets S(n)�N, each containing n samples, are created by randomly sampling the
training poolN. For each n 2N and i 2 {1, 2, . . ., T1}, the subset Si(n) 2 S is used to train a cor-
responding classifier Hi(n). Each Hi(n) is evaluated on the entire testing set T to produce an
error rate ei(n). The mean error rate for each n 2 N is calculated as

�eðnÞ ¼ 1

T1

XT1

i

eiðnÞ: ð1Þ

Permutation test to evaluate statistical significance of error rates
Permutation tests are a well-established, non-parametric approach for implicitly determining
the null distribution of a test statistic and are primarily employed in situations involving small
training sets that contain insufficient data to make assumptions about the underlying data dis-
tribution [11, 20]. In this work, the null hypothesis states that the performance of the actual
classifier is similar to “intrinsic noise” of a randomly trained classifier. Here, a randomly
trained classifier is modeled through repeated calculation of error rates from classifiers trained
on data with randomly selected class labels.

To ensure the statistical significance of the mean error rates �eðnÞ calculated in Eq 1, the per-
formance of training set Si(n) is compared against the performance of randomly labeled train-

ing data. For each Si(n) 2 S(n), a total of T2 subsets Ŝ ðnÞ � N , each containing n samples, are

created. For each n 2N, i 2 {1, 2, . . ., T1}, and j 2 {1, 2, . . ., T2}, the subset Ŝi;jðnÞ 2 Ŝ is as-

signed a randomized class label yr 2 {ω1, ω2} and used to train a corresponding classifier

Ĥ i;jðnÞ. Each Ĥ i;jðnÞ is evaluated on the entire testing set T to produce an error rate êi;jðnÞ. For
each n, a p-value

Pn ¼
1

T1

1

T2

XT1

i¼1

XT2

j¼1

yð�eðnÞ � êi;jðnÞÞ; ð2Þ

where θ(z) = 1 if z� 0 and 0 otherwise. Pn is calculated as the fraction of randomly-labeled

classifiers Ĥ i;jðnÞ with error rates �ei;jðnÞ exceeding the mean error rate �eðnÞ; 8n 2 N. The mean

error rate �eðnÞ is deemed to be valid for model-fitting only if Pn< 0.05, i.e. there is a statistically
significant difference between �eðnÞ and fêi;jðnÞ; 8i 2 f1; 2; . . . ;T1g; 8j 2 f1; 2; . . . ;T2gg.
Hence, the set of valid training set sizesM = {n:n 2 N, Pn < 0.05} includes only those n 2 N
that have passed the significance test.
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Cross-validation strategy for selection of training and testing pools
The selection of trainingN and testing T pools from the limited datasetD is governed by a K-
fold cross-validation strategy. In this paper, the datasetD is partitioned into K = 4 pools in
which one pool is used for evaluation while the remaining K − 1 pools are used for training to
produce mean error rates �ekðnÞ, where k 2 {1, 2, . . ., K}. The pools are then rotated and the sub-
sampling and permutation tests are repeated until all pools have been evaluated exactly once.
This process is repeated over R cross-validation trials, yielding mean error rates �ek;rðnÞ where r
2 {1, 2, . . ., R}. For all training set sizes that have passed the significance test, i.e. 8n 2M, learn-
ing curves are generated from a comprehensive mean error rate

�eðnÞ ¼ 1

K
1

R

XK

k¼1

XR

r¼1

�ek;rðnÞ; ð3Þ

calculated over all cross-validation folds k 2 {1, 2, . . ., K} and iterations r 2 {1, 2, . . ., R}.

Estimation of power law model parameters
The power-law model [11] describes the relationship between error rate and training set size

�eðnÞ ¼ an�a þ b; ð4Þ
where �eðnÞ is the comprehensive mean error rate (Eq 3) for training set size n, a is the learning
rate, and α is the decay rate. The Bayes error rate b is defined as the lowest possible error given
an infinite amount of training data [8]. The model parameters a, α, and b are calculated by
solving the constrained non-linear minimization problem

min
a;a;b

XjMj

m¼1

ðanmS
�a þ b� �eðnÞÞ2; ð5Þ

where a, α, b� 0.

