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Predictably unequal: understanding and addressing concerns
that algorithmic clinical prediction may increase health
disparities
Jessica K. Paulus1 and David M. Kent 1✉

The machine learning community has become alert to the ways that predictive algorithms can inadvertently introduce unfairness in
decision-making. Herein, we discuss how concepts of algorithmic fairness might apply in healthcare, where predictive algorithms
are being increasingly used to support decision-making. Central to our discussion is the distinction between algorithmic fairness
and algorithmic bias. Fairness concerns apply specifically when algorithms are used to support polar decisions (i.e., where one pole
of prediction leads to decisions that are generally more desired than the other), such as when predictions are used to allocate
scarce health care resources to a group of patients that could all benefit. We review different fairness criteria and demonstrate their
mutual incompatibility. Even when models are used to balance benefits-harms to make optimal decisions for individuals (i.e., for
non-polar decisions)–and fairness concerns are not germane–model, data or sampling issues can lead to biased predictions that
support decisions that are differentially harmful/beneficial across groups. We review these potential sources of bias, and also
discuss ways to diagnose and remedy algorithmic bias. We note that remedies for algorithmic fairness may be more problematic,
since we lack agreed upon definitions of fairness. Finally, we propose a provisional framework for the evaluation of clinical
prediction models offered for further elaboration and refinement. Given the proliferation of prediction models used to guide clinical
decisions, developing consensus for how these concerns can be addressed should be prioritized.
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BACKGROUND
“…you do not really understand a topic until you can teach it to a
mechanical robot”—Judea Pearl and Dana Mackenzie1.

Consistent and substantial differences in the treatment of medical
conditions in patients who differ by race/ethnicity or by sex have
raised concern that clinician bias may contribute to disparities in
healthcare2–4. The emergence of artificial intelligence holds
promise that computer-based algorithms may ameliorate human
biases and possibly attenuate health disparities5. However,
computer scientists have recently become alert to the possibility
that predictive algorithms can inadvertently introduce unfairness
in decision-making. This is a major concern as algorithmic
technologies have permeated many important sectors: criminal
justice (e.g., predicting recidivism for parole decisions); the
financial industry (e.g., credit worthiness); homeland security
(e.g., “no fly” lists); and targeted ads (e.g., job listings). Indeed,
legislation has recently been proposed in the U.S. that would
direct the Federal Trade Commission to require the assessment of
algorithmic fairness and bias by entities that use, store, or share
personal information for algorithmically supported decision-
making6.
Despite the broader awareness of the importance of algorithmic

fairness, and the rapidly expanding impact of algorithmic
prediction in healthcare, how principles of algorithmic fairness
might apply in clinical decision-making has received little
attention in the medical literature7,8. In this perspective, we
review methodological research from the computer science
literature and relevant epidemiological principles, to clarify when

fairness concerns might be germane and to introduce a practical
framework for evaluating algorithmic bias and fairness in clinical
decision-making and prediction in healthcare. While we focus on
race, the discussion may extend to other classes (such as ethnicity,
religion or creed, sex, national origin, etc.) legally protected
against discrimination in certain settings. This perspective is
intended for those stakeholders who are developing algorithms
(e.g., clinical researchers, medical informaticians), as well as users
of models, such as healthcare administrators, clinicians, and
payers.

THE FUNDAMENTAL PROBLEM OF PREDICTION AND
PREJUDICE: REFERENCE CLASS FORECASTING IS
DISCRIMINATION BY GROUP MEMBERSHIP
Machine learning and statistical algorithms make predictions on
individuals using mathematical models that are not explicitly
programmed, but rather are developed using statistical rules that
associate variables (or features) with outcomes (or labels) within a
training data set. Machine learning is thus a form of “reference
class forecasting”9 whereby an individual’s risk of a given outcome
is estimated by examining outcome rates in a group of others with
“similar” features. Because people have many different attributes,
and because there are many different approaches to modeling,
there are many different ways to define similarity; thus, any given
individual’s “risk” is model-dependent. Each different way of
defining similarity leads to a different risk estimate–and often a
very different risk estimate–for a given individual10,11.
The fact that “risk” is not a property that can be objectively

measured in an individual (like blood pressure or cholesterol)—but
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instead can only be estimated in a group of other individuals
judged to be similar in a set of selected features—suggests the
overlap between the concepts of reference class forecasting and
prejudice: in both, an individual’s disposition is determined by that
person’s group membership.
A key statistical measure of model performance is how well the

model discriminates between those who have the outcome and
those who do not. Disentangling the two meanings of “dis-
crimination”—discernment between individuals’ risk of a future
event on the one hand and unfair prejudice leading to inequity on
the other (akin to what economist Thomas Sowell has referred to
as Discrimination I and Discrimination II, respectively12)—is central
to understanding algorithmic fairness, and more deeply proble-
matic than generally appreciated.

