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While type 2 immunity has been conventionally viewed as beneficial against helminths,
venoms, and poisons, and harmful in allergy, contemporary research has uncovered its
critical role in the maintenance of homeostasis. The initiation of a type 2 immune response
involves an intricate crosstalk between structural and immune cells. Structural cells react
to physical and chemical tissue perturbations by secreting alarmins, which signal the
innate immune system to restore homeostasis. This pathway acts autonomously in the
context of sterile injury and in the presence of foreign antigen initiates an adaptive Th2
response that is beneficial in the context of venoms, toxins, and helminths, but not food
allergens. The investigation of the triggers and mechanisms underlying food allergic
sensitization in humans is elusive because sensitization is a silent process. Therefore,
the central construct driving food allergy modeling is based on introducing perturbations
of tissue homeostasis along with an allergen which will result in an immunological and
clinical phenotype that is consistent with that observed in humans. The collective evidence
frommultiple models has revealed the pre-eminent role of innate cells and molecules in the
elicitation of allergic sensitization. We posit that, with the expanding use of technologies
capable of producing formidable datasets, models of food allergy will continue to have an
indispensable role to delineate mechanisms and establish causal relationships.
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INTRODUCTION

Our understanding of the underlying pathogenesis of food allergy and its attendant applications has
been largely attained through experimental modeling. In fact, modeling, which has been instrumental
to scientific progress in general, is an inescapable approach to decipher complex problems such as a
disease. Here, we discuss a broad perspective of type 2 immunity, highlighting its role in homeostasis.
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Then, we provide a succinct ideology of modeling and examine
strategies for food allergy modeling. Lastly, we advance our view
on why food allergy modeling will remain an indispensable
discovery tool, especially with the continuing development of
technologies that facilitate high parameter analyses.
PATHWAYS OF INNATE-DRIVEN
TYPE 2 IMMUNITY

Historically, type 2 immunity was conceived as a balancing
system for type 1 inflammatory responses and whose primary
purpose was to provide defense against helminths (1). Indeed,
the symptomatology elicited by type 2 responses, including
itching, tearing, intestinal cramps, wheezing, swelling, and, in
extreme instances, anaphylaxis, is geared toward containment or
expulsion of helminths, poisons, and toxins and are, therefore,
beneficial for the host. Antithetically, type 2 immunity promotes
harmful responses against food allergens.

Research over the last decade, largely in experimental
models, has revolutionized this view ushering in a much
richer perspective of both the functions and the engineering
of type 2 immunity. With respect to the former, important roles
for the cells and molecules of type 2 immunity have been
uncovered in a wide range of processes, from tissue repair and
metabolism to sensing temperature and chemical imbalances
(2). Regarding the engineering, it is clear that the initiation and
execution of a type 2 immune response entails an intricate
crosstalk between structural and immune cells. Collectively,
this research has positioned type 2 immunity as a guardian
of homeostasis.

Considerable evidence from multiple contexts has revealed a
generic type 2 pathway mediated by innate immune cells and
molecules that regulates homeostasis. Structural cells at mucosal
sites and the skin, prominently epithelial and endothelial cells,
react to tissue perturbations or physiological changes by
secreting alarmins, such as IL-33, IL-25, and TSLP (3, 4).
These alarmins act on cognate receptors on ILC2s which
expand and enact a variety of reparative functions primarily
through the secretion of IL-5, IL-13, and amphiregulin (5–7). IL-
5 facilitates the accumulation of eosinophils at the tissue site
which generally impact homeostasis through their cytokines and
granule products (8–12). ILC2s, IL-13, and amphiregulin induce
a plethora of developmental and reparative functions. These
include but are not limited to promotion of postnatal lung
alveolarization (13, 14), stimulating epithelial repair and
extracellular matrix production to repair wounds (15–19),
regulating muscle cell metabolism and the clearance of necrotic
debris during muscular injury and exercise (9, 20, 21), and
regulating energy metabolism and the differentiation of beige
adipose tissue to increase caloric expenditure and generate heat
(22–26). To date, components of this pathway have been
implicated in homeostatic maintenance in the skin (18, 19),
muscles (9, 20), intestines (27, 28), nervous system (29, 30), liver
(8, 31, 32), biliary tract (15), lungs (16), kidney (11), adipose
tissue (33), among others. Emergent roles in the initiation and
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amplification of type 2 immunity are being described for other
innate immune cells, such as mast cells and basophils, which
produce alarmins and potently secrete other cytokines in some
contexts (34, 35). Notably, virtually no adaptive immune
involvement has been reported in type 2-mediated homeostasis
and, in many cases, occurs in mice without an adaptive
immune system.