Extension of error rate prediction to pixel- and voxel-level data
The methodology presented in this work can be extended to such pixel- or voxel-level data by
first selecting training set sizes N at the patient-level. Definition of the K training and testing
pools as well as creation of each subsampled training set Si(n) 2 S are also performed at the pa-
tient-level. Training of the corresponding classifier Hi(n), however, is performed at the pixel-
level by aggregating pixels for all patients in Si(n). A similar aggregation is done for all patients
in the testing pool T. By ensuring that all pixels from a given patient remain together, we are
able to perform pixel-level calculations while avoiding the sampling bias that occurs when pix-
els from a single patient span both training and testing sets.

Experimental Design
Our methodology is evaluated on a synthetic dataset and 3 actual classification tasks tradition-
ally affected by limitations in the availability of imaging data (Table 1). All experiments have a
number of parameters in common, including T1 = 50 subsampling trials, T2 = 50 permutation
trials, and R = 10 independent trials of K = 4 fold cross-validation. In addition, all experiments
employ the k-nearest neighbor (kNN), naive Bayes (NB), and Support Vector Machine (SVM)
classifiers. A more detailed description of each classifier is presented in S1 Appendix. In each
experiment, validation is performed via leave-one-out (LOO) classification on a larger dataset,
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which allows us to maximize the number of training samples used for classification while yield-
ing the expected lower bound of the error rate.

Ethics Statement
The three different datasets used in this study were retrospectively acquired from independent
patient cohorts, where the data was initially acquired under written informed consent at each
collecting institution. All 3 datasets comprised de-identified medical image data and provided
to the authors through the IRB protocol # E09-481 titled “Computer-Aided Diagnosis of Can-
cer” and approved by the Rutgers University Office of Research and Sponsored Programs. Fur-
ther written informed consent was waived by the IRB board, as all data was being analyzed
retrospectively, after de-identification.

Experiment 1: Identifying cancerous tissue in prostate cancer
histopathology
Automated systems for detecting PCa on biopsy specimens have the potential to act as (1) a tri-
age mechanism to help pathologists spend less time analyzing samples without cancer and (2)
an initial step for decision support systems that aim to quantify disease aggressiveness via auto-
mated Gleason grading [5]. DatasetD1 comprises anonymized hematoxylin and eosin (H & E)
stained needle-core biopsies of prostate tissue digitized at 20x optical magnification on a
whole-slide digital scanner. Regions corresponding to PCa were manually delineated by a pa-
thologist and used as ground truth. Slides were divided into non-overlapping 30 × 30-pixel tis-
sue regions and converted to a grayscale representation. A total of 927 features including first-
order statistical, Haralick co-occurrence [21], and steerable Gabor filter features were extracted
from each image [22] (Table 2). Due to the small number of training samples used in this
study, the feature set was first reduced to two descriptors via the minimum redundancy maxi-
mum relevance (mRMR) feature selection scheme [23], primarily to avoid the curse of di-
mensionality [8]. A relatively small dataset of 100 image regions, with training set sizesN =
{25, 30, 35, 40, 45, 50, 55}, was used to extrapolate error rates (Table 1). LOO cross-validation
was subsequently performed on a larger dataset comprising 500 image regions.

Experiment 2: Distinguishing high and low tumor grade in breast cancer
histopathology
Nottingham, or modified Bloom-Richardson (mBR), grade is routinely used to characterize
tumor differentiation in breast cancer (BCa) histopathology [24]; yet, it is known to suffer
from high inter- and intra-pathologist variability [25]. Hence, researchers have aimed to devel-
op quantitative and reproducible classification systems for differentiating mBR grade in BCa

Table 1. List of the breast cancer and prostate cancer datasets used in this study.

