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The most prevalent cause of mortality and morbidity worldwide is acute coronary syndrome (ACS) and its consequences.
Exposure to particulate matter (PM) from air pollution has been shown to impair both. Various plausible pathogenic
mechanisms have been identified, including microRNAs (miRNAs), an epigenetic regulator for gene expression. Endogenous
miRNAs, average 22-nucleotide RNAs (ribonucleic acid), regulate gene expression through mRNA cleavage or translation
repression and can influence proinflammatory gene expression posttranscriptionally. However, little is known about miRNA
responses to fine PM (PM, 5, PM,,, ultrafine particles, black carbon, and polycyclic aromatic hydrocarbon) from air pollution
and their potential contribution to cardiovascular consequences, including systemic inflaimmation regulation. For the past
decades, microRNAs (miRNAs) have emerged as novel, prospective diagnostic and prognostic biomarkers in various illnesses,
including ACS. We wanted to outline some of the most important studies in the field and address the possible utility of

miRNAs in regulating particulate matter-induced ACS (PMIA) on inflammatory factors in this review.

1. Introduction

Air pollution has been considered a major public health
threat and has caused about seven million deaths every year,
according to the World Health Organization (WHO) [1].
The complex mixture of air pollutants arises from particu-
late matter (PM), chemical substances, and biological mate-
rials which are emitted from a natural process (volcano,
oceans, forest, etc.) or anthropogenic activities (industry or
transportation) [2]. With the increasing demands of global
energy, the generation of the combustion of fossil fuels,
including coal, diesel fuel, gasoline, and natural gas for
electricity, heating, industry, and transportation, is also
increased [3]. This has resulted in the higher release of air
pollutants whereby air pollution was a major burden to an
individual, especially to those living in the growing eco-

nomic countries [4]. Of these, it is greatly important to
address air pollution issues where reducing air pollution will
meet the Sustainable Development Goals (SDG) proposed
by the United Nation (UN) in SDG 3, for good health and
well-being [5]. Increased PM from air pollution contributes
to the occurrence of acute coronary syndrome (ACS) in sev-
eral studies [6]. MicroRNAs (miRNAs), a short noncoding
RNA, have been observed in few studies to be dysregulated
in inflammatory modulation in cardiovascular disorder
exposed to PM [7-9]. The aim of this review is to look at
the potential role of miRNAs in the regulation of inflamma-
tory factors in particulate matter-induced ACS (PMIA).

The references of this narrative review paper were
searched through PubMed and Google Scholar. The key-
words used were particulate matter, air pollution, acute
coronary syndrome, miRNA, and inflammation.
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L.1. Common Air Pollutants. There is growing awareness of
health outcomes related to air pollution from short- and
long-term exposure to air pollutants. Many studies have
reported the adverse health effects linked with heart diseases
from these exposures [10-13]. This showed how crucial the
air pollutants’ role is in cardiovascular events and outcomes.
PM can be differentiated by ranging size of aerodynamic
diameter (AD) from 2.5 to 10um (including PM, ; and
PM,,) and chemical composition (including black carbon,
polycyclic aromatic hydrocarbon, and trace metals). Organic
aerosol is mainly the result of anthropogenic emissions such
as vehicle emissions, residential fuel combustion, and wild-
fires, representing a large proportion of PM. It is estimated
that 180,000 (117,000 to 389,000) premature deaths were
prevented from reducing anthropogenic organic aerosol
between 1990 and 2012 [14]. Table 1 shows the summary
of the sources of PM, ., PM,,, ultrafine particle (UFP, AD
less than 0.1 um), black carbon (BC), and polycyclic aro-
matic hydrocarbons (PAHs). According to a study con-
ducted in a medium-sized Dutch city, UFP and BC
concentrations in transportation zones more than doubled
between 8 a.m. and 10 a.m. compared to those recorded at
an urban background location [15]. In PM, . containing
the ultrafine fraction, PAH concentrations were 12-fold
higher than M, . , ;, which may be explained by combustion
processes that produce ultrafine particles containing high
concentrations of PAHs [16, 17]. Among the most signifi-
cant ultrafine particle (UFP) sources in urbanised areas are
diesel combustion and solid biomass combustion [18]. Bio-
markers associated with inflammation (CCXL2, EPGN,
GREM1, IL-1a, IL-1pB, IL-6, IL-24, EREG, and VEGF) and
transcription factors (NFE2L2, MAFF, HES1, FOSL1, and
TGIF1) relevant for cardiovascular and lung disease are
secreted in response to diesel UFP exposure [19]. According
to one in vitro study, PM, . increased gene alteration, DNA
damage, cytotoxicity, and reactive oxygen species (ROS) in
the A549 cell line, most likely due to CYP enzyme activation
in response to polycyclic aromatic hydrocarbons (PAHs)
adsorbed to the particle surface [20].

