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Abstract
Introduction Nonsteroidal anti-inXammatory drugs
(NSAIDs) have been shown to reduce the risk of colorectal
cancer in cyclooxygenase-2 (COX-2) overexpressing colo-
rectal cancers. The present study was designed to evaluate
the inhibitory eVects of the COX-2 inhibitor celecoxib on
the growth of colorectal cancer liver metastases in a synge-
neic rat model, CC531.
Materials and methods The eVects of celecoxib on cell via-
bility in vitro were evaluated by treatment of CC531 tumor
cell cultures with celecoxib. In vivo, Wag/Rij rats were inocu-
lated with CC531 tumor cells at two sites in the liver and
treated with celecoxib starting one week before, or directly
after tumor inoculation. Control rats were inoculated without
treatment. Three weeks after tumor inoculation rats were
sacriWced. Tumor size, immune cell inWltration, caspase-3
activity, PGE2 and celecoxib levels were determined.

Results CC531 tumors did not show COX-2 expression.
Tumor growth was signiWcantly inhibited by celecoxib
treatment in a dose dependent manner. Immune cell inWltra-
tion was decreased after celecoxib treatment, indicating that
the immune system was not involved in preventing tumor
growth. Tumor caspase-3 levels were only signiWcantly
increased if treatment was started before tumor inoculation.
Celecoxib serum concentration starting at 0.84 �g/ml sig-
niWcantly inhibited the outgrowth of CC531 liver tumors. In
contrast, in vitro concentrations of celecoxib of at least
12 �g/ml were needed to aVect tumor cell viability.
Conclusion These results suggest that the inhibitory
eVects of celecoxib on tumor growth are not by direct cyto-
toxicity, but by creating an unfavorable environment for
tumor growth.

Keywords Cyclooxygenase-2 · Prostaglandins · 
Immune response · CC531 rat colon tumor liver 
metastases model · Celecoxib

Abbreviations
COX-2 Cyclooxygenase-2
PGE2 Prostaglandin E2

AA Arachidonic acid
TCR T cell receptor
TH cells T helper cells
NK cells Natural Killer cells
ppm Parts per million

Introduction

In colon cancer, surgical resection potentially oVers cure of
the disease. Prognosis is mainly dependent on the occurrence
of local or distant metastases, which occur in approximately
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40% of the patients [1]. Epidemiological studies have
indicated a considerable reduction in risk of occurrence of
colorectal carcinomas that overexpress the cyclooxygenase-
2 (COX-2) enzyme in patients with reported long-term non
steroidal inXammatory drugs (NSAID) use [2, 3]. In addition
to the chemoprophylactic potential, chemotherapeutic eVects
of NSAIDs have been suggested and evaluated in in vitro,
animal and clinical studies [4–6]. The mechanism by which
NSAIDs reduce the risk of colorectal carcinogenesis is gen-
erally attributed to the inhibition of the arachidonic acid
metabolism via the cyclooxygenase enzymes. COX is a crit-
ical step in the synthesis of prostaglandins (PG) that aVects
cell proliferation, tumor growth, apoptosis resistance and
immune responsiveness [7, 8]. Several isoforms of COX
exist [9]. The isoform COX-2 is upregulated in many types
of malignancies [10] and is responsible for prostaglandin E2

(PGE2) production by tumor cells. Several recent reports
have suggested that COX-2 expression has an important role
in haematogenous metastasis of colorectal carcinomas to the
liver [11,12], however, the eVects of COX-2 inhibition on
the growth of established liver metastases remains unknown.

Tumor cells use various strategies to escape host immune
surveillance, among others by impairing the eVectivity of
the host immune response [13]. Overproduction of PG and
speciWcally PGE2 by tumor cells results in direct down reg-
ulation of eVector cell cytotoxicity, but also creates an
abnormal balance between the T helper (TH)-1 and TH-2
response favoring the TH-2, hereby functionally blunting
the host anti-tumor cellular immune response [14, 15].