COMMON SENSE FAIRNESS CRITERIA ARE SUPERFICIALLY
APPEALING BUT MUTUALLY CONFLICTING
The specter of “machine bias” was highlighted in 2016. Using data
from over 7000 arrests, an investigative report showed that a
commercial software (COMPAS) used to predict the risk of criminal
re-offense assigned a higher risk of reoffending to black
defendants than to whites, leading to potentially longer
sentences. This was true even among those who did not
subsequently recidivate, i.e., whose “true” risk is (retrospectively)
0%. These disparities emerged even though the algorithm was
“race-unaware”—i.e., race was not explicitly coded for in the
statistical model (as it is potentially illegal to use protected
characteristics in sentencing decisions); other features correlated
with race were included. The observed unequal error rates
between blacks and whites—even among those whose future
behavior was the same—corresponds to common sense notions

of unfairness. It has been argued that unequal error rates also
align with legal definitions of discrimination through “disparate
impact”13, which proscribes practices that adversely affect one
group of people more than another, even when the rules (or the
statistical models) are formally neutral across groups14. None-
theless it’s important to bear in mind that fairness and the legal
standard of disparate impact are not purely statistical concepts,
and involve ethical, political and constitutional concerns15.
However, the software developers argued that the model is fair

as it had similarly good calibration across both white and black
populations. Calibration refers to the agreement between
observed outcomes and predictions. For example, if we predict
a 20% risk of recidivism in a group of subjects, the observed
frequency of recidivism should be ~20 out of 100 individuals with
such a prediction. Like unequal error rates, calibration also appears
to conform to informal notions of fairness in that a given score
from a prediction model should correspond to the same
probability of the outcome, regardless of group membership
(known as the test fairness criteria).
Subsequently, it was demonstrated mathematically that these

two fairness criteria–equalized error types and test
fairness–cannot both be satisfied when the outcome rates differ
across the two groups (except in the unrealistic circumstance of
perfect prediction), leading to the conclusion that unfairness is
inevitable13,16. Figure 1 provides a numerical illustration showing
that, when outcome rates vary across two groups, a predictive test
can have consistent error rates or consistent calibration across
groups but not both. Because there are many different fairness
criteria (Table 1), and these may be mutually incompatible17–19,
prioritizing across criteria necessarily involves a value judgment
and may be sensitive to various contextual factors.
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Fig. 1 Mutual incompatibility of fairness criteria. For two groups with different outcome rates, a predictive test can have consistent error
rates or consistent calibration but not both. We present outcomes using coarsened prediction scores, thresholded to divide the population
(N= 100) into low and high risk strata. Confusion matrices for a low prevalence group with a 20% outcome rate (Matrix A, red) and a high
prevalence group with a 30% outcome rate (Matrices B and C, green) are shown. For the low prevalence group, a predictive test with an 80%
sensitivity and specificity identifies a high risk (test+) strata with an outcome rate of 50% (i.e., the positive predictive value) and a low risk
(test−) strata with an outcome rate of ~6% (i.e., the false omission rate). However, as shown in Matrix B, the same sensitivity and specificity in
the higher prevalence group gives rise to outcome rates of ~63% and ~10% in the high and low risk-strata, respectively. This violates the
criterion of test fairness, since the meaning of a positive or negative test differs across the two groups. Holding risk-strata specific outcome
rates constant would require a higher sensitivity and lower specificity (Matrix C). This violates the fairness criteria of equalized error rates. For
example, the Type I error rate (i.e., the false positive rate) would almost double from 20% in the low prevalence population to ~39% in the
higher prevalence population. The diagnostic odds ratio was fixed at ~16 across this example, whole numbers are used to ease interpretation.
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The impossibility of simultaneously satisfying the various
fairness criteria points both to the inevitability of unfairness
(defined by heterogeneous “common sense” outcomes-based
measures) and to the limited validity, authority and usefulness of
these measures. If we start from the premise that fair and
unbiased decision-making is possible in theory, the impossibility
results suggest that unequal outcomes will emerge from both fair
and unfair decision-making. To satisfy more stringent, narrow, and
rigorous definition of unfairness, it is not enough to observe
differences in outcomes – one must understand the causes for
these outcome differences. Such a causal concept of fairness is
closely aligned to the legal concept of disparate treatment (Table
1)20. According to causal definitions of fairness, similar individuals
should not be treated differently due to having certain protected
attributes that qualify for special protection from discrimination,
such as a certain race/ethnicity or gender. However, causality is
fundamentally unidentifiable in observational data, except with
unverifiable assumptions20,21. Thus, we are more typically stuck
with deeply imperfect but ascertainable criteria serving as (often
poor) proxies for causal fairness.