Adaptive type 2 immunity is also activated in the context of
significant tissue perturbations. The distinctive rule of
engagement is the presence of foreign antigens in the tissue
microenvironment. For example, the life cycle of many
helminths involves perforating epithelial barriers and
implanting into tissues. Most venoms are proteases which
cleave proteins critical for tissue integrity and cause necrotic
cell death. Some aeroallergens, like house dust mite, have
inherent proteolytic activity (36). It follows that type 2
adaptive immunity may have evolved to respond to foreign
antigens that are conspicuously present in the local
microenvironment of tissue injury. In these alarmin-rich
contexts, epithelial cell-derived cytokines directly act through
cognate receptors on dendritic cells to condition the expression
of the costimulatory molecule OX40L and downregulate IL-12
expression (37, 38). These dendritic cells also capture local
antigen and migrate to secondary lymphoid organs where they
engage naïve CD4+ T cells. OX40L is critical to induce IL-4
secretion from CD4+ T cells, which is thought to act in an
autocrine manner to upregulate STAT6 and GATA3 resulting in
Th2 differentiation (39–41). Some T follicular helper cells
acquire a Th2-like phenotype required for the differentiation of
IgE-secreting cells (42). Adaptive type 2 immunity is beneficial
for the host in the aforementioned contexts; IgE is reported to
provide resistance to venoms (43) and Th2 cells and IgE facilitate
expeditious clearance of parasites (44–46).

We posit that the type 2 innate and adaptive responses are
both instigated by the same triggers, perturbations of
homeostasis, differing only by the presence or absence of
antigen. When tissue homeostasis is disrupted, alarmins signal
the innate immune system to initiate reparative functions to
regain homeostasis Figure 1A). Simultaneously, some of these
alarmins condition nearby dendritic cells, which are actively
scanning the microenvironment for foreign antigens. Capture of
antigens which colocalize with tissue damage are loaded into
MHC II and elicit an adaptive type 2 immune response. If a
foreign antigen is encountered that signals through pattern
recognition receptors (like a bacteria or virus), type 1
immunity is engaged for pathogen control (Figure 1B). When
no foreign antigens are encountered, DCs internalize and present
only self-antigens which usually will not result in adaptive
immunity as self-reactive T cells are eliminated or constrained
by central and peripheral tolerance (Figure 1A). Type 2
immunity is intuitive for helminths, which cause damage when
invading tissues and shed antigenic material that is internalized
by DCs, thus mounting Th2 and IgE responses (Figure 1C) (45).
It follows similarly for toxins and some aeroallergens, which
cause damage through proteolytic activity and are small enough
to be taken up by DCs (Figure 1D). However, it falls short when
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rationalizing immune responses against food allergens, which are
highly diverse in structure, the vast majority of which are not
immunogenic, and, enigmatically, which are essential
for survival.
IDEOLOGY OF DISEASE MODELING

Complexity has driven scientists from all branches to develop
models, these understood as the functional simplification of an
intractable reality. The development of a scientific model is
based on the prevailing interpretation of the available
information at a given time. Therefore, models are not static
but evolve as we enhance our knowledge of a process. A
biomedical model is a surrogate for a human being, or a
human biological system. Its primary purpose is to
understand how the human body works, from genotype to
phenotype. Within biomedical models, animal models provide
precise genetic and experimental control and are, thus, critical
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to establish causality. Understanding is not gained by
observation but by manipulation, physically, genetically,
pharmacologically or immunologically, in ways that would be
unreasonable or even unethical to do in a human.

Animal models are critical for investigating disease mechanisms.
Diseases are exceptionally intricate, rarely involving a single
phenotypic abnormality and often affecting multiple organ
systems. A case in point is the multiple phenotypes observed in
allergic disease. This presents a conundrum: on the one hand,
deciphering this complexity in a human being is an indomitable
task; on the other, animal models are a simplification of this reality
and can only provide approximations. Consequently, the
expectation that findings from a single model may wholly explain
a heterogeneous disease is unrealistic. The implication is that
multiple models asking multiple questions are necessary to
provide a comprehensive view of a disease process, food allergy in
this case. Animal models are extensively used as well to interrogate
the biological impact of novel therapeutics. These studies along with
other experimental approaches are critical to narrow the decision of
A B D EC