Air pollution is also composed of gaseous pollutants
including nitrogen dioxide (NO,), ozone (O;), sulphur diox-
ide (SO,), volatile organic compounds (VOCs), and carbon
monoxide (CO). However, these gaseous pollutants except
for NO, [21, 22] are not widely reported about their acute
or chronic effect relationship with cardiovascular health
compared to particulate matters (PM). Ambient NO, is
known as a good proxy for traffic-related air pollution along-
side the presence of particulate pollutants such as PM, 5 and
PM,, [23]. NO, is part of reactive gas of nitrogen oxides
(NOx) and produced from combustion processes such as traf-
fic emissions and power plant in the outdoor environment,
whereas NO, is generated from unvented heaters and gas
stoves in the indoor environment [24]. O, forms from a pho-
tochemical reaction between sunlight with the presence of its
precursors such as NO, and VOCs which derived it as a
secondary gaseous pollutant. Study from ninety largest cities
in the United States by the National Morbidity, Mortality,
and Air Pollution Study (NMMAPS) observed that
cardiopulmonary-related mortality rose by the increment of
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PM,, within a 24-hour period [25]. In another study, daily
concentration of PM,, was significantly having an impact on
ACS incidence, higher on elderly with the highest impact on
older men [6]. Moreover, increase in PM,, pollution was
noted to have relation to rise in frequency of percutaneous
coronary interventions (PCIs) in ACS patients [26].

1.2. ACS. Cardiovascular disease (CVD) is one of the main
causes of mortality and morbidity [27]. One of the impor-
tant causes of mortality and morbidity related to CVD is
acute coronary syndrome (ACS). The estimated incidence
of ACS is 141 per 100,000 population per year, and the inpa-
tient mortality rate is approximately 7% [28, 29]. The figures
are similar to many developed countries. ACS is a syndrome
due to decreased blood flow in the coronary arteries that
leads to ischaemia, reduction in heart function, and myocar-
dium cell death [30]. The most common symptom is chest
pain, often radiating to the left shoulder or angle of the jaw
(crushing, central) and associated with nausea and sweating
[31]. ACS is commonly associated with three clinical mani-
festations, named according to the appearance of the electro-
cardiogram (ECG): ST elevation myocardial infarction
(STEMI, 30%), non-ST elevation myocardial infarction
(NSTEMI, 25%), or unstable angina (38%) [32, 33].

ACS occurs due to atherosclerotic plaque (atheroma)
rupture, fissure, or ulceration with superimposed thrombosis
and coronary vasospasm. Depending on the acuteness, the
degree of occlusion, and the presence of collaterals, patients
can present as having UA (unstable angina), NSTEMI, or
STEMI. In those who have ACS, atheroma rupture is the
most found compared to atheroma erosion [34], thus caus-
ing the formation of thrombus which blocks the coronary
arteries. The diagnosis of ACS requires at least two of the
following: ischemic symptoms, diagnostic ECG changes,
and serum cardiac marker elevation [35]. ACS often reflects
a degree of damage to the coronaries by atherosclerosis. Pri-
mary prevention of atherosclerosis is controlling the risk fac-
tors: healthy eating, exercise, treatment for hypertension and
diabetes, avoiding smoking, and controlling cholesterol
levels [36]. The management in ACS includes medication
such as antiplatelet, betablocker, ACE inhibitor, lipid lower-
ing agent, anticoagulant, thrombolytic treatment, and inva-
sive percutaneous coronary intervention [37]. Hazard from
the exposure to particulate matters has shown to have strong
association with ACS that leads to severe detrimental effects
on the cardiovascular system through numerous mecha-
nisms including increased inflammation response, oxidative
stress, endothelial injury, cell apoptosis, and mitochondrial
dysfunction [38]. A study reported that significant 18%
increase in the risk of STEMI was linked to each 7.1 g/m” rise
in PM,  concentration before the onset of ACS [39]. Micro-
RNAs have been shown to contribute as biomarkers in ACS
[40]. One study showed, in plasma of myocardial infarction
patients, the cardiac myocyte-associated miRNAs, and miR-
208b and miR-499 were significantly elevated. Both miRNAs
were positively correlated with plasma troponin T, indicat-
ing that the release of both was from injured cardiomyocytes
[41]. The studies may suggest that miRNAs and PM regulate
the cellular pathophysiology of ACS.
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TaBLE 1: Summary of particulate matter (PM) and its composition sources.

