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Abstract
Analogies between the immune and nervous systems were first envisioned by
the immunologist Niels Jerne who introduced the concepts of antigen
"recognition" and immune "memory". However, since then, it appears that only
the cognitive immunology paradigm proposed by Irun Cohen, attempted to
further theorize the immune system functions through the prism of
neurosciences. The present paper is aimed at revisiting this analogy-based
reasoning. In particular, a parallel is drawn between the brain pathways of
visual perception and the processes allowing the global perception of an
"immune object". Thus, in the visual system, distinct features of a visual object
(shape, color, motion) are perceived separately by distinct neuronal
populations during a primary perception task. The output signals generated
during this first step instruct then an integrated perception task performed by
other neuronal networks. Such a higher order perception step is by essence a
cooperative task that is mandatory for the global perception of visual objects.
Based on a re-interpretation of recent experimental data, it is suggested that
similar general principles drive the integrated perception of immune objects in
secondary lymphoid organs (SLOs). In this scheme, the four main categories of
signals characterizing an immune object (antigenic, contextual, temporal and
localization signals) are first perceived separately by distinct networks of
immunocompetent cells.  Then, in a multitude of SLO niches, the output signals
generated during this primary perception step are integrated by TH-cells at the
single cell level. This process eventually generates a multitude of T-cell and
B-cell clones that perform, at the scale of SLOs, an integrated perception of
immune objects. Overall, this new framework proposes that integrated immune
perception and, consequently, integrated immune responses, rely essentially
on clonal cooperation rather than clonal selection.
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Introduction
Evolution has endowed the human species with the most sophis-
ticated immune and nervous systems. Maintenance of our inter-
nal homeostasis and adaptation to our external environment rely 
essentially on the ability of both systems to sense, memorize and 
react to a large variety of input signals. These crucial functions are 
supported by a common organizational grounding base consisting 
in complex networks of specialized cells that communicate in spe-
cific anatomical sites. Similarities between the immune and nerv-
ous systems were first highlighted by the immunologist Niels Jerne 
who introduced the terms “recognition”, “memory” and “learning” 
in the immunological vocabulary1,2. However, since then, such an  
analogy-based reasoning was mostly used to demonstrate remi-
niscent molecular mechanisms between immune and neuronal  
synapses3,4. Only few works attempted to further theorize the 
immune system functions through the prism of neurosciences. In 
this framework, the cognitive immunology paradigm proposed by 
Irun Cohen5,6 is undeniably a key contribution that notably led to 
the concept of physiological auto-immunity7,8. In particular, Irun 
Cohen proposed that naturally occurring auto-antibodies provide 
an indispensable immune system’s representation of our body, the  
immunological homunculus5, which resembles its neural  
counterparts, the somatosensory homunculus. Thereafter, other 
works similarly apprehended immunity as a cognitive process and 
brought about the emergence of computational immunology9,10. 
Nevertheless, the line of thought initiated by Jerne appears not 
to have been nourished by the major conceptual and experimen-
tal advances that cognitive neurosciences provided in the last two  
decades. This context offers a unique opportunity to revisit and 
explore analogies between the nervous and immune systems in 
the light of such discoveries. The recently formulated concept of a  
sensory immune system11 falls into this re-thinking strategy.

Cooperative neuronal networks support the integrated 
perception of visual objects
Developing further the concept of “perceptive immunity” requires 
beforehand to provide a basic description of the main mechanisms 
allowing our brain to perceive sensory inputs. Let us choose the 
example of visual perception. When considering the perception of 
a given visual object, different categories of input signals that relate 
with the shape, color, and motion of this object are captured and 
integrated independently by distinct neuronal populations. These 
specialized neuronal networks reside in the so-called primary vis-
ual cortex, in the superficial neuronal layers of the brain occipi-
tal lobe)12,13. Importantly, such a primary perception induces the 
generation of output primary signals (electro-chemical by nature) 
that converge toward neurons localized in the so-called visual asso-
ciation areas also named higher-order visual areas14,15 (Figure 1). 
There, these specialized neuronal populations capture and integrate 
varied combinations of output primary signals to perform an inte-
grated perception of visual objects. Two major pathways allow-
ing the convergence of output primary signals toward higher-order  
areas are well characterized: i) the “What” pathway targets  
associative areas in the temporal cortex and is essential to the  
recognition and memorization of visual objects14, ii) the “Where” 
pathway targets associative areas of the parietal cortex and sup-
ports the perception of precise localization14. Eventually, the  
interconnections between high-order visual areas allows a  
fully-integrated perception that takes into account the nature,  
localization, context and time-related features of a visual object14.