A recent animal study suggested that the inhibitory eVect
of COX-2 inhibitors on tumor growth is immunological and
is dependent on the presence of B or T lymphocytes [16].
Given the immunomodulating nature of PGE2 production
by tumor cells via COX-2 it has been suggested that COX-2
inhibition can result in an increased anti-tumor immune
response by facilitating inWltration [15–17].

The aim of the present study was to investigate the
eVects of the COX-2 inhibitor celecoxib on the growth of
established liver metastases by use of the CC531 rat tumor
model [18, 19]. In addition we evaluated the eVects of cele-
coxib treatment on prostaglandin production, immune cell
inWltration and apoptosis in the liver metastases.

Materials and methods

Animals

Twenty Male Wag/Rij rats weighing approximately 245 g
were used (Charles River, Zeist, The Netherlands). All
animals were housed in the animal facility of the Leiden
University Medical Center. The animals had free access to
food and water. The weight of the animals was followed

throughout the experiment to monitor their general health
state. Principles of laboratory animal care were followed and,
according to Dutch law, the Animal Welfare Committee of
the Leiden University Medical Center approved the study.

Cell culture and liver metastasis model

The colon adenocarcinoma cell line CC531 (1,2-dimethyl-
hydrazine-induced) which is moderately diVerentiated and
syngeneic to Wag/Rij rats [20] was used for tumor inocula-
tion. BrieXy, tumor cells were cultured in RPMI 1640 sup-
plemented with 2 mM L-glutamine (Gibco, Grand Island,
NY, USA), 10% heat-inactivated fetal calf serum, 100 U/
ml penicillin and 0.1 mg/ml streptomycin sulphate (com-
plete medium). Tumor cells were harvested with a solution
of 0.25% (w/v) EDTA and 0.25% (w/v) trypsin in HBSS
(Sigma, St. Louis, MO, USA), washed three times in 0.9%
(w/v) NaCl solution buVered with 1.4 mM phosphate (PBS)
and adjusted to a suspension containing 1 £ 106 viable
(trypan blue exclusion test) tumor cells per ml PBS. For
local liver tumor induction, 5 £ 104 viable tumor cells (in
50 �l suspension) per site were injected subcapsulary into
the upper lobe of the liver at two sites.

In vivo experimental design

Rats were randomly assigned to one of the following Wve
groups: (1) control group, (2) celecoxib 500 parts per mil-
lion (ppm) starting at tumor inoculation, (3) celecoxib 1000
ppm starting at tumor inoculation, (4) celecoxib 1,500 ppm
starting at tumor inoculation (5) celecoxib 1,500 ppm start-
ing 1 week before tumor inoculation (Fig. 1). Two tumors
were inoculated as described above in the liver at day 0.
Tumors were allowed to grow for 21 days after which rats
were sacriWced. Abdominal organs were evaluated for signs
of toxicity. Liver tumors were separately enucleated from
the surrounding liver parenchyma and measured. Blood
samples were taken from all rats by aortal punction at time
of sacriWce. Blood samples were allowed to coagulate and
were centrifuged for 10 min at 13,000 rpm (Beckman

Fig. 1 Design of experiment with celecoxib treatment of CC531 tu-
mors in a rat liver metastases model for colorectal cancer. Groups of
four male Wag/Rij rats were fed 0, 500, 1,000, or 1,500 parts per mil-
lion (ppm) celecoxib starting 7 days before (group 5) or directly after
subcapsular tumor cell inoculation in the liver on day 0 (group 1–4).
Rats were followed up for 21 days, after which they were sacriWced.
After sacriWce, rat serum was collected and rat tumors were enucleated
from the liver
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GS-6R centrifuge, Beckman Coulter, Fullerton, CA, USA);
supernatants were collected and stored at ¡20°C until anal-
ysis. The cross sectional tumor area was used for analyses.
This was determined using the formula: L £ W £ 0.25 £ �
in which L is maximum length and W is maximum width of
the tumor [21].

Medication

The COX-2 inhibitor celecoxib (SC-58635), obtained as a
gift from PWzer Pharmaceuticals, was incorporated into
Altromin 1310 rat breeding diet by Altromin (Altromin
Gesellschaft für Tierernährung mbH, Lage, Germany) at
various concentrations. Rats were fed this diet according to
experimental design as indicated in Fig. 1.