A FUNDAMENTAL CONFLICT IN FAIRNESS PRINCIPLES
The conflict between fairness criteria reflects the fact that criteria
based on outcomes do not correspond to causal notions of
fairness. While a complete understanding of the true causal model

determining an outcome (or label) promises in theory to provide
the bedrock to determine fair processes for prediction and
decision-making (by permitting the disentangling of legitimate
causal attributes from illegitimate race-proxies), we note that
differing conceptions of fairness would still ensure that fairness
definitions remain deeply contested. There are two competing
principles or goals in antidiscrimination law15: anticlassification
and antisubordination. The goal of anticlassification is to eliminate
the unfairness individuals experience due to bias in decision-
makers’ choices, whereas antisubordination seeks to eliminate
status-based inequality across protected classes. Enforcing bal-
ance in outcomes or results can only indirectly address antic-
lassification concerns (if at all)—since large differences in group
outcomes can arise with or without biased decision-making.
Conversely, ensuring fair processes is unlikely to satisfy those who
adhere to the antisubordination principle, since this requires
adjudicating the degree of difference between groups that a fair
society should tolerate.

FAIRNESS CONCERNS ARE NOT CLEARLY RELEVANT FOR ALL
DECISIONAL CONTEXTS
In addition to the limited validity and authority of proposed
results-focused fairness criteria, it is important to recognize the
limits of their relevance across decision contexts. In particular, the
contexts described above (such as in the criminal justice system)

Table 1. Candidate criteria to assess algorithmic fairness.

Criterion Explanation

Unconditional equality of classification or predicted probabilities

Statistical parity
also known as:
demographic parity or
disparate impact

Participants/patients have equal probability of being assigned to the positive predicted class, or the same
average predicted probability, for all values of the protected attribute. A violation of statistical parity is probably
the most common (and least rigorous) notion of unfairness. Indeed, satisfying statistical parity often requires
positive discrimination, i.e., disparate treatment for different values of the protected attribute. A variant of this
criterion (conditional statistical parity) requires equal probability of being assigned to the positive predicted class
conditional on other allowable variables. Complex fairness concerns are at issue in determining allowable versus
unallowable factors for conditioning. When one conditions on all causal variables, this criteria converges with
disparate treatment (see below).

Equality of classification/predictions conditioned on observed outcome (see blue arrow in Fig. 1)

Classification Equalized odds
also known as:
error rate balance

The probability of being correctly classified conditional on the outcome should
be the same for all values of the protected attribute.

Predicted probability Balance on the positive class The algorithm produces the same average prediction (or score) for participants/
patients with the outcome across all values of the protected attribute. For a
binary prediction (i.e., a classifier), this is equivalent to maintaining equal
sensitivity and type II error (false negative rates).

Balance on the negative class The algorithm produces the same average prediction (or score) for participants/
patients without the outcome across all values of the protected attribute. For a
binary prediction (i.e., a classifier), this is equivalent to maintaining equal
specificity and type I error (false positive rates).

Equality of outcomes conditioned on classification/prediction (see orange arrow in Fig. 1)

Classification Positive predicted
value (PPV)

For participants/patients assigned to the positive class, observed outcome rates
(e.g., PPV) are the same across values of the protected attribute.

Negative predicted
value (NPV)

For participants/patients assigned to the negative class, observed outcome rates
(e.g., 1-NPV, or the false omission rate) are the same across values of the
protected attribute.