Thus, visual perception requires not only a specialization of cells 
depending on their ability to perform primary vs integrated percep-
tion tasks but also tight cooperation between neuronal networks. 
Primary perception allows distinct features of a visual object 

Figure 1. Brain visual pathways. The signals related to the shape, color and motion of visual objects are integrated by specialized brain 
neuronal populations residing in the primary visual cortex i.e the superficial neuronal layers of the brain occipital lobe. Output signals are 
then generated that instruct other cortical areas for higher order integration tasks. The “What” pathway connects the primary visual cortex to 
areas of the temporal cortex that are essential to the recognition and memorization of objects and forms. The “Where” pathway connects the 
primary visual cortex to areas of the parietal cortex that support perception of precise localization. The interconnections between higher-order 
visual areas (dashed arrows) as well as other brain areas not highlighted here, allows a fully-integrated perception that takes into account the 
“What”, “Where”, “How” and “When” features of a visual object.
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(shape, color, motion) to be perceived separately12,13. Integrated 
perception allows a visual object to be perceived as a whole via the 
integration of distinct categories of primary signals14,15.

Non-neuronal cells are also essential to visual perception
It also important to underscore that the operability of any neuro-
nal network, would it be involved or not in sensory perception, 
depends on non-neuronal cells that locate in close vicinity to 
neurons. Astrocytes exert a tight control of interneuronal synap-
tic transmission16,17 and microglia, the resident macrophages of 
the brain, proceed to a selective trimming of functionally irrel-
evant or supernumerary synapses18,19. In addition, the blood flow 
in small arteries and capillaries of the brain is exquisitely tuned 
by a mechanism of neurovascular coupling that finely adjusts the  
supply of blood-derived oxygen and glucose to the needs of  
neuronal networks20,21.

The immune system perceives more than antigens and 
danger signals: a proposed definition of immune objects
Postulating the existence of analogies between the immune and 
visual systems implies first that the counterpart of visual objects are 
immune objects. If so, immune objects cannot be simply reduced 
to an antigen +/- danger signals. Indeed, in accordance with the 

principles of immunogenicity previously enunciated by Rolf  
Zinkernagel22, one may propose that an immune object (IO) is 
defined by the association of at least 4 categories of signals:  
antigenic, contextual, temporal and localization signals. Establishing 
a parallel between visual and immune perception also implies that 
the perception of an IO relies first on primary perception tasks 
followed by an integrated perception step. It is proposed that  
distinct IO-related features (antigen, context, localization,  
time-related signals) are perceived separately by distinct networks 
of immunocompetent cells in a myriad of SLO niches. Then,  
output signals generated by such a primary perception step  
converge toward T-cells which, at the scale of SLOs, perform and 
orchestrate the integrated perception of IOs.

The primary perception of immune objects is a cooperative 
task operated by a large range of immunocompetent cells
As previously proposed11, SLOs are likely to be the main anatomi-
cal sites where the primary and integrated perception of IOs take 
place. Below is an attempt to categorize immunocompetent cells 
according to their functions in the primary perception of IOs and 
the ensuing generation of primary output signals (Figure 2).

1) The primary perception of antigenic signals is essentially 
performed by antigen-presenting cells (APCs) would 

Figure 2. Primary perception of antigenic, contextual, localization, and temporal signals. The antigenic, temporo-contextual and 
localization signals that characterize an immune object are perceived separately by specific populations of cells that perform a primary 
perception task. The output signals generated by these cells will then instruct an integrated perception step essentially performed by TH-cells. 
The primary perception of antigenic signals is performed by DCs, macrophages, B-cells and any APC that may reside or migrate in lymph 
nodes. The primary perception of contextual and temporal signals including notably DAMP, PAMP and cytokines are performed by a large 
range of immune cells or non-immune cells that reside in SLOs. In addition, immune cells that target SLOs in a context- and time-dependent 
fashion also perform a primary perception of temporo-contextual signals. These cells include notably Treg and Breg cells irrespective of their 
target antigens as well as, to some extent, naive B- or T-cells. Finally, the primary perception of localization signals is essentially performed 
by APCs that derive from the immune object microenvironment.

M

Page 3 of 13

F1000Research 2016, 5:2226 Last updated: 13 OCT 2016



they belong or not to the dendritic cells (DC) lineage23. 
While tissue-resident DCs are the first line cells exerting 
such a function, a flurry of APCs that reside or migrate 
in SLOs also participate to the primary perception of  
antigens. Depending on the intrinsic properties harbored 
by APCs with regard to antigen processing and co- 
stimulation, the primary perception of antigens will  
result in the presentation of distinct epitopes and 
the expression of varied combinations of accessory  
molecules23.

2) Contextual signals are highly diverse in nature and may 
combine in many different ways under physiological or 
pathological conditions (development, ageing, trauma, 
degeneration, infection, cancer…etc.). Danger-associated 
molecular patterns (DAMP), pathogen-associated molec-
ular patterns (PAMP) and cytokines, which form the great 
majority of contextual danger signals, bind receptors  
harboring a large expression pattern in SLOs. The primary 
perception of contextual signals is thus likely to involve 
not only immune cells but also SLO-residing endothelial 
cells and stromal cells24–26. Output primary signals con-
sist in a larger array of cell surface and soluble factors 
that instruct the integrated perception step. Moreover, a 
variety of immune cells that target SLOs in a context-
dependent fashion participate to the primary perception 
of contextual signals and provide part of the primary 
response to such signals. These include notably Treg and 
Breg cells irrespective of their antigen specificity27,28, NK 
cells29, polymorphonuclear cells30, monocytes31,32, innate 
lymphoid cells33,34 as well as naive T or B lymphocytes35,36. 
Overall, the primary perception of contextual signals 
is a cooperative task performed by a large array of cell 
types that reside in SLOs or migrate toward SLOs. These 
cells generate of whole of soluble or membranous output 
signals that instruct the integrated perception of IOs.