Analysis of celecoxib concentrations in serum

A high-performance liquid chromatographic (HPLC)
method was used and validated for the determination of
celecoxib in serum. Ibuprofen was used as an internal stan-
dard. Blanc serum samples (250 �l) were spiked with cele-
coxib (range 80 ng/ml–6,000 ng/ml) and Ibuprofen
(2,000 ng/ml) and used as calibrators and quality control
samples. The limit of quantitation was 100 ng/ml. Within-
run and between-run precisions were less than 10% and
average accuracies were between 90 and 110%. To 250 �l
of serum, 50 �l internal standard work solution (10 �g/ml)
[22] was added and the sample was mixed thoroughly. To
precipitate the proteins, 1 ml of acetonitrile was added and
the sample was vortexed again. After centrifugation, the
supernatant was transferred to a glass tube and evaporated
till dry. The residue was resuspended in 1 ml of the mobile
phase [22] and Wltered over a 0.45 �m PVDF HPLC-Wlter
(Acrodisc, Waters Corporation) for HPLC injection (40 �l).

Separation was achieved on a Symmetry 300 C18 col-
umn (25 cm £ 4.6 mm, 5 �m) (Waters, Milford, USA) con-
nected to a Luna C18 guard column (4 £ 3 mm, 5 �m)
(Phenomenex, Torrance, USA). The mobile phase, which
was Wltered through a 0,20 �m nylon Wlter before use, con-
sisted of an acetonitrile-water-acetic acid-triethylamine
(47:53:0,1:0,03) mixture and was pumped at a Xow rate of
1 ml/min. Celecoxib and Ibuprofen were detected by Xuo-
rescence detection. Emission and excitation wavelengths
of Celecoxib and Ibuprofen were 280/340 and 253/300,
respectively.

Analysis of PGE2 concentrations in liver metastases 
and serum

Tumor and serum levels of PGE2 were measured to analyse
celecoxib activity in rats fed the control diets or diets sup-
plemented with 500, 1,000 or 1,500 ppm. A competitive

enzyme immunoassay (R&D Systems Inc., Minneapolis
MM 55413, USA) was used for the determination of PGE2

in serum and tumor tissue. The sensitivity of the PGE2

assay was typically higher than 13 pg/ml. Each tissue sam-
ple (50–300 mg) was dried for surface moisture and accu-
rately weighed. The sample was then homogenized in 1 ml
of distilled water. After centrifugation, the supernatant was
treated the same way as serum.

Measurement of Caspase-3 Activity in CC531 tumors

The enzymatic activity of caspase-3 in treated and
untreated CC531 tumors was measured as previously
described [23]. Five 10-�M crysostat sections of tumor or
normal tissue were suspended in a lysis buVer consisting of
10 mM HEPES, pH 7.0, 40 mM �-glycerophosphate,
50 mM NaCl, 2 mM MgCl 2, and 5 mM EGTA. After
10 min on ice, the cells were disrupted by four cycles of
freezing and thawing and stored at ¡80°C. Protein concen-
tration was determined using the method described by
Bradford [24]. Caspase-3 activity was indicated in pmo-
lAMC/min/mg protein.