Predicted probability Calibration also
known as:
test fairness

An algorithm is said to have good calibration if, for any given subgroup with a
predicted probability of X%, the observed outcome rate is X% for all values of the
protected attribute. For any single threshold, a well-calibrated prediction model
will never have the same sensitivity and specificity for two groups with different
outcome rates.

Causal definitions of fairness

Disparate Treatment A causal notion of fairness; otherwise similar individuals should not be treated differently due to having different
protected attributes. Causal notions of unfairness are the most rigorous and least controversial, but are
unidentifiable in observational data.
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differ from that which often defines decisions for medical
decision-making. Fairness concerns are important when decisions
must arbitrate between competing interests among different
parties, in ways that they do not for other types of decisions.
According to the Stanford Encyclopedia of Philosophy:

“Issues of justice arise in circumstances in
which people can advance claims… that are
potentially conflicting, and we appeal to
justice to resolve such conflicts by deter-
mining what each person is properly entitled
to have. In contrast, where people’s interests
converge, and the decision to be taken is
about the best way to pursue some common
purpose… justice gives way to other
values”22.

In many of the non-medical examples, there are clearly
competing interests—for example, between society’s need for
safety and security and an individual’s claim to freedom and
freedom from harassment; between a lending institution’s
responsibility to remain financially healthy and an individual’s
desire for a loan. In these conditions, predictions can be said to be
“polar”—i.e., one end of the probability prediction is linked to a
decision that is (from the perspective of the subject) always
favorable or unfavorable23. It is always better to get a lower
recidivism score or a higher credit rating, for example, from the
perspective of the individual whose score or rating is being
predicted. In this context, the decision-maker’s interest in efficient
decision-making (i.e., based on accurate prognostication using all
available information) is not aligned with the subject’s interest in
receiving the lowest (or highest) possible risk prediction. However,
in the medical context accurate prognostication helps decision-
makers appropriately balance benefits and harms for care
individualization—the common goal of the patient and provider.
When the clinician/decision-maker’s and patient’s interests are
aligned (or when the patient is in fact the decision-maker), and
when race has important predictive effects not captured by other
variables included in the model, including race/ethnicity as a
variable in models used for this purpose improves predictions and
decisions for all groups. Prediction supporting decisions in this
context may be described as “non-polar” (Fig. 2a).
But in medicine too, there are contexts where the interests of

the clinician/decision-maker and the patient diverge, such as
when predictions are used to prioritize patients for rationed
services that might benefit a broader population (e.g. organ
transplantation, disease management programs, or ICU services).
We label predictions used for microallocation of scarce medical
resources as “positively” polar, indicating that patients may have
an interest to be ranked high to receive a service that may be
available only to some of those who can potentially benefit (Fig.
2b). This is in distinction to “negatively” polar predictions, in which
prediction is used for the targeting of an intervention perceived as
punitive or coercive (e.g. such as involuntary commitment,
screening for child abuse, or quarantining patients at high
infectious risk; Fig. 2c). Use of algorithms for microallocation (i.e.
rationing based on individual characteristics) is likely to play a
larger role for population health management in accountable care
organizations or value-based insurance design. Allocating scarce
health care resources on the basis of a protected characteristic—
or using such characteristics as the basis for other “polar”

decisions–appears to have similar fairness concerns as many of
the high profile non-medical examples.

LEARNING FROM BIASED DATA
While fairness concerns are alleviated in the setting of non-polar
prediction, additional problems arise when the data itself are
biased or mislabeled across classes (for polar and non-polar
prediction alike). We use the term algorithmic bias (in distinction
to fairness) specifically to refer to these issues related to model
design, data and sampling that may disproportionately affect
model performance in a certain subgroup. Consider, for example,
prediction models developed on routinely collected electronic
health data to target cancer screening of populations with higher
cancer rates. Because cancer diagnosis is an imperfect proxy for
cancer incidence, rates of “surveillance-sensitive” cancers (e.g.,
thyroid and breast cancer) are inflated in affluent compared to
underserved communities24. This could lead to the mis-targeting
of screening to the over-served, thereby establishing a continu-
ously self-reinforcing positive feedback loop.
Similarly, consider mortality predictions that might support