Particulate matter (PM)

Main source of emission

Reference

Traffic emissions (brake and vehicle exhaust)
Industrial emissions released from power plant and oil refinery
Secondary organic and inorganic aerosol

PM,

[11] ([104]; [105];
(14])

Road dust and tire wear

PM,,

Construction activities

([106]; [107])

Wildfires and windblown dust

Ultrafine particles (UFP)
Black carbon (BC)

Polycyclic aromatic
hydrocarbons (PAHs)

Tailpipe emissions from vehicle exhaust, diesel combustion, and solid biomass burning

Combustion process (vehicle exhaust emissions and cookstoves)
Incomplete combustion of fossil fuels, natural combustion (forest fires and volcanic
eruption), anthropogenic cause (wood, coal burning, vehicle exhaust emissions, heat an
power generation)

([106]; [11]; [18];
[108]; [88])
([109]; [106])

d ([110]; [16]; [111];
[171)

1.3. miRNAs. miRNAs are estimated to regulate more than
60% of human protein-coding genes at the translational level
[42]. These single-stranded nucleotides are the noncoding
RNAs, binding to the 3'untranslated region (3'UTR), 5’
untranslated region (5'UTR), protein-coding sequence, or
gene promoters that lead to degradation or repression of
the mRNAs at the posttranscriptional level [43]. miRNAs
are involved in various physiological processes including cell
cycle, cell proliferation, and apoptosis [43]. Some of the
miRNAs are reported in pathological dysregulation includ-
ing cancer [44], diabetes mellitus [45], and hypertension
[46]. In cardiovascular disorder, miRNAs were linked to var-
ious pathological events including ACS [40, 47, 48].

In recent years, there is substantial interest on epigenetic
regulatory mechanisms at the cellular level and their associ-
ation with air pollution including miRNAs [49-51]. miRNA,
as one of the main epigenetic regulators, has been proposed
to modulate the cellular event affected in those who were
exposed to PM [7, 8, 52, 53]. The studies suggested that there
are changes in miRNA expression in people that are exposed
to particulate matter (PM) in air pollution. On top of that,
these miRNAs are shown to have association with the genes
involved in cardiovascular morbidity [8, 54, 55].

2. miRNA Profiles of Air Pollution in ACS

2.1. miRNAs and PM. PM, . exposure from few hours to sev-
eral weeks can stimulate morbidity and mortality due to car-
diovascular disease. In contrast, reductions in PM levels are
associated with declines in cardiovascular mortality [56].

A randomised crossover study was designed towards 55
healthy young adults, comparing reduced or ambient levels
of indoor PM, . for 2-week duration; expression of miRNA,
mRNA, and protein of 10 serum cytokines was measured.
Further analysis showed that higher PM, ; exposure was
negatively associated with miR-1-3p, miR-146a-5p, miR-
187-3p, miR-199a-5p, and miR-21-5p [7].

In another study, the exposure length was limited to 24
hours. Strong evidence of high expression of let-7d-5p,
miR-24-3p, miR-425-5p, miR-4454, miR-4763-3p, miR-
502-5p, and miR-505-3p was found after exposure to
PM, s [52].

Turning now to the experimental evidence on myocar-
dial toxicity involvement, Feng et al. reported that PM,
could contribute to toxicity via miR-205, by negatively regu-
lating the IRAK2/TRAF6/NF-«B signalling pathway [55].

Furthermore, exposure to ambient PM, . revealed
increase level of miR-223-3p expressed in the extracellular
vesicle from serum samples [57]. miR-223 was shown to be
involved in endovascular inflammation and platelet activa-
tion. This serum-derived miRNAs in circulation were identi-
fied as cardiovascular mortality predictors in coronary artery
disease (CAD) [58].

Li et al. reported that let-7a, miR-146a-5p, and miR-155-
5p were highly expressed in respondents exposed to the ele-
vated level of PM exposure and decreased level of
interleukin-6 (IL-6) and toll-like receptor 2 (TLR2) mRNAs
[9]. However, this study did not specify the type of PM and
their specific changes in miRNA and mRNA expression. The
experiment utilised benzo[a]pyrene-r-7,t-8,t-9,c-10-tetrahy-
dotetrol-albumin (BPDE-AIlb) adducts in serum as the inter-
nal exposure biomarker of PM in general.

Similar to the previous experiment, PM, . exposure
upregulated miR-146a, miR-155, and other miRNAs (miR-
146b, miR-139, miR-129, miR-340, miR-691, miR-181a,
miR-21-3p, and miR-21-5p), and the experiment was set
up through intratracheal installation of PM, . in mice. Fur-
thermore, interleukin-4 (IL-4) was decreased. In contrast,
interferon gamma (IFN-y) was increased, and the IL-4/
IFN-y ratio was inclined to Thl shifting. This study con-
cluded that the acute exposure to PM, . increased the men-
tioned miRNAs and correlates with T lymphocyte immune
imbalance that stimulates Th1-biased immune response [59].