Immunohistochemical staining of CC531 liver metastases

Cryostat sections (Cryocut 3000, Leica, Nuss-loch, Ger-
many) 5 �m thick were cut from the tumor tissue that was
snap-frozen directly after resection, of the control group
(group 1) and the group receiving celecoxib 1,500 ppm
(group 4). Sections were air-dried for at least 16 h at 60 °C,
then Wxed in acetone for 10 min and washed twice in PBS.
All dilutions of antibodies and conjugates were performed
with PBS containing 1% (w/v) bovine serum albumin
(BSA, Boehringer, Mannheim, Germany). Immunohisto-
chemistry for detection of tumor cell COX-2 expression
was performed as described previously with a polyclonal
anti-COX-2 antibody (ALX-210–711, Alexis, San Diego,
CA, USA, 1:300 [25]). As negative controls sections were
incubated with PBS instead the primary antibody. Immuno-
histochemical analysis of immune cell inWltration was per-
formed as follows: The tissue sections were incubated for
30 min with a previously determined optimal concentration
of protein-A—puriWed primary antibody. The monoclonal
antibody (MAb) 3.2.3 IgG1 [26] (a gift from Dr. W.H.
Chambers, University of Pittsburgh Cancer Institute, Pitts-
burgh, PA) was used for detection of CD161A (NKR-
P1A+, Natural Killer cells) cells, the MAb R73 [27], anti-
rat T-cell receptor (TCR) (a gift from Dr. Th. Hünig, Uni-
versity of Würzburg, Germany), was used for the detection
of T cells. After incubation with the primary antibody, the
sections were washed in PBS 3 times for 5 min, followed
by two 30-min incubations with horseradish-peroxidase
(HRP)-conjugated rabbit anti-mouse Ig (dilution 1:100) and
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HRP-conjugated swine anti-rabbit Ig (dilution 1:50, both
obtained from DAKO, Glostrup, Denmark) and subsequent
washes in PBS. Visualization of immune complexes was
performed by a 10-min incubation with a 3,3�-diam-
inobenzidine (DAB) substrate containing 1.8 £ 10E-3%
(v/v) H2O2. A polyclonal rabbit anti-laminin antibody
(Sigma–Aldrich) was used for the detection of laminin.
After three wash steps with PBS, the sections were incu-
bated for 30 min with HRP-conjugated swine anti-rabbit Ig
(dilution 1:50, DAKO) for the detection of laminin. The
immune complexes were visualized by a 12-min incubation
step in a buVered TRIS-HCl (pH 7.6) solution containing,
per 100 ml, (1) 40 mg 4-chloro-1-naphtol (Merck, Darms-
tadt, Germany) dissolved in 200 �l dimethylformamide
(Baker, Deventer, The Netherlands) and 300 �l ethanol
(Merck) and (2) 100 �l of a 30% (v/v) H2O2 solution
(Merck). The sections were slightly counterstained using
methyl green (Klinipath) and mounted using Kaiser’s glyc-
erine (Merck). Control sections (1 per tumor) were included
in which both primary antibodies were omitted [20].

QuantiWcation of immunostaining

After immunohistochemical staining slides were directly
coded in order to blind the observer for tumor number or
treatment group of the tumors. The number of tumor inWl-
trating R73+ and 323+ cells in tumor epithelium were esti-
mated using a scoring method described by Menon et al.
[28]. In brief, an ocular grid, with a total surface area of
38 mm2, was used at a 200£ magniWcation to count all leu-
kocytes that were located intraepithelially in 25 diVerent ran-
domly chosen tumor Welds of the tissue section. Laminin
was used to distinguish between intraepithelially, that is, leu-
kocytes in direct contact with tumor cells, and intrastromally
located leukocytes (Fig. 3a–c). This tumor compartment-
speciWc analysis made it possible to calculate the number of
leukocytes per tumor cell area (leukocytes/mm2 tumor epi-
thelium). The mean leukocyte inWltration of 25 Welds per
tumor section was calculated and deWned as the intraepithe-
lial leukocyte inWltration. After evaluation, the slides were
unblinded for treatment group for further analyses.

EVects of celecoxib on CC531 cell viability in vitro

The cell viability was assessed by the mitochondrial func-
tion, measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
niltetrazolium bromide (MTT) reduction activity as
previously reported [29]. BrieXy, cells were seeded in a 96-
well plate and incubated with increasing concentrations of
celecoxib (Fig. 4). After 72 h, the cells were incubated with
0.5 mg/ml MTT (Sigma–Aldrich) for 4 h at 37°C. Subse-
quently, 100 �l SDS (10% (v/v) in 0.01 M HCl) was added,
after which the absorbance was read at 590 nm, using a

microplate reader (Bio-Rad Laboratories, Veenendaal, The
Netherlands). Stock solutions of the pure compound cele-
coxib were made in dimethyl sulphide (DMSO). A Wnal
DMSO concentration of 0.1% in medium was used in all in
vitro experiments including control experiments.