Notation Description # train. samples # valid. samples

D1 Prostate: Cancer detection on histopathology 100 500

D2 Breast: Cancer grading on histopathology 46 116

D3 Prostate: Cancer detection on MRS 16 34

For D1 and D2, each sample is treated independently during the selection of training and testing sets. For D3, training and testing sets are selected at the

patient-level, while classification is performed at the metavoxel-level by using all metavoxels from both classes for a specified patient.

doi:10.1371/journal.pone.0117900.t001
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histopathology [19]. DatasetD2 comprises 2000 × 2000 image regions taken from anonymized
H & E stained histopathology specimens of breast tissue digitized at 20x optical magnification
on a whole-slide digital scanner. Ground truth for each image was determined by an expert pa-
thologist to be either low (mBR< 6) or high (mBR> 7) grade. First, boundaries of 30–40 rep-
resentative epithelial nuclei were manually segmented in each image region (Fig 3). Using the
segmented boundaries, a total of 2343 features were extracted from each nucleus to quantify

Table 2. A summary of all features extracted from prostate cancer histopathology images in dataset
D1. All textural features were extracted separately for red, green, and blue color channels.

Features Parameters

Texture: Gray-level (Average, Median, Standard Deviation,
Range, Sobel, Kirsch, Gradient, Derivative)

window sizes: {3, 5, 7}

Texture: Haralick co-occurrence (Joint Entropy, Energy,
Inertia, Inverse Difference Moment, Correlation,
Measurements of Correlation, Sum Average, Sum
Variance, Sum Entropy, Difference Average, Difference
Variance, Difference Entropy, Shade, Prominence,
Variance)

window sizes: {3, 5, 7}

Texture: steerable Gabor filter responses (cosine and sine
components combined)

window sizes: {3, 5, 7} frequency shift: {0, 1,
. . ., 7} orientations: f0; p

8
; 2p

8
; . . . ; 7p

8
g

doi:10.1371/journal.pone.0117900.t002

Fig 3. Breast cancer (BCa) histopathology images from datasetD2. Examples of (a), (b) low modified-Bloom-Richardson (mBR) grade and (c), (d) high
mBR grade images are shown with boundary annotations (green outline) for exemplar nuclei. A variety of morphological and textural features are extracted
from the nuclear regions, including (e)-(h) the Sum Variance Haralick textural response.

doi:10.1371/journal.pone.0117900.g003
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both nuclear morphology and nuclear texture (Table 3). A single feature vector was subse-
quently defined for each image region by calculating the median feature values of all constitu-
ent nuclei. Similar to Experiment 1, mRMR feature selection was used to isolate the two most
important descriptors. Error rates were extrapolated from a small dataset comprising 45 images
with training set sizes N = {20, 22, 24, 26, 28, 30, 32}, while LOO cross-validation was subse-
quently performed on a larger dataset comprising 116 image regions (Table 1).

Experiment 3: Identifying cancerous metavoxels in prostate cancer
magnetic resonance spectroscopy
Magnetic resonance spectroscopy (MRS), a metabolic non-imaging modality that obtains the
metabolic concentrations of specific molecular markers and biochemicals in the prostate, has
previously been shown to supplement magnetic resonance imaging (MRI) in the detection of
PCa [16, 26]. These include choline, creatine, and citrate, and changes in their relative concen-
trations (choline/citrate or [choline+creatine)/citrate], which have been shown to be linked to
presence of PCa [27]. Radiologists typically assess presence of PCa on MRS by comparing ra-
tios between choline, creatine, and citrate peaks to predefined normal ranges. DatasetD3 com-
prises 34 anonymized 1.5 Tesla T2-weighted MRI and MRS studies obtained prior to radical
prostatectomy, where the ground truth was defined (as cancer and benign metavoxels) via visu-
al inspection of MRI and MRS by an expert radiologist [16] (Fig 4). Six MRS features were de-
fined for each metavoxel by calculating expression levels for each metabolite as well as ratios
between each pair of metabolites. Similar to Experiment 1, mRMR feature selection was used
to identify the two most important features in the dataset. Error rates were extrapolated from a
dataset of 16 patients using training set sizes N = {2, 4, 6, 8, 10, 12}, followed by LOO cross-val-
idation on a larger dataset of 34 patients (Table 1).