2.2. miRNAs and UFP (Ultrafine Particle). UFP is the ultra-
small and lightweight particle that has been reported to be
one of occupational inhalation risks. UFP sizes range from
0.0001 to 0.1 ym [60]. The accumulation of UFP to the lung
and various organs could lead to various morbidities includ-
ing thrombosis, ischaemia, and cardiovascular disease [61,
62]. Acute exposure to UFP in vivo demonstrated increase
in inflammation parameters and nitrate stress level, such as
serum IL-6, monocyte chemoattractant protein 1 (MCP-1),
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TaBLE 2: Summary of particulate matter (PM) and related miRNAs.

Particulate matter (PM) miRNAs Reference
miR-129, miR-139, miR-146a, miR-146b, miR-155, miR-340, miR-691, miR-181a, miR-21-
. [59]
3p, and miR-21-5p
miR-1-3p, miR-146a-5p, miR-187-3p, miR-199a-5p, and miR-21-5p [7]
PM, let-7d-5p, miR-24-3p, miR-425-5p, miR-4454, miR-4763-3p, miR-502-5p, and miR-505- 52]
3p

miR-205 [55]
miR-223-3p [57]
PM (general) let-7a, miR-146a-5p, and miR-155-5p 9]
miR-222 [64]
Ultrafine particle (UFP) let-7a, let-7b, let-7d, let-7e, miRNA-16, miR-155, miR-24, miR-27, and miRNA-34 [60]
miR-301b-3p and let-7c-1-3p [63]
Black carbon (BC) miR-135b, miR-146b, and miR-21 [67]
| . - vd b miR-181a, miR-181b, and miR-181d [75]
g‘,’ AYI?S ic aromatic hydrocarbons miR-24-3p, miR-27a-3p, miR-142-5p, and miR-28-5p and miR-150-5p [74]
miR-155 (8]

p47phox (known as NCF1 (neutrophil cytosolic factor 1)),
and 3-NT (nitration marker). Furthermore, both of the
in vivo and in vitro studies revealed upregulations of miR-
301b-3p and let-7c-1-3p with the downstream targets,
SMAD2, SMAD3, and transforming growth factor Sl
(TGFp1), indicating higher risk of atherosclerosis following
UFP exposure [63]. Another study reported that exposure
to UFP among school children was positively associated with
increased miR-222 from saliva samples [64]. miR-222 was
shown to protect pathological cardiac remodelling and nec-
essary for exercise-induced cardiomyocyte growth and pro-
liferation [65]. It was reported that exposure to UFP for 72
hours significantly downregulates let-7a, let-7b, let-7d, let-
7e, miRNA-16, and miRNA-34 with 10-fold upregulation
of miR-24 and 6-fold increase in miR-27 and miR-155
expression, respectively [60].

2.3. miRNAs and BC (Black Carbon). The mortality and
morbidity related to a BC-related cardiovascular event are
reported to be stronger than those due to PM, . [66]. High
concentration of BC was observed to have relation with
increased major adverse cardiovascular events in ACS
patients [66]. Exposure to BC nanoparticles leads to marked
increase in miR-135b and subtle changes in miR-21 and
miR-146b, with RT-PCR validation [67]. miR-135b has been
shown to stimulate apoptosis and inflammation, reduce cell
proliferation, and inhibit macrophage function. Moreover,
miR-135b inhibition was reported to increase atherosclerotic
plaque development [68]. miR-21 showed increased plaque
stability in ACS [69]. This miRNA also showed to have sig-
nificant elevation in stable and unstable angina and as com-
pared to control subject thus may play an important role for
a new biomarker for this disease along with a strong correla-
tion with aging [70]. Exogenous miR-21 was reported to
drastically inhibit cardiomyocyte and endothelial cell apo-
ptosis thus leading to significant improvement of cardiac
function [71]. The expression of miR-146b was demon-

strated to be downregulated in a myocardial infarction
model in vivo as compared to the control group, whereas
the in vitro experiment showed that the downregulation of
miR-146b led to increased inflammatory factors and apopto-
sis of the vascular cells and was suggested to be associated
with the PI3K/Akt/NF-«xB pathway [72]. In contrast to ear-
lier findings, however, no evidence of miRNA changes was
detected through black carbon exposure through intratra-
cheal instillation in C57BL/6 mice (Julie A [73]).