FIGURE 1 | Pathways of Type 2 immune activation via tissue perturbations. (A–D) Epithelial cells release alarmins (e.g., IL-33, IL-25, and TSLP) in response to
tissue damage. Alarmins signal through cognate receptors on innate immune cells, resulting in proliferation and the release of effector cytokines (e.g., IL-5, IL-13, and
amphiregulin). These cytokines directly influence tissue repair (e.g., stimulating re-epithelization and extracellular matrix production) or cause the recruitment of other
cells (e.g., eosinophils) which aid in tissue repair. Simultaneously, local dendritic cells uptake tissue antigens and respond to alarmin signaling by travelling to the
draining lymph nodes and inducing Th2 cell differentiation through OX40-OX40L. (A) In the context of sterile injury, only self-antigens are uptaken by dendritic cells
and are presented to T cells, which have been limited by central and peripheral tolerance. (B) When infectious agents are present, they signal through pattern
recognition receptors, upregulating IL-12 in dendritic cells, and initiating Th1 immunity for host defence. (C, D) Helminths and venoms, canonical examples of Th2
responses, drive tissue damage by invading tissues or through cleaving proteins, respectively. Antigens that colocalize with damage are presented to T cells and
initiate Th2 responses. (E) It remains unclear how Th2 immunity is initiated against food allergens. Mouse models require the use of adjuvants (e.g., cholera toxin or
tape stripping) to perturb homeostasis, suggesting that food allergic responses are initiated in the presence of damage that is unrelated to the food allergen itself.
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which therapeutics should progress to large scale studies in humans.
In other words, knowing what not-to-do helps immensely with the
decision of what-to-do.
PERSPECTIVE ON FOOD
ALLERGY MODELING

Food allergy is typically diagnosed following a clinical reaction in
infants or toddlers upon first known exposure (47). However, a
prior event must have taken place to trigger allergic sensitization
and, ultimately, production of food-specific IgE. As sensitization in
humans is a silent process neither its initiation nor its evolution can
be interrogated. Moreover, there appears to be no unifying genetic
or environmental exposures, highlighting the heterogenous nature
of food allergy. Accordingly, a diversity of animal models—
primarily mouse models—have provided a tangible, ethical, and
indispensable approach to decipher the cellular and molecular
mechanisms underlying allergic sensitization.

Unlike some aeroallergens, toxins, and animal poisons, the vast
majority of food antigens are not inherently immunogenic. As a
consequence, most humans and experimental animals develop oral
tolerance, an active state of non-reactivity, upon first exposure to
food antigens (48, 49). In fact, the LEAP study demonstrated that
over 98% of infants with atopic comorbidities (eczema and/or egg
allergy) receiving their first exposure to peanut before 11 months of
age develop oral tolerance (50). Similar to a type 2 homeostatic
response, the tolerogenic response to food antigens [reviewed in
citations (51, 52)] fundamentally involves DCs. However,
acquisition of oral tolerance imperatively lacks the key molecules
and the majority of cells that trigger Th2 polarization. It follows that
a concomitant subversion of homeostasis is required to prime the
immune system to mount a Th2-dominant response against food
antigens (Figure 1E). In mouse modeling, this subversion is
generally achieved through the use of adjuvants—substances
which aid in eliciting robust immune responses (53). Cholera
toxin (CT), staphylococcal enterotoxin B (SEB), and aluminum
hydroxide (alum), are three of the most widely used biological or
chemical adjuvants that facilitate a Th2-dominant response in mice
(54–58). Damaged skin, due to physical disruption of epidermal
barriers (i.e., epicutaneous sensitization), drives sensitization to
topically applied allergen (59–63). A second approach to
modeling food allergies, also a subversion of homeostasis, involves
reducing the threshold of reactivity via genetic mutations. For
example, Il4raF709 mice which contain a loss-of-function mutation
in the Il4ra immunotyrosine inhibitory motif, display a lower
sensitization threshold upon food allergen exposure (64, 65).
Thus, the use of adjuvanted models has played a key role in
overcoming the elusiveness of allergic sensitization in humans.