decisions in the intensive care unit, such as the determination of
medical futility. Using “big data” across multiple health systems
with different practice patterns might lead to the assignment of
higher mortality probabilities to the types of patients seen at
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Fig. 2 Non-polar and polar prediction-supported health care
decisions. Understanding the specific decisional context of a
prediction-supported decision in healthcare is necessary to antici-
pate potential unfairness. In the medical context—particularly in the
shared decision-making context—patients and providers often
share a common goal of accurate prognostication in order to help
balance benefits and harms for care individualization. Predictions
supporting decisions in this context may be described as “non-
polar” (a). On the other hand, when one “pole” of the prediction is
associated with a clear benefit or a clear harm, predictions may be
described as “polar” in nature. In cases of polar predictions, the
decision maker’s interest in efficient decision making (i.e. based on
accurate prognostication using all available information) is not
aligned with the subject’s interest to have either a lower (e.g.
screening for abuse risk) or higher (e.g. microallocation of organs)
prediction. “Positively” polar predictions correspond to those where
patients may have an interest to be ranked high to receive a service
that may be available only to some of those who can potentially
benefit (b). This is in distinction to “negatively” polar predictions, in
which prediction is used for the targeting of an intervention
perceived as punitive or coercive (e.g. such as involuntary
commitment, screening for child abuse or mandatory quarantining
those at high infectious risk) (c). Issues of fairness pertain specifically
to predictions used in decisional contexts that induce predictive
polarity—since these are contexts in which people advance claims
that are potentially conflicting.
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institutions with less aggressive approaches or lower quality care.
Collinearity between patient factors and care factors can bias
prognostication and lead again to a self-reinforcing loop support-
ing earlier withdrawal of care in the underserved. Observed
mortality is an imperfect proxy for mortality under ideal care, the
true outcome of interest when constructing models for futility.
The above are examples of label bias, which arises when the

outcome variable is differentially ascertained or otherwise has a
different meaning across groups. There may also be group
differences in the meaning of predictor variables; this is known as
feature bias. For example, feature bias may be a problem if
diagnoses are differentially ascertained or thresholds for admis-
sion or healthcare-seeking differ across groups in the training data
and model features (prediction variables) include prior diagnosis
or previous hospitalization. Label and feature biases, as well as
differential missingness, can contribute to violations of subgroup
validity, which arise when models are not valid in a particular
subgroup. Subgroup validity may also be a concern in the context
of sampling bias, where a minority group may be insufficiently
represented in model development data (e.g., certain ethnic
groups in the Framingham population25) and the model might be
tailored to the majority group. When effects found in the majority
group generalize well to the minority group, this is not
problematic but generalization across groups should not be
assumed. Sampling bias was a well-known issue with the highly
influential Framingham Heart Study, which drew its study
population from the racially homogeneous town of Framingham,
Massachusetts—and consequently can lead to both over- and
under-treatment of certain ethnic minorities25,26. More recently,
the emergence of polygenic risk scores derived largely on
European populations have been shown to generally perform
very poorly on non-European populations27. For similar reasons,
there are concerns about the representativeness of the Precision
Medicine Initiative (the “All of Us” Study28).

SHOULD THE USE OF PROTECTED CHARACTERISTICS IN
CLINICAL PREDICTION MODELS (CPM) DIFFER FOR POLAR
VERSUS NON-POLAR PREDICTIONS?
Currently, there is no consensus or guidance on how protected
characteristics–race in particular– should be incorporated in
clinical prediction29. Previous work found race to be included
only rarely in cardiovascular disease prediction models, even
when it is known to be predictive30. Several authors explicitly
acknowledged excluding race from prediction models due to
concerns about the implications of “race-based” clinical decision-
making31.
We have previously argued that much of the reluctance to use

race in prediction models stems from overgeneralization of its
potentially objectionable use in polar predictions in non-medical
settings to its use for non-polar predictions in medical settings29.
The ethical issues involved in using race or race proxies to move a
person up or down a prediction scale with a clear directional
valence (liberate versus incarcerate; qualify versus reject a loan
application; receive versus not receive an available donor organ)
are clearly different than for optimizing one’s own decisions about
whether to take or not take a statin; whether percutaneous
coronary intervention might be better than coronary artery
bypass; whether medical therapy might be superior for carotid
endarterectomy and so forth.
For these latter non-polar decisions, a mature literature exists

for how to evaluate prediction models to optimize decision-
making in individual patients32. When race is importantly
predictive of health outcomes (as it often is), excluding race from
a model will lead to less accurate predictions and worse decision-
making for all groups. In particular, “race-unaware” models (i.e.,
models that exclude race) will often especially disadvantage those
in minority groups, since predictions will more closely reflect