2.4. miRNA and PAHs (Polycyclic Aromatic Hydrocarbons).
miR-155 expression was upregulated in human umbilical
cord vein cells (HUVECs) exposed to PAH treatment. The
putative gene target for miR-155 was shown to be linked to
Wingless/Integrated (Wnt) and epidermal growth factor
(ErbB) signalling which is important for vasculature devel-
opment, thus proposing involvement of miRNA for a novel
target for cardiovascular-related therapy [8]. In one study,
exposure to PAHs showed significant increase in lower expres-
sion of miR-24-3p, miR-27a-3p, miR-142-5p, and miR-28-5p,
through analysis of urinary 4-hydroxyphenanthrene and/or
plasma BPDE-Alb. On the other hand, urinary 1-hydroxy-
naphthalene,  2-hydroxynaphthalene, 2-hydroxyphenan-
threne, and the sum of monohydroxy-PAHs were associated
with high level of miR-150-5p expression [74]. In PAH-
induced hepatocarcinogenesis, miR-181a, miR-181b, and
miR-181d were significantly upregulated through p38 MAPK
activation [75]. The summary of specific particulate matter
and related miRNAs is shown in Table 2.

3. PM Exposure and Cardiac
Inflammatory Mediators

PM exposure is known to exacerbate inflammatory response
through mRNA mediation [63, 76, 77], some of it through
miRNA modulation [7-9]. The summary of particulate mat-
ter (PM) and related cardiac inflammatory mediators is
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TaBLE 3: Summary of particulate matter (PM) and related cardiac inflammatory mediators.
Particulate matter (PM) Cardiac inflammatory mediators Effect Reference
PM, . IL-1B, IL-8, IL-12, TNF-a, CRP, COX Decre.ase cell viability ar.ld increase [79]
: inflammatory mediators
TNF-a Increase 1nﬂarr%mat10n and blood [80]
coagulation markers
Increased endothelial cell apoptosis,
CDs+, CDr DI+ and CD16r, s, BOEERR FO TR e
IL-18, MCP-1, MIP-1a/p, TNF-a glogenic aclvity :
pathogenic atherogenesis
and acute coronary events
Increased reactive oxygen species (ROS),
increased cardiomyocyte apoptosis,
TRAF6, NF-xB stimulated inflammatory cell infiltration, [55]
and enhanced inflammatory factors in AC16
cells and heart tissue
EDNL, F3, IL-1, IL-6, TNF, TLR2 Involved in systemic 1nﬂarnn.1at_10n, (7]
coagulation, and vasoconstriction
Smaller PM size IL-1p, IL-6, TNF-« Increase inflammation marker [81]
Inverse association of DNA methylation
PM,, CD14 and TLR4 of inflammatory genes in overweight and [78]
obese patients
TNF-o Increase 1nﬂammatlon and blood [80]
coagulation markers
3-NT, CCXL2, EPGN, EREG, FOSL1,
. GREMI, HES], IL-1a, IL-1, IL-6, IL-24,  Biological dysregulation in atherosclerosis, )
Ultrafine particle NFE2L2, MAFF, MCP-1, p47phox, TGIFI, increase inflammation [19%; t631)
VEGF
Black carbon (BC) F3, ICAM-1 Inflammation and thrombosis [76]
Polycyclic aromatic hydrocarbons IL-1p, IL-6, IL-10, TNF-q, IFN-y, Inflammation and atherogenesis [77]

(PAHs) and hs-CRP

shown in Table 3. In one experiment, exposure to daily PM,,
of overweight and obese patients showed an inverse associa-
tion of DNA methylation of inflammatory genes, in particu-
lar cluster of differentiation antigen 14 (CD14) and toll-like
receptor 4 (TLR4), but not in tumour necrosis factor-«
(TNF-«) [78]. Through in vitro study, PM, ; was shown to
decrease cell viability and increased the expression of NF-
kBl family gene mRNA and inflammatory mediators
including C-reactive protein (CRP), cyclooxygenase-2
(COX-,), interleukin-18 (IL-1f), interleukin-8 (IL-8),
interleukin-12 (IL-12), and TNF-a (J. [79]). In a meta-
analysis finding, short-term exposure to PM, . and PM,,
had a significant association with inflammation and blood
coagulation markers, TNF-q, and fibrinogen; however, the
long-term exposure to both PM, . and PM,, was not signif-
icant [80]. In another study, it was reported that the smaller
the size of the PM, the more significant the association of
PM exposure to inflammation markers, for example, IL-1,
IL-6, and TNF-« [81]. Exposure to PM, . was also associated
with increased level of proinflammatory cytokines MCP-1,
macrophage inflammatory protein la/f (MIP-1a/f), IL-6,
and IL-1f and increased level of inflammatory response,
for example, CD4+, CD8+, CDI14+, and CD16+ ([82].
MCP-1 acts through the CCR2 receptor and is increased
by chronic inflammatory condition which stimulates the