Comparison with traditional RRS via interquartile range (IQR)
This experiment compares the results of Experiment 1 with the traditional RRS approach,
using both datasetD1 and corresponding experimental parameters from Experiment 1.

Table 3. A summary of all features extracted from breast cancer histopathology images in datasetD2.
All textural features were extracted separately for red, green, and blue color channels from the RGB color
space and the hue, saturation, and intensity color channels from the HSV color space.

Features Parameters

Morphological: Basic (Area, Major Axis Length, Minor Axis
Length, Eccentricity, Convex Area, Filled Area, Equivalent
Diameter, Solidity, Extent, Perimeter, Area Overlap,
Average Radial Ratio, Compactness, Convexity,
Smoothness, Std. Dev. of Distance Ratio)

–

Morphological: Fourier Descriptors orientations: f0; p
6
; 2p

6
; . . . ; 5p

6
g

Texture: Gray-level (Average, Median, Standard Deviation,
Range, Sobel, Kirsch, Gradient, Derivative)

window sizes: {3, 5, 7}

Texture: Local binary patterns window size: 3 offsets: {0, 1, . . ., 7}
directions: clockwise, counter-clockwise

Texture: Laws (pairwise convolution of Level, Edge, Spot,
Wave, Ripple filters)

–

Texture: steerable Gabor filter responses (cosine and sine
components are separate features)

window sizes: {3, 5, 9} orientations:
f0; p

12
; 2p
12
; . . . ; 6p

12
g

doi:10.1371/journal.pone.0117900.t003

Predicting Classifier Performance from Limited Medical Imaging Data

PLOS ONE | DOI:10.1371/journal.pone.0117900 May 18, 2015 9 / 18



However, since traditional RRS does not use cross-validation, a total of T̂ 1 ¼ T1 � K � R sub-
sampling procedures are used to ensure that same number of classification tasks are performed
for both approaches. Evaluation is performed via (1) comparison of the learning curves be-
tween the two methods and (2) the interquartile range (IQR), a measure of statistical variability
defined as the difference between the 25th and 75th percentile error rates from the
subsampling procedure.

Synthetic experiment using pre-defined data distributions
The ability of our approach to produce accurate learning curves with low variance was evaluat-
ed using a 2-class synthetic dataset, in which each class is defined by randomly selected samples
from a two-dimensional Gaussian distribution (Fig 5). Learning curves are created from a
small dataset comprising 100 samples (Fig 5(a)) using training set sizes N = {25, 30, 35, 40, 45,
50, 55} in conjunction with a kNN classifier. Validation is subsequently performed on a larger
dataset containing 500 samples (Fig 5(b)).

Results and Discussion

Experiment 1: Distinguishing cancerous and non-cancerous regions in
prostate histopathology
Error rates predicted by NB and SVM classifiers are similar to those from their LOO error rates
of 0.1312 and 0.1333 (Fig 6(b) and 6(c)). In comparison to the learning curves, the slightly
lower error rate produced by the validation set is to be expected since the LOO classification is
known to produce an overly optimistic estimate of the true error rate [28]. The kNN classifier
appears to overestimate error considerably compared to the LOO error of 0.1560, which is not
surprising because kNN is a non-parametric classifier that is expected to be more unstable for
heterogeneous datasets (Fig 6(a)). Comparison across classifiers suggests that both NB and
SVM will outperform kNN as dataset size increases (Fig 6(d)). Although the differences be-
tween the mean NB and SVM learning curves are minimal, the 25th and 75th percentile curves
suggest that the prediction made by NB is more stable and has lower variance than the
SVM prediction.