outcomes and associations for patients in the majority. Indeed,
race is used explicitly in popular prediction models that inform the
need for osteoporotic33, breast34–37 and prostate cancer screen-
ing38,39; statin use for coronary heart disease prevention40,41 and
other common decisions.
For polar predictions, however, there are efficiency-fairness

trade-offs that are not germane in the non-polar context. To take a
non-medical example, developing a model which predicted loan
default, use of variables such as “income,” “assets,” and “credit
history” might be uncontroversial—even if race-correlated. How-
ever, even if using race (or race proxies without a clear causal link
to the outcome) in addition to these variables substantially
improved model performance and increased the efficiency of
decision-making and the overall net economic benefits, the use
would still be unethical and violate the disparate treatment
criteria. Similar principles presumably apply regarding the use of
protected characteristics when using predictions to ration
resources decisions in health care.

PUTTING IT ALL TOGETHER: TOWARDS A FRAMEWORK FOR
BIAS AND FOR UNFAIRNESS
The above discussion suggests different considerations and
approaches for polar and non-polar predictions. In the former
context, we argue, both bias and fairness concerns apply whereas
ensuring an unbiased model is sufficient in the latter.

How to ensure unbiased models
With the exception of label bias, which can be difficult to diagnose
with the data because the outcome itself has a different meaning
across groups (and thus recognition of label bias requires external
knowledge about how the data are ascertained), the above
subgroup validity issues can generally be diagnosed by examining
model performance separately in each of the groups (Fig. 3a).
When a model is found to be poorly calibrated in a subgroup,
provided the minority populations are sufficiently represented in
the data, this can often be addressed by the inclusion of a main
effect for group status; inclusion of selected interactions between
group status and other features; or developing stratified models.
Indeed, the widely-used Pooled Cohort Equation for coronary
heart disease prediction addressed the subgroup validity issues
identified in the Framingham score (i.e., poor model performance
in ethnic minorities) by developing separate models for whites
and African-Americans42.
Labeling bias should be anticipated whenever a proxy is used as

the outcome or label. Problems with proxy labels are very similar
to the well-described, familiar problem with surrogate outcomes
in clinical research43,44. Like surrogate outcomes, proxy labels can
often seem compellingly, persuasively similar to the outcome of
interest and nevertheless be very misleading. The remedy here is
to try to pick a better label (i.e., outcome definition). A high profile
example of this was recently reported in which an algorithm used
to target services to those with high health needs used future
health care costs as a proxy for need. The bias was detected
because black patients were sicker than similarly scored white
patients, and the algorithm was remedied through the use of a
better label that more directly captures health need45.

Addressing fairness concerns
Reducing model bias and differential performance may be
insufficient to eliminate fairness concerns in decision contexts
characterized by predictive polarity (such as when predictions are
used to ration health care resources), where unambiguously
favorable (or unfavorable) decisions are associated with a higher
(or lower) score. Here, we identify two broad and fundamentally
very different unfairness mitigation approaches: (1) an input-
focused approach, and (2) an output-focused approach (Fig. 3b).
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The input-focused approach relies on model transparency; it
loosely aligns with anticlassification goals and avoidance of
disparate treatment since it promotes class-blind allocation by
meticulously avoiding the inclusion of race or race proxies. Since
any variable can be correlated with race and therefore serve as a
proxy, only highly justified, well-established causal variables
should be included in the model. The use of “high dimensional”
or “black box” prediction techniques typically favored in the
machine learning community are generally problematic (since
these approaches can predict race through other variables,
whether or not race is explicitly encoded)—although methods
that have been proposed to make these models more transparent
have recently been adapted to address fairness46.
In contrast, the output-focused approach does not restrict

model development, but relies on an evaluation of model
predictions using outcomes-based fairness criteria (Table 1) and
seeks to mitigate fairness concerns by making use of “fairness
constraints”. These constraints can be understood as formalized
“affirmative action” rules to systematically reclassify subjects in an
attempt to equalize allocation between groups19,47. This approach
aligns loosely with the legal concepts of antisubordination and
disparate impact; it has the disadvantage that there is no agreed
upon mathematical solution to define fairness. Because value
judgments are key for any approach to fairness, robust input from
a diverse set of stakeholders who are developing, using,
regulating and are affected by clinical algorithms should be
sought. The stakeholders include patients and their advocates,
model developers (e.g., clinical researchers, informaticians), model
users/deployers (e.g., healthcare administrators, clinicians, payers),
and health policy, ethical and legal experts. Application of results-
oriented criteria requires standards or consensus regarding what
degree of disparity in allocation of health care resources across
groups might be intolerable.