Basic discoveries that discriminate tolerant (homeostatic)
versus pathogenic (allergic) responses to foods have been
described using models in which mice are sensitized with a
single or repeated administration of CT along with a food
antigen (56, 66–68). CT is classified as an AB5 toxin; this class
of toxins are produced by many enterotropic bacteria, such as
Frontiers in Immunology | www.frontiersin.org 4
Escherichia coli and Bordetella pertussis (69). Oral administration
of CT enhances CD103+ CD11c+ DC migration to the mesenteric
lymph nodes as well as expression of MHC II and costimulatory
molecules (e.g., CD86) (70–72). These effects per se do not
rationalize the elicitation of dominant Th2 priming. However,
studies investigating the gene expression profile of mesenteric
lymph node DCs in CT-immunized mice showed an upregulation
of OX40L (70). Antibody-mediated blockade and genetic
knockouts demonstrated a critical role of OX40L to promote
Th2 skewing by enabling the initial burst of IL-4 from CD4 T cells
(28, 41, 70). Further studies exposed the involvement of the IL-33/
ST2 innate axis, where IL-33-signaling facilitates OX40L
upregulation (41). Intriguingly, use of an ILC2 depletion strategy
revealed a dispensable role of ILC2s in oral sensitization to foods,
despite a dominant presence in intestinal tissues and a well-
defined role in type 2 homeostatic processes (41).

A relationship between skin atopic abnormalities and
sensitization to food allergens has become clear through large-
scale longitudinal studies (73, 74). A primary example of this are
loss-of-function mutations in the filaggrin gene (Flg) that
correlate with peanut allergy in humans (75). To elucidate the
immunological mechanisms of this relationship, models of
epicutaneous sensitization have been employed. Sensitization is
typically achieved through tape stripping, which removes the
outermost epidermal layer, causing skin inflammation (63).
These models have been referred to as “adjuvant-free”, which
is misleading as tape stripping provides the same function as an
adjuvant—induction of an immune response via an external
input (76–78). Animal models have revealed an essential role of
epithelial cells pertaining to barrier function and alarmin
production during epicutaneous allergen exposure. In mice,
disturbed production of filaggrin, a protein involved in
epidermal barrier function, facilitated allergic sensitization to
allergen applied topically (79). Damaged epithelial cells are an
important source of alarmins such as IL-33, TSLP, and uric acid
which, as reviewed earlier, enable DC activation and subsequent
CD4 T cell priming (80–81). Tape-strip models have also
revealed a role of ILC2s which, in response to IL-25 and IL-33
secretion from tape-stripped skin, proliferate in intestinal tissues
to drive IL-4-dependent mast cell expansion (82).

In addition to elucidating the innate immunological events
underlying allergic sensitization, animal modeling has enabled
discoveries pertaining to allergic reactions. Alarmins involved in
sensitization also participate in the effector phase. IL-33 interacts
directly with mast cells to potentiate mast cell degranulation (84).
Moreover, FceRI-mediated mast cell activation stimulates
production of IL-25, which is hypothesized to further drive the
Th2 phenotype (85). Mouse models have elucidated the
vasoactive mediators that facilitate anaphylaxis. In humans a
correlation between anaphylactic severity and serum platelet
activating factor (PAF) levels, but not histamine levels, was
reported (86). Use of mouse models determined that blockade
of histamine receptors (H1 and H2) was insufficient at
preventing anaphylaxis, but that concurrent treatment with
antihistamines and a PAF-receptor antagonist could
significantly reduce anaphylactic severity (87).
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In mouse models, allergen challenges vary greatly in dose and
route (intraperitoneal, oral, intradermal, and intravenous) (56,
58, 88, 89). Routes of challenge differ in the clinical phenotype
that is induced. For example, oral challenges tend to result in
diarrhea and, sometimes, a mild drop in core body temperature.
Intraperitoneal challenges, on the other hand, facilitate a much
more robust drop in core body temperature and other severe
systemic reactions (e.g., seizures). The severity of clinical
reactivity may, in part, be dependent on antigen availability
and mast cell density at the site of allergen administration (90).
As well, IgG has also been shown to mediate anaphylaxis in food
allergy mouse models, although an equivalent IgG-mediated
food-induced anaphylactic pathway in humans remains
contentious (63, 91, 92). In all instances—independent of
allergen administration route—modeling allergen challenge
revea l s downstream funct ions of a l l e rgen-spec ific
immunoglobulins (e.g., the events following allergen cross-
linking of mast cell-bound IgE). Thus, the selection of the
route of allergen challenge should be guided by the research
question, where intraperitoneal and intravenous challenges are
best suited to assess systemic anaphylaxis, oral challenge to
evaluate gut-local effects (e.g., allergic diarrhea, goblet cell
hyperplasia), and intradermal challenge to measure localized
vascular permeability. Use of anti-FcgRII/III blocking
antibodies may also be employed to further discriminate
between IgE- and IgG-mediated allergen reactivity (91).