adherence of monocytes to the subendothelial region of the
atherogenic arterial wall [83]. This finding is supported by
a Mendelian randomisation study, indicating the linkage of
MCP-1 to an increased risk of coronary artery disease
(CAD), myocardial infarction (MI), and ischemic stroke
[84]. In several atherosclerotic studies, the inhibition of the
CCR2 receptor reduced inflammatory monocyte recruit-
ment, reduced neointimal hyperplasia, and reduced the size
of atherosclerotic plaque [85-87]. One study among healthy
nonsmokers exposed to ambient PM,  for 24 hours demon-
strated significant increase in proinflammatory cytokines
(IL-6 and IL-1f) and antiangiogenic agent (INF-a) that
may contribute to endothelial dysfunction, inflammation,
and platelet activation. PM, . induced reactive oxygen spe-
cies (ROS), increased cardiomyocyte apoptosis, stimulated
inflammatory cell infiltration, and enhanced the inflamma-
tory factors in AC16 cells and heart tissue [55]. The regula-
tion is through PM, ;-induced downregulation of miR-205
activating the TNF receptor-associated factor 6 (TRAF6)/
nuclear transcription factor-B (NF-«B) signalling pathway,
which further activated the signalling network. In the higher
PM2.5 exposure, the result showed a positive association
with IL-1, IL-6, and TNF [7].

Exposure to UFPs was reported to have a significant link
to cardiovascular disease, such as atherosclerosis (AS) [63].
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TaBLE 4: Target inflammatory genes and miRNAs.

Target inflammatory

genes miRNAs Related cell/organ/disease Author
. . RAW264.7 macrophage cell line, lipopolysaccharide-
CD14 m1R—199a—3;§i,RrT121I1{_—; 99a-5p, and (LPS-) induced proinflammatory cytokine release, and [91]
P LPS-induced septic shock
EDNI1 (putative target of MiR-199 Liver sinusoidal endothelial cells (rLSEC) derived from [94]
miRNA ethanol-fed rats
IL-18 miR-448 Autoimmune diseases [95]
IL-6 miR-181c¢ INS-1 cells [96]
L6 MiR-410 Lupus nephritis, systemic lupus erythemgtosus (SLE) in kidney [97]
tissue of MRL/Ipr mice
MCP-1 miR-124a Synoviocytes from rheumatoid arthritis [98]
TLR2 miR-146a BLP—stlmulate.d human THP-1 promonocytic cells, innate [99]
immune response to infection
Primary human keratinocytes, challenge with
TLR2 miR-105 Porphyromonas gingivalis (a Gram-negative bacterium [100]
that triggers TLR-2 and TLR-4)
. Rheumatoid fibroblast-like synoviocytes,
TLR2 miR19a/b rheumatoid arthritis (RA) (101]
TNF-« miR-181a-5p Dendritic cells [102]
Ao
N Acg
“\\Y‘ . ajters
5 Hne 7 miRNAs tben]‘
GO et e R4
3¢ QO\N € . Hreg, .
N D]IR]V SIO]]
4 hay,
Ses 7
C‘Qd[OA
C
Air pollution:
PM, UFP, BC, PAH ACS
(refer table 1)
miRNAs block the specific mRNA, Q\g?‘\’
reduce the inflammatory factors (mnRNA) that ‘5\6\0%
lead to ACS (refer table 4) \@C‘o &Y

mRNA

(inflammatory
mediators/ factors)

FIGURE 1: The summary of the mode of action of PMIA through miRNA-mRNA regulation. ACS = acute coronary syndrome; BC =black

carbon; miRNA =microRNA; mRNA = messenger
PMIA = particulate matter-induced ACS; UFP = ultrafine particle.

Mice were given an acute dose of UFPs for six days, after
which they were sacrificed few days later. Postacute exposure
revealed increased inflammation responses and nitrate
stress, with elevated IL-6, MCP-1, p47phox, and 3-NT levels
in the mouse serum compared to the untreated control. In
an in vitro study, exposure to diesel UFP increased the levels
of IL-6 and vascular endothelial growth factor (VEGF) in
lung epithelial cells, whereas treatment of endothelial cells
with diesel UFP media increased the levels of vascular cell
adhesion protein 1 (VCAM-1) and intercellular adhesion
molecule 1 (ICAM-1) in endothelial cells [88].