Fig 4. Magnetic resonance spectroscopy (MRS) data from datasetD3. (a) A study from datasetD3 showing an MR image of the prostate with MRS
metavoxel locations overlaid. (b) For ground truth, each MRS spectrum is labeled as either cancerous (red and orange boxes) or benign (blue boxes). Green
boxes correspond to metavoxels outside the prostate for which MRS spectra were suppressed during acquisition.

doi:10.1371/journal.pone.0117900.g004
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Experiment 2: Distinguishing low and high grade cancer in breast
histopathology
Learning curves from kNN and NB classifiers yield predicted error rates similar to their LOO
cross-validation errors (0.1552 for both classifiers) as shown in Fig 7(a) and 7(b). By contrast,
while error rates predicted by the SVM classifier are reasonable (Fig 7(c)), they appear to un-
derestimate the LOO error of 0.1724. One reason for this discrepancy may be the class imbal-
ance present in the validation dataset (79 low grade and 37 high grade), since SVM classifiers
have been demonstrated to perform poorly on datasets where the positive class (i.e. high grade)
is underrepresented [29]. Similar toD1, a comparison between the learning curves reflects the
superiority of both NB and SVM classifiers over the kNN classifier as dataset size increases (Fig
7(d)). However, the relationship between the NB and SVM classifiers is more complex. For
small training sets, the NB classifier appears to outperform the SVM classifier; yet, the SVM
classifier is predicted to yield lower error rates for larger datasets (n> 60). This suggests that
the classifier yielding the best results for the smaller dataset may not necessarily be the optimal
classifier as the dataset increases in size.

Experiment 3: Distinguishing cancerous and non-Cancerous
metavoxels in prostate MRS
Similar to datasetD1, the LOO error for both the NB and SVM classifiers (0.2248 and 0.2468,
respectively) fall within the range of the predicted error rates (Fig 8(b) and 8(c)). Once again,
the kNN classifier overestimates the LOO error (0.2628), which is most likely due to the high
level of variability in the mean error rates used for extrapolation (Fig 8(a)). While both NB and
SVM classifiers outperform the kNN classifier, their learning curves show a clearer separation
between the extrapolated error rates for all dataset sizes, suggesting that the optimal classifier
selected from the smaller dataset will hold true as even as dataset size increases (Fig 8(d)).

Fig 5. A synthetic dataset is used to validate our cross-validated repeated random sampling (RRS) method. In this dataset, each class is defined by
samples drawn randomly from an independent two-dimensional Gaussian distribution. (a) A small set comprising 100 samples is used for creation of the
learning curves and (b) a larger set comprising 500 samples is used for validation.

doi:10.1371/journal.pone.0117900.g005
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Comparison with traditional RRS
The quantitative results in Tables 4–6 suggest that employing a cross-validation sampling strat-

egy yields more consistent error rates. In Table 4, traditional RRS yielded a mean IQR (IQR of

0.0297 across all n 2 N; whereas our approach demonstrated a lower IQR of 0.0070. Further-
more, a closer look at the learning curves for these error rates (Fig 9) suggests that traditional
RRS is sometimes unable to accurately extrapolate learning curves. Similarly, Tables 5 and 6

show lower IQR values for our approach (0.0127 and 0.0140, respectively) than traditional
RRS (0.0779 and 0.305, respectively) for datasetsD2 andD3. This phenomenon is most likely
due to the high level of heterogeneity in medical imaging data and demonstrates the impor-
tance of rotating the training and testing pools to avoid biased error rates that do not generalize
to larger datasets.

Fig 6. Experimental results for datasetD1. Learning curves (blue line) generated for datasetD1 using mean error rates (black squares) calculated from (a)
kNN, (b) NB, and (c) SVM classifiers. Each classifier is accompanied by curves for the 25th (green dashed line) and 75th (red dashed line) percentile of the
error as well as LOO error on the validation cohort (yellow star). (d) A direct classifier comparison is made in terms of the mean error rate predicted by each
learning curve in (a)-(c).

doi:10.1371/journal.pone.0117900.g006
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Evaluation of synthetic dataset
The reduced variability of cross-validated RRS over traditional RRS is further validated by
learning curves generated from the synthetic dataset (Fig 10). Error rates from our approach
demonstrate low variability and the ability to create learning curves that can accurately predict
the error rate of the validation set (Fig 10(b)). The cross-validated RRS approach yields a mean

IQR (IQR = 0.0066) that is an order of magnitude less than traditional RRS (IQR = 0.074).