The use of animal models of food allergy for translational
research has been scrutinized due to the necessity of “artificial/
experimental sensitization” (i.e., requiring eccentric interventions).
The validity of animal models for translational research can,
however, be evaluated by three criteria: 1) face validity, 2)
predictive validity, and 3) target validity (93, 94). Face validity
evaluates the similarity of disease biology and symptomology
between humans and the animal model (93). The biological
processes of food allergy at large are conserved between mice
and humans. For example, the immune response is dominantly
Th2 polarized, IL-33 and uric acid are elevated compared to non-
allergic controls, and clinical reactivity is IgE-mediated (84, 92,
95). Many of the clinical signs of an allergic reaction are also alike
including itching, diarrhea, local inflammation, and systemic
shock (76, 96). Predictive validity compares the effectiveness of
interventions in humans and in the relevant animal model (93).
Due to the small number of interventions tried in human food
allergy, evaluation of predictive validity is limited, but oral
immunotherapy provides a key example. Oral immunotherapy
in both mice and humans can increase the threshold of reactivity
(i.e., desensitization) to food allergens, although this desensitized
state is, just as it is in the majority of humans, unsustained (68, 97).
This limited assessment of predictive validity will be greatly
improved come the initiation of clinical trials testing novel
biotherapeutics (e.g., anti-IL-4Ra). Lastly, target validity
establishes that a particular target (e.g., a cytokine) has the same
function in humans and the disease model (93). Many of the
molecules and cells involved in human food allergy provide similar
actions in animal models. For instance, IL-4 promotes Th2
polarization and IgE class-switch in both mice and human food
Frontiers in Immunology | www.frontiersin.org 5
allergy (95). In contrast, the role of IgG in human food-induced
anaphylaxis remains contentious and, therefore, mouse models
would provide low target validity for investigation of IgG-targeted
interventions. In summary, despite not knowing the “adjuvants” at
play in human food allergy, adjuvant-based experimental models
have revealed cellular and molecular signatures that exist in
humans. Moreover, regardless of experimental model, it is clear
that an innate program drives allergic sensitization.
CONCLUDING REMARKS

Over the last few decades, there have been fundamental
advances in our understanding of allergic disease, including
food allergy. These advances have led to a dramatic re-
conceptualization of the functions of type 2 immunity and the
critical role of the innate system in programming these
functions. We must recognize, however, that the current state
of knowledge is vastly incomplete. For example, how gut
dysbiosis stresses local tissue environments and impacts
primary and secondary immune responses to foods is an
emerging area already providing novel insights (98, 99). We
surmise that experimental models will continue providing
seminal discoveries on the machinery (cells and molecules)
and the engineering (operating mechanisms) that underlie
allergy. Indeed, the ability to overexpress or repress individual
genes in animals, either permanently or on-demand, pervasively
or in specific cell types, unlocks unique opportunities to decipher
both the pathogenesis and the trajectory of the allergic diathesis.
Lastly, experimental modeling remains an unparalleled sieve to
guide what should be investigated in humans.

The ever-increasing application of technologies that
deliver formidable datasets will help to delineate complex
inter- and intracellular pathways, thus enlightening the
astounding phenotypic diversity and plasticity of the allergic
response. Mass cytometry has dramatically expanded upon
flow cytometry in the analysis of protein expression at the
single cell level and is drastically reshaping histology allowing
for the measurement of very many markers on a single section.
Bulk and single cell RNA sequencing is rapidly expanding in
read depth, resulting in greater appreciation of the genetic
signatures and subpopulations that define disease states.
Constant advances in bioinformatics and machine learning
continue to unveil new ways of mining these massive
datasets for pathways and cell differentiation trajectories.
There is no doubt that the next generation of large data
analysis is already being conceived and developed beyond
the gaze of immunologists. The logic of applying these
analyses to human samples is clear. However, applying these
technologies to animal research will remain imperative in at
least two areas that are not currently possible in humans: 1) To
address questions that require manipulation (genotype and
exposure), not only observation, to understand how the system
reacts and 2) To efficiently deconvolute the temporal and
spatial evolution of a given perturbation or process;
particularly those that are obscured by the complex exposure
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bruton et al. Innate Pathways Drive Food Allergy
history of humans. Furthermore, emerging discoveries from
these datasets in both humans and models will have to be
validated through mechanistic studies in experimental models
using the long-established immunological toolkit to decipher
causal relationships.
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