RNA; PAH = polycyclic

aromatic hydrocarbon; PM =particulate matter;

Black carbon (BC) is a traffic-related particle that is
formed as a combustion by-product and has been linked to
several cardiovascular adverse events, stronger than the
effect of fine PM, . [89]. However, this study contrasts with
that of Bourdon et al.’s finding few years before who stated
that intrathecal instillation of carbon black nanoparticles
had no effect on cardiac gene expression [73]. This finding
was supported by Dominguez-Rodriguez et al. who argue
that the major adverse cardiovascular events (MACE) were
detected in other PM exposure, except BC [90]. Neverthe-
less, BC exposure was linked to methylation of genes
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Particulate matter

PM2.5 PM10 UFP BC PAH
z i T e -
H w00
CD4+, CD8+, CD14+, 3-NT, CCXL2, CD14,
CD16+, COX, CRP, EPGN, EREG, FOSLI, hs-CRP, IFN-y,
i CD14, E3, IL-1B, IL-6, IL-10
Cardiac EDNI, F3, IL-1, IL-1B, TLRa GREMIL HESLIL-la,  [CAM.1 B, IL-6,IL-10,
inflammatory IL-6, 1L-8, IL-12, MCP-1, ——— IL-1B, IL-6, IL-24, TNF-a
mediators MIP-1«/f3, NF-«B, MAFFE, MCP-1, NFE21.2,
TLR2, TNF-«, TRAF6 p47phox, TGIF1, TLR4,
\ TNF-«, VEGF }
- Decrease cell viability and increase inflammatory mediators, thrombosis, ROS, blood co-agulation
Effects

markers, endothelial cell & cardiomyocytes apoptosis, atherosclerosis,
proinflammatory cytokines, antiangiogenic, increase stimulate inflammatory cell
infiltration, enhance the inflammatory factors in AC16 cells and heart tissue, involve in
systemic inflammation, coagulation and vasoconstriction. All these activities contribute to
pathogenic atherogenesis and acute coronary events.

|

Acute coronary syndrome

F1GURE 2: The mode of action of PM in inducing ACS. The PM stimulates the production cardiac inflammatory mediators that might lead to
ACS. 3-NT =nitration marker; ACS=acute coronary syndrome; CCXL2 =chemokine genes; CD14 = differentiation antigen 14; CD14
+=cluster of differentiation 14 (monocyte differentiation antigen); CD16+ =cluster of differentiation 16 (monocyte differentiation
antigen); CD4+=cluster of differentiation 4 (monocyte differentiation antigen); CD8+=cluster of differentiation 8 (monocyte
differentiation antigen); COX = cyclooxygenase; CRP = C-reactive protein; EDN1 = endothelin 1 (protein-coding gene); EPGN = epithelial
mitogen (protein-coding gene); EREG = epiregulin (protein-coding gene); F3 = coagulation factor III, tissue factor (protein-coding gene);
FOSL1=FOS like 1, AP-1 transcription factor subunit (protein-coding gene); GREMI =gremlin 1, DAN family BMP antagonist
(protein-coding gene); HESI =Hes family BHLH transcription factor 1 (protein-coding gene); hs-CRP =high-sensitivity C-reactive
protein; ICAM-1=intercellular adhesion molecule 1; IFN-y=interferon gamma; IL-1=interleukin-1; IL-10=interleukin-10; IL-
12 =interleukin-12; IL-la=interleukin-la; IL-1B=interleukin-15; IL-24 =interleukin-24; IL-6 =interleukin-6; IL-8 = interleukin-8;
MAFF = MAF BZIP transcription factor F (protein-coding gene); MCP-1 = monocyte chemoattractant protein 1; MIP-1a/f8 = macrophage
inflammatory protein-1 alpha/beta; NFE2L2 = nuclear factor erythroid 2-like 2 (protein-coding gene); NF-«B = nuclear factor kappa B;
p47phox = neutrophil cytosolic factor 1 protein, encoded by NCF1; PM =particulate matter; TGIF1 = TG-interacting factor 1;
TLR2 =toll-like receptor 2; TLR4 = toll-like receptor 4; TLR4 =toll-like receptor 4; TNF-«a=tumour necrosis factor-a; TRAF6=TNF

receptor-associated factor 6; VEGF = vascular endothelial growth factor.

implicated in inflammation and endothelial function,
through decreased coagulation factor III (F3) and ICAM-1
methylation [76].

1-Hydroxypyrene (1-OHP) is a biomarker for traffic-
related air pollution exposure to polycyclic aromatic hydro-
carbons (PAHs). In one study, urinary 1-OHP levels were
higher in taxi drivers than in nonoccupationally exposed
people, and it was linked to proinflammatory cytokines, for
example, IL-1f, IL-6, IL-10, TNF-a, IFN-y, and hs-CRP
[77]. These higher inflammatory biomarkers were linked to
the key indicators of cardiovascular morbidity.