Statistical analyses

Statistical analysis between groups was performed using
the Fisher exact test. Correlations between variables were
evaluated using Spearmans’ rank analysis, Mann–Whitney,
Kruskal–Wallis, or student’s t test. Values with P < 0.05
were considered statistically signiWcant. The Statistical
Package for Social Sciences (SPSS) version 12.0 was used
for all statistical analyses.

Results

General condition of rats

The body weights of rats fed the control diet or the experi-
mental diets containing various levels of celecoxib were
comparable throughout the study. There was no diVerence
in animal behavior between the treatment groups. Animals
experienced a slight weight loss after laparotomy for inocu-
lation of CC531 tumor cells in the liver, but no rats lost
more than 5% body weight. The initial tumor induction was
successful in all rats and no rats died before the end of the
experiment. After sacriWce of the animals no gross intra-
abdominal changes were noted that would indicate toxicity.

Serum celecoxib levels

To establish if administration of celecoxib to rat diet resulted
in adequate levels of celecoxib in rat serum, serum samples
were collected after sacriWce. Increased dosage of celecoxib
in the rat chow showed a corresponding increase in serum
celecoxib levels (Fig. 2a). Rats in the control group who
were fed regular chow had undetectable levels. Steady-state
serum levels were as follows: celecoxib 500 ppm (group 2):
0.84 § 0.33 �g/ml, celecoxib 1,000 ppm (group 3): 1.97 §
0.77 �g/ml, celecoxib 1,500 ppm (group 4): 3.10 § 1.44 �g/
ml, celecoxib 1,500 ppm starting 1 week pre inoculation
(group 5): 3.07 § 0.91 �g/ml (Fig. 2a, Table 1). Serum cele-
coxib levels in the present study were comparable with the
0.1–5.0 �M concentrations in cancer patients treated with
celecoxib [5, 30].

EVects of celecoxib treatment on liver metastasis growth

The eVects of celecoxib administration on the tumor growth
are summarised in Fig. 2b. Administration of celecoxib
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resulted in a signiWcant dose dependent reduction of tumor
size when compared to the rats that were fed control diet
(group 1): Celecoxib 500 ppm (group 2): P = 0.04, cele-
coxib 1,000 ppm (group 3): P = 0.02, celecoxib 1,500 ppm
(group 4): P = 0.006, celecoxib 1,500 ppm starting 1 week
before inoculation (group 5): P = 0.007 (Fig. 2b; Table 1)
(Mann–Whitney). The administration of celecoxib 1 week
before tumor cell inoculation did not signiWcantly inhibit
tumor growth compared to administration after inoculation
(group 4) (P = 0.28)

EVects of celecoxib treatment on tumor caspase-3 activity

To evaluate the eVects of celecoxib on tumor cell apoptosis,
caspase-3 activity was determined in tumor samples of rats
treated with high doses of celecoxib (celecoxib 1,500 ppm,
group 4 and 5) as compared to the control group (group 1,
see Fig. 1). Treatment with celecoxib 1,500 ppm did not
signiWcantly increase tumor caspase-3 activity in the cur-
rent study (P = 0.56). However, if celecoxib was given
1 week before tumor inoculation, celecoxib treatment
resulted in increased caspase-3 activity (P = 0.03) (Table 1)
(Mann–Whitney).

EVects of celecoxib treatment on serum 
and tumor PGE2 levels

The eVects of celecoxib on tumor and serum PGE2 levels can
be seen in Fig. 2c, d and Table 1. No signiWcant diVerences
were found in tumor and serum PGE2 levels between the treat-
ment groups (P = 0.32 and 0.51 respectively, Kruskal–Wallis).

Tumor COX-2 expression

COX-2 expression in CC531 tumors is shown in Fig. 3: All
CC531 tumor cells were negative for COX-2 expression.
Surrounding tumor stroma showed light brown immuno-
staining, this was not aVected by celecoxib treatment. InWl-
trating macrofages showed to be positive for COX-2 and
thus served as internal positive control for the test. All neg-
ative controls showed no immunoreactivity.