Concluding Remarks
The rapid development of biomedical imaging-based classification tasks has resulted in the
need for predicting classifier performance for large data cohorts given only smaller pilot studies

Fig 7. Experimental results for datasetD2. Learning curves (blue line) generated for datasetD2 using mean error rates (black squares) calculated from (a)
kNN, (b) NB, and (c) SVM classifiers. Each classifier is accompanied by curves for the 25th (green dashed line) and 75th (red dashed line) percentile of the
error as well as LOO error on the validation cohort (yellow star). (d) A direct classifier comparison is made in terms of the mean error rate predicted by each
learning curve in (a)-(c).

doi:10.1371/journal.pone.0117900.g007

Predicting Classifier Performance from Limited Medical Imaging Data

PLOS ONE | DOI:10.1371/journal.pone.0117900 May 18, 2015 13 / 18



Fig 8. Experimental results for datasetD3. Learning curves (blue line) generated for datasetD3 using mean error rates (black squares) calculated from (a)
kNN, (b) NB, and (c) SVM classifiers. Each classifier is accompanied by curves for the 25th (green dashed line) and 75th (red dashed line) percentile of the
error as well as LOO error on the validation cohort (yellow star). (d) A direct classifier comparison is made in terms of the mean error rate predicted by each
learning curve in (a)-(c).

doi:10.1371/journal.pone.0117900.g008

Table 4. Mean interquartile range (IQR) demonstrates decreased variability of cross-validated random repeated sampling (RRS) over traditional
RRS in datasetD1.

n = 25 n = 30 n = 35 n = 40 n = 45 n = 50 n = 55 IQR

No CV P25 0.0833 0.0833 0.0417 0.0417 0.0417 0.0417 0.0833 0.0297

P75 0.1250 0.0833 0.0833 0.0833 0.0833 0.0833 0.0833

With CV P25 – – 0.1563 0.1579 0.1538 0.1514 0.1522 0.0070

P75 – – 0.1609 0.1657 0.1618 0.1596 0.1588

A comparison between 25th (P25) and 75th (P75) percentile error rates for dataset D1 using traditional RRS (No CV) and our approach (With CV), with

mean interquartile range (IQR) shown across all n. Missing values correspond to error rates that did not achieve significance in the permutation test.

doi:10.1371/journal.pone.0117900.t004
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Table 6. Mean interquartile range (IQR) demonstrates decreased variability of cross-validated random repeated sampling (RRS) over traditional
RRS in datasetD3.

n = 2 n = 4 n = 6 n = 8 n = 10 n = 12 IQR

No CV P25 0.2242 0.2113 0.2113 0.2191 0.2294 0.2474 0.0305

P75 0.2809 0.2577 0.2500 0.2448 0.2448 0.2474

With CV P25 0.3176 0.3026 0.2950 0.2873 0.2874 0.2829 0.0140

P75 0.3345 0.3170 0.3065 0.3003 0.2993 0.2991

A comparison between 25th (P25) and 75th (P75) percentile error rates for dataset D3 using traditional RRS (No CV) and our approach (With CV), with

mean interquartile range (IQR) shown across all n. Missing values correspond to error rates that did not achieve significance in the permutation test.

doi:10.1371/journal.pone.0117900.t006

Fig 9. Comparison between traditional random repeated sampling (RRS) and our cross-validated approach. Learning curves generated for dataset
D1 using (a) traditional RRS and (b) cross-validated RRS in conjunction with a Naive Bayes classifier. For both figures, mean error rates from the
subsampling procedure (black squares) are used to extrapolate learning curves (solid blue line). Corresponding learning curves for 25th (green dashed line)
and 75th (red dashed line) percentile of the error are also shown. The error rate from leave-one-out cross-validation is illustrated by a yellow star.

