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Secondary ganglioside GM2 accumulation in mucopolysaccharidoses 

In vivo, the lysosomal degradation of GM2 is catalyzed by HexA and 
its cofactor GM2AP, a lipid binding and transfer protein. The inherited 
deficiency of each of them causes a fatal neuronal accumulation of 
ganglioside GM2 in GM2-gangliosidosis [1,2]. The GM2-splitting ac-
tivity of HexA does not only need GM2AP as an essential cofactor, but is 
furthermore strongly regulated by lipids of the GM2 carrying ILV 
(Intralysosomal Luminal Vesicle)-membranes and by other metabolites. 
For instance, the HexA catalyzed GM2 cleavage is heavily inhibited by 
chondroitin-6-sulfate and other primary storage compounds in some 
MPS diseases [3] and by sphingomyelin in ASM deficient Niemann- Pick 
disease [4]. Still, there is a good correlation between the clinical course 
of the disease on one hand and the turnover of its natural and radio-
labeled GM2 in cultured patient's fibroblasts on the other hand, as 
assayed by their residual GM2-cleaving activity in vitro [5]. However, 
there is no correlation with the hydrolysis of the soluble artificial sub-
strate 4MU-β-GlcNAc which is useful to assay the combined activities of 
hexosaminidases A, B and S [6,7]. 

Unfortunately, Derrick-Roberts et al. [9] do not correlate their 
GM2-relevant observations with the ganglioside GM2 splitting activity 
of their samples, but with their 4MU-β-GlcNAc hydrolyzing activity, 
which is not relevant at all [4]. Besides other correlations, genotype and 
the secondary accumulation of ganglioside GM2 in brains of MPS mice 
Type I, IIIA, and VII were correlated with the total hexosaminidase ac-
tivity in the samples as assayed with the unspecific artificial soluble 
substrate 4MU-β-GlcNAc, which is not specific for the GM2-cleaving 
hexA, but is hydrolyzed by both, hexA and hexB. The latter hexB is 
not involved in GM2 degradation [7], which is supported by the 
observation, that HexB activity is increased more than twofold in post-
mortal human Tay-Sachs brain tissue, without preventing a fatal GM2 
storage [8]. 

The authors write in their Abstract, “that genotype and residual 
enzyme activity are not indicative of severity of disease pathology in 
MPS disease and there exists a window when there are considerable 
storage products without detectable functional deficits, which may 

allow an alteration to occur with therapy”. This and further related 
statements in the text are not funded by experimental data. They are 
incorrect and need a correction. 
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