EVects of celecoxib treatment on inWltration of tumors 
by R73+ and 323+ cells

Previously, it was established that intraepithelial immune
cells that are in direct contact with tumor target cells aVect

Fig. 2 EVects of 21 days of celecoxib treatment on CC531 liver
metastases and PGE2 serum and tumor level. All treatment groups con-
sisted of 4 rats in each of which two tumors were inoculated subcaps-
ularly in the liver. Rats received control diet, or a diet containing:
celecoxib 500 ppm, celecoxib 1,000 ppm, celecoxib 1,500 ppm, start-
ing at tumor inoculation, or celecoxib 1,500 ppm, starting 7 days be-
fore tumor inoculation. Blood and tumors were obtained from rats after

sacriWce. Serum celecoxib levels and serum and tumor PGE2 levels
were measured as described in the material and methods section. Val-
ues represent the mean and standard error. a Serum celecoxib concen-
trations. b EVects of celecoxib on tumor size (cross sectional tumor
areas). c PGE2 concentrations in the tumors of the rats. d PGE2 concen-
trations in sera from the rats
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tumor growth [31]. Therefore, inWltration of intraepithelial
immune cells in the tumor was evaluated. Figure 4a–d
shows the eVects of celecoxib treatment on the intraepithe-
lial inWltration of R73+ (TCR-positive cells, T cells) and
323+ (CD161A-positive cells, Natural Killer cells) cells.
Intraepithelial inWltration of R73+ and 323+ cells was sig-
niWcantly diminished in the 1,500 ppm celecoxib group
(group 4) compared to the control group (group 1)
(P = 0.01 and 0.02 respectively) (Table 1). InWltration with
R73+ cells was positively correlated with 323+ cell inWltra-
tion (P = 0.03, Spearmans’ rank analysis).

EVects of Celecoxib administration on tumor cell viability 
in vitro

In the present study we observed that concentrations of
0.84 �g/ml were suYcient to reduce tumor growth. When
CC531 cells were exposed to celecoxib concentrations equal
to in vivo concentrations after 72 h, no eVect on cell viability
was observed. In vitro, treatment with concentrations of at
least 12 �g/ml or higher were needed to inhibit cell growth
(mean % cell viability 86.7 § 11.5, P = 0.10) and exposure
to 24 �g/ml celecoxib resulted in a signiWcant inhibition of
cell viability as compared to the control group (mean % cell
viability 43.0 § 3.7, P < 0.0001, one sample t test).

Discussion

The current study demonstrates that treatment of rats with
levels of celecoxib equal to therapeutical levels in humans
[5, 30], showed an inhibitory eVect on the growth of liver
metastases in a situation of low COX-2 and subsequentT
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Fig. 3 Fresh frozen tumor sections from CC531 stained with poly-
clonal rabbit antibodies against COX-2 (1:300) at £400. COX-2
expression is not visible in tumor epithelium. Surrounding tumor stro-
ma shows light brown imunoreactivity. InWltrating macrophages show
positive COX-2 expression
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PGE2 activity. Recent RNA expression array data from a
study by Germann et al. demonstrated that the CC531 cell
line shows low COX-2 RNA expression [32]. The low
COX-2 expression was conWrmed in our study as tumor
epithelium was negative for COX-2 immunostaining. In
addition, PGE2 serum and tumor levels were not aVected by
celecoxib treatment. Furthermore, the level of PGE2,
assumed to reXect COX-2 activity, was very low as com-
pared to a similar study in a syngeneic mice model using
MC-26 cell line, that showed a 2000-fold higher PGE2

production in untreated COX-2 positive tumors [33].
In our model, increasing levels of celecoxib were associ-

ated with a corresponding decrease in tumor size. Cele-
coxib is known to have direct cytotoxic eVect on tumor
cells as well as indirect eVects, in which the immune sys-
tem and angiogeneis is involved [8]. Treatment of CC531
cells in vitro for 36 h with concentrations of up to12 �g/ml
(32 �M) did not have any signiWcant eVect on cell viability
while in vivo already 0,84 �g/ml signiWcantly inhibited
tumor growth, suggesting no direct eVect of celecoxib on
tumor cell viability in vivo. In addition, treatment with
celecoxib in vivo only resulted in an increase of tumor
caspase-3 activity in the group that received celecoxib
before tumor inoculation, whereas other groups showed no
increase of caspase-3 activity indicating that reduction of
tumor growth can be achieved without induction of tumor-
cell apoptosis. These observations are supported by a study
by Williams et al. [34] suggesting that celecoxib may create