doi:10.1371/journal.pone.0117900.g009

Table 5. Mean interquartile range (IQR) demonstrates decreased variability of cross-validated random repeated sampling (RRS) over traditional
RRS in datasetD2.

n = 20 n = 22 n = 24 n = 26 n = 28 n = 30 n = 32 IQR

No CV P25 0.1818 0.1818 0.1818 0.1818 0.1818 0.1818 0.1818 0.0779

P75 0.2727 0.2727 0.2727 0.2727 0.2727 0.2727 0.1818

With CV P25 0.2456 0.2489 0.2410 0.2347 0.2289 0.2311 0.2190 0.0127

P75 0.2456 0.2496 0.2494 0.2469 0.2506 0.2498 0.2463

A comparison between 25th (P25) and 75th (P75) percentile error rates for dataset D2 using traditional RRS (No CV) and our approach (With CV), with

mean interquartile range (IQR) shown across all n. Missing values correspond to error rates that did not achieve significance in the permutation test.

doi:10.1371/journal.pone.0117900.t005
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with limited cohort sizes. This is important because, early in the development of a clinical trial,
researchers need to: (1) predict long-term error rates when only small pilot studies may be
available and (2) select the classifier that will yield the lowest error rates when large datasets are
available in the future. Predicting classifier performance from small datasets is difficult because
the resulting classifiers often produce unstable decisions and yield high error rates. In these sce-
narios, traditional RRS approaches have previously been used to extrapolate classifier perfor-
mance (e.g. for gene expression data). Due to the heterogeneity present in biomedical imaging
data, we employ an extension of RRS in this work that uses cross-validation sampling to ensure
that all samples are used for both training and testing the classifiers. In addition, we apply RRS
to voxel-level studies where data from both classes is found within each patient study, a concept
that has previously been unexplored in this regard. Evaluation was performed on three classifi-
cation tasks, including cancer detection in prostate histopathology, cancer grading in breast
histopathology, and cancer detection in prostate MRS.

We demonstrated the ability to calculate error rates with relatively low variance from three
distinct classifiers (kNN, NB, and SVM). A direct comparison of the learning curves showed
that the more robust NB and SVM classifiers yielded lower error rates than the kNN classifier
for both small and large datasets. A limitation of this work is that all datasets comprise an
equal number of samples from each class in order to reduce classifier bias from a machine
learning standpoint. However, future work will focus on application to imbalanced datasets
where class distribution is based on the overall population (e.g. clinical trials). In addition, we
will incorporate additional improvements to the RRS method (e.g. subsampling of testing set
as in RIDT) while maintaining a robust cross-validation sampling strategy. Additional direc-
tions for future research include analyzing the effect of (a) noisy data on different classifiers
[30] and (b) ensemble classification methods (e.g. Bagging) on classifier variability in small
training sets.

Fig 10. Evaluation of our cross-validated repeated random sampling (RRS) on the synthetic dataset. Learning curves generated for the synthetic
dataset using (a) traditional RRS and (b) cross-validated RRS in conjunction with a kNN classifier (k = 3). For both figures, mean error rates from the
subsampling procedure (black squares) are used to extrapolate learning curves (solid blue line). Corresponding learning curves for 25th (green dashed line)
and 75th (red dashed line) percentile of the error are also shown. The error rate from leave-one-out cross-validation is illustrated by a yellow star.

doi:10.1371/journal.pone.0117900.g010
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Supporting Information
S1 Appendix. Description of classifiers. Each experiment in this paper employs three classifi-
ers: k-nearest neighbor (kNN), Naive Bayes (NB), and Support Vector Machine (SVM). For
ease of the reader we provide a metholodogical summary for each of these classifiers with ap-
propriate descriptions and equations.
(PDF)
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