LIMITATIONS
To be sure, the framework we introduce is simplified and
provisional, and is intended as a starting point. Adding further
complexity is that some predictive algorithms are applied in
different decisional contexts with different ethical concerns. For
example, the estimated GFR equations, (which are race-aware)
may be used to inform both resource prioritization (e.g., transplant
lists) and for appropriate medication dosing48. Sometimes the
polarity of a prediction may be non-obvious. We also acknowl-
edge that some objections to the use of race as a variable in
prediction models have little to do with unfairness as described
here49. Finally, we wish to underscore the political and legal
complexities of identifying and mitigating algorithmic disparities
and the need to integrate statistical and legal thinking –amongst
other stakeholders - in devising remedies.

CONCLUSION
People are often told–either by elders or by experience itself–that
life is unfair; now there is mathematical support16 for that gloomy
bit of wisdom. Yet fairness is a central preoccupation of any
decent society. While there is no universally accepted algorithmic
solution to the problem of unfairness, the problem also cannot be
solved by replacing algorithms with a human decision-maker—
just obscured. Formalizing predictions opens the issues up to
communal (and mathematical) scrutiny, permitting us, for
example, to more precisely understand the conflict between
competing fairness notions and the limitations of these notions.
This is an essential, though insufficient, step in developing
consensus about how to impose human values on agnostic,
data-driven algorithms, and how to supervise these algorithms to
ensure fairer prediction and decision-making in healthcare and
elsewhere. More rigorous and narrow (e.g., causal) definitions of
unfairness might be a part of the answer, though a wholly
technical solution seems unlikely. A set of principles50 has been

Use representa�ve samples for model development

Diagnose subgroup validity: Evaluate performance 
of the model (e.g. discrimina�on & calibra�on) 
overall and in each class (e.g. race, gender)

No evidence of 
subgroup invalidity*

Evidence of 
subgroup invalidity

Consider poten�al 
for labeling bias**

Evaluate poten�al for 
feature bias: consider
interac�on terms with 
protected a�ribute or 
stra�fied models

Consider poten�al for 
sampling bias

Approach 2***: Restrict model outputs

Mul�-stakeholder input needed 
to guide inputs (1) and outputs (2)

a. Reducing Algorithmic Bias: for models used to 
aid decisions for balancing harms-benefits, when 
decision maker and subject are aligned

Examine models using fairness criteria. 

Ensure “fair” distribu�ons of services by either:
• Using different decision thresholds 
• Applying fairness constraints to strategically 

reclassify based on the protected a�ribute

b. Reducing Algorithmic Unfairness: for models 
used for ra�oning

Approach 1: Restrict model inputs
Models should include only well-established, 
causal risk factors. 
• Models should therefore be race-unaware, 

and also exclude non-causal variables that 
may be race proxies (e.g. zip code)  

Fig. 3 Mitigating algorithmic bias and unfairness in clinical decision-making. Bias arises through differential model performance across
protected classes, such as across racial groups. a It is a concern in both polar and non-polar decision contexts and can be addressed by
“debiasing” predictions, typically through the explicit encoding of the protected attribute to ameliorate subgroup validity issues, or by the
more thoughtful selection of labels (in the case of labeling bias). Fairness concerns are exclusively a concern in polar decision contexts, and
may persist even when prediction is not biased. b There are two broad and fundamentally very different unfairness mitigation approaches: (1)
an input-focused approach, and (2) an output-focused approach (Fig. 3b). The goal of the input-focused approach is to promote class-blind
allocation by meticulously avoiding the inclusion of race or race proxies. The output-focused approach evaluates fairness using criteria such as
those described in Table 1 and Fig. 1. Fairness violations can be (partially) addressed through the use of “fairness constraints” (which
systematically reclassify participants/patients to equalize allocation between groups) or by applying different decision thresholds across
groups.
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articulated to provide guidance to those developing and
disseminating algorithms (Box 1)—principles that may ultimately
get encoded into law6. If we can figure out how to encode fairness
into computer programs, we may yet come to a deeper
understanding of fairness, algorithmic and otherwise.
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