an unfavorable host environment for tumor growth. Several
environmental interactions that determine tumor growth
have been described to be aVected by celecoxib treatment,
including the immune system [35–38]. InWltration of cyto-
toxic T-cells, NK cells and leukocytes is associated with
improved prognosis in several malignancies and tumor
cells utilise various strategies to escape the host immune
surveillance [28, 31, 39]. In vitro production of PGE2 by
COX-2 prevents activation of natural killer cells and T-cell
mediated anti-tumor response, impairs the function of DC’s
and suppresses lymphocyte proliferation [15, 40–42]. The
before mentioned studies suggest that these eVects can be
reversed by selective COX-2 inhibition. A recent study
indicated that, in addition to enhancement of lymphocyte
accumulation in tumors by COX-2 inhibition [15, 16], the
anti-tumor eVects of COX-2 inhibition are immunological
and depend on the presence of lymphocytes in the tumor
[16]. In the current study we quantiWed the immune cell
inWltration: Surprisingly, we found a signiWcant decrease in
T-cell and NK-cell inWltration in tumors receiving cele-
coxib treatment, showing that the eVect of celecoxib on
tumor growth in our model can not be attributed to immune
eVector cells. A decrease in inWltration after treatment with
NSAIDs or COX-2 inhibitors has been described in inXam-
matory processes as inXammatory bowel disease [43] and
rheumatoid arthritis [44]. and indicates that the eVects of
COX-2 inhibition on tumor growth is not mediated through
an increased anti-tumor immune response.

Fig. 4 A representative staining 
for T cell and NK cell inWltration 
of tumor sections from 
celecoxib-treated (1,500 ppm) 
and -untreated rats 21 days after 
tumor inoculation. Sections 
were double-stained with lami-
nin and R73 (anti-TCR, 1:100; 
a, c) or 323 (anti-CD161A, 1:50; 
b, d) antibodies respectively. 
R73+ and 323+ cells were 
stained brown, as revealed by 
immunohistochemistry (see 
material and methods). The ma-
trix protein laminin was stained 
blue, blank spaces represent tu-
mor nodules, delineated by a 
laminin-containing basal-mem-
brane-like structure. The major-
ity of R73+ and 323+ cells were 
localized in the tumor stroma, 
few positive cells were found in 
the tumor nodules. (£200)
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Most studies evaluating the eVects of COX-2 inhibition
in tumor growth were performed with COX-2 overexpress-
ing tumors. However it is estimated that 25–30% of human
colorectal cancer does not express the COX-2 enzyme [45].
The results from the current study indicate that eVects of
COX-2 inhibitors on tumors with low COX-2 activity are
still signiWcant, but independent of tumor cell apoptosis and
immune eVector mechanisms. Mounting evidence indicates
that the antitumor eVects of NSAIDs and selective COX-2
inhibitors are not mediated predominantly through the inhi-
bition of COX-2 activity and prostaglandin synthesis or
even by induction of apoptosis [46–48]. A recent case-con-
trol study in colorectal cancer showed an interaction for
NSAIDs use and IRS1 and VDR genotypes [49], suggest-
ing that the protective eVect of NSAID use involves a insu-
lin-related growth pathway.

In conclusion, the current in vivo study has demon-
strated the use of selective COX-2 inhibitor to limit the
growth of colorectal liver metastases, in absence of COX-2
expression or prostaglandin production and independently
of tumor cell apoptosis and immune eVector mechanisms.
This provides support for mechanisms other that COX-2
inhibition to be contributing to the protective eVects of
NSAIDs on colorectal cancer risk and suggest a beneWcial
eVect in the prevention and treatment of colorectal cancer
liver metastases by celecoxib use.
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