4. miRNAs and PM-Induced
Inflammation Mediators

Even though study on PM-induced cardiac inflammation
mediators is limited, other experiments were performed uti-
lising the similar genes or mediators in other system rather
than focusing on the cardiovascular system. Regardless,
these mediators are similar and involved in many parts of
the ACS cellular pathological mechanism. For example,

CD14 gene silencing was reported to significantly change
the expression of 199a-3p, miR-199a-5p, and miR-21-5p in
the RAW264.7 macrophage cell line [91]. Endothelin-1
(ET-1) is a peptide encoded by the ET-1 gene (EDN1).
Endothelin-1 (ET-1) is a 21-amino acid polypeptide that is
mainly generated by endothelial cells of the vascular system
and has been shown to participate in a variety of biological
processes, including inflammation, fibrosis, proliferation of
vascular smooth muscle, and cardiovascular hypertrophy
[92]. ET-1 is a potent vasoconstrictor in cardiac, renal, and
nervous system vasculature and known to be attenuated by
miRNA regulation [93]. In one study, overexpression of
miR-199 inhibited ethanol-induced EDN1, and on the other
hand, inhibiting miR-199 levels led to increase in ET-1 pro-
tein with the presence of ethanol [94]. IL-1 is a cumulative
IL-1a and IL-1 and a potent inducer of inflammatory pro-
tein, and miR-448 reportedly enhanced the production of
proinflammatory cytokine including IL-1p [95]. IL-6 is a
proapoptotic and proinflammatory cytokine, secreted by
inflammatory cells in response to inflammation. In IL-6-
treated cells, miR-181c was significantly downregulated as



compared to control cells [96]. Other study found that miR-
410 targets the 3'untranslated region (3' UTR) of IL-6; thus,
increase in miR-410 reduces the IL-6 levels [97]. miR-124a is
reported to bind at the 3'UTR of MCP-1 mRNA, and the
upregulation of this miRNA supressed the MCP-1 protein
levels [98]. Toll-like receptor 2 (TLR2) plays an important
role in the activation of innate immunity, activation of the
macrophage, and promotion of apoptosis. Some study
reported that miR-146a [99] and miR-105 [100] downregu-
lated the expression of TLR2. On the other hand, miR19a/b
upregulated the TLR2 expression, and the increased expres-
sion of miR-19a/b by mimics significantly reduced TLR2
protein and inhibited the TLR2-triggered cytokine and
kinase activities [101]. TNF-« is a proinflammatory cyto-
kine. Luciferase reporters confirm the in silico algorithms
of miR-181a-5p target 3'UTR of TNF-a, in which the
miR-181a-5p mimic suppressed the TNF-a levels and the
miR-181a-5p inhibitor increased its level [102]. The sum-
mary of inflammatory genes and related miRNAs is shown
in Table 4.

5. Discussion and Conclusion

miRNAs bind to a specific sequence in the 3'UTR, 5'UTR,
and coding sequence of their target mRNAs, resulting in
translational repression, mRNA deadenylation, and decap-
ping of the target mRNAs, respectively [103]. Therefore,
we may take various viewpoints on PM exposure to miRNA
and mRNA involved in inflammation and ACS (Figure 1).
Firstly, this paper might suggest that PM could deter the
level of mRNA involved in cardiac inflammation
(Figure 2). For example, PM, . was reported to increase
TNF-a, CD14+, and TLR2. These mRNAs and others
(Table 3) might have a significant potential role for future
applications in ACS screening and biomarkers. Secondly,
we would suggest specific miRNA that could be used as ther-
apeutic tools to treat ACS. We identify several studies indi-
cating significant miRNA functions to downregulate
several inflammatory factors, such as miR-146a-5p, miR-
181a, miR-199a-5p, and miR-21-5p, which target TRL2,
TNF-a, and CD14, respectively (Table 4). An increase in
the stated miRNAs could downregulate the genes involved
in cardiac inflammation and grant future experiments and
validation. Therefore, a common pathway in PMIA regu-
lated by the miRNAs could be investigated in the future.
The findings presented here have established that PMIA
has a major impact on miRNAs and vice versa. For preven-
tion and management of ACS, PM and other hazardous
substances from air pollution should be considered
significant modifiable risk factors. Policymakers should
strengthen the effort to reduce air pollution exposure
through suitable and effective legislation significantly. The
use of miRNA and mRNA in novel clinical settings offers
promising potentials. Currently, multiple clinical trials are
exploring miRNA profiles in various illness conditions for
prognostic or diagnostic reasons. Since one miRNA can tar-
get several different mRNAgs, it is important to be cautious
when attributing miRNA effects to a specific mRNA. miR-
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NAs have been well established to play a role in the regula-
tion of inflammatory factors in ACS. However, little is
known on how these miRNAs directly contribute to the
modulation of PMIA. Further study should be conducted
to determine the best techniques for air pollution reduction
and to document the effects of these techniques on the inci-
dence of ACS and its relationship to morbidity and mortal-
ity. It seems prudent to predict that future research
investigating PMIA on miRNAs will adopt more compre-
hensive technology.
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