3) The primary perception of localization signals is essen-
tially performed by dendritic cells and macrophages that 
are drained from the IO’s tissue environment37–40. The 
output signals generated by these tissue-derived APCs 
will imprint the homing properties of T-cells38,39,41 and  
orientate in a tissue-specific manner the polarization 
of TH cells (notably toward TFH cells)42. Interestingly, 
recent findings indicate that stromal cells also play a major  
role in the primary perception of localization  
signals43,44.

4) Temporal cues are provided by the duration of the anti-
genic, contextual and/or localization signals. Sudden 
vs chronically-installed IOs are not equally seen by the 
immune system according to the discontinuity theory45. 
However, one may also consider that the distinct pat-
terns of tissue-derived cytokines characterizing acute 
vs subacute vs chronic inflammation provide crucial  

time-related inputs. In any case, as proposed above for 
contextual signals, the primary perception of temporal 
signals is a cooperative task performed by a large array 
of cell types in SLOs.

The integrated perception of immune objects is essentially 
performed by TH-cells
The highly complex spatial organization of SLOs, essentially 
determined by stromal cells24,46–48, is currently viewed as a means 
to tightly control the movements of cells and fluids in SLOs49,50. 
Such a stromal scaffold formed by endothelial cells and fibroblas-
tic reticular cells also provides a histologic support to a number 
of niches that exhibit distinct microenvironments. For a given IO, 
there is indeed a myriad of APCs (subsets of DCs, macrophages, 
B-cells, other APCs) that interact with naïve or central memory 
T-cells in specific niches localized, for lymph nodes, in the  
paracortical51, subcapsular52,53 or medullar zone54,55. Such niches 
are formed by partially overlapping yet distinct compositions of 
immunocompetent cells that proceed to the primary perception 
of antigenic, contextual, localization and temporal signals. It can 
be proposed that in each of these niches, immunocompetent cells  
having proceeded to the primary perception of an IO generates  
output signals that converge toward T-cells bearing cognate 
TCRs. By this mean, T-cells (TH cells or T cytotoxic CD8 T-cells  
activated via cross-presentation) capture and integrate at the  
single cell level a whole of signals that relate with the antigenic, 
contextual, localization and temporal features of an IO.

The integrated perception of immune objects relies on 
clonal cooperation rather than clonal selection
The multitude of niche-specific integration processes that are per-
formed at the single cell level in SLOs is likely to generate a vari-
ety of T-cell subpopulations harboring distinct functional behaviors 
(TH1, TH2, TH17, TFH, Treg…) and recognizing distinct immu-
nodominant epitopes (Figure 3 and Figure 4). Supporting this 
view, two recent important studies definitively demonstrated that:  
i) CD4 T cells primed in vivo by pathogens or vaccines are highly 
heterogeneous with regard to TCRs and TH profiles56, ii) germinal  
center reactions in response to complex antigens generate a highly 
diverse B-cell population in terms of BCR affinity57. Thus, at 
the scale of a SLO the integrated perception of an IO relies on a  
multitude of antigen-specific T-cell and B-cell clones that  
provide a whole of “angles of view” from the same immune 
object. Whether or not such a diversity is progressively narrowed  
during the re-occurrence of an immune object (i.e during recall 
immune perception and recall immune response) would require  
investigations.

It is now recognized that a relatively high level of functional  
plasticity is maintained in transcriptionally committed TH cell  
subsets58–62 as well as in CD8 cytotoxic T-cells63 and B-cells64. While 
SLOs orchestrate an integrated immune perception of IOs, one may 
postulate that higher order integration steps may take place in the  
efferent lymphatic system. This process would rely on interclonal 
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Figure 3. Distinct SLO niches provide distinct combinations of output signals resulting from primary perception tasks. Epitopes 
presented in the context of MHC molecules are the output signals resulting from the primary perception of antigens. In SLOs, multiple 
epitopes derived from an immune object are recognized by multiple epitope-specific T cells in distinct niches. These niches are formed 
by stromal cells (endothelial cells and fibroblastic reticular cells) and by partially overlapping combinations of immune cells performing the 
primary perception antigens, temporo-contextual signals and localization signals. Three examples of distinct SLO niches are depicted.

Figure 4. Integrated immune perception at the scale of SLOs. The interaction between APCs and epitope-specific T-cells occur in a 
multitude of niches that provide distinct combinations of output signals from primary perception tasks. In each niche, these output signals are 
integrated at the single cell level by epitope-specific T-cells. This step results in the generation of a large array of TH or CD8 T-cell subsets 
that possibly include anergic T-cells. Eventually, the integrated perception of IOs is performed at the scale of SLOs by a large variety of 
antigen-specific T-cell and B-cell clones. Only TH-cell clones are depicted in the diagram.
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communications leading possibly to a functional “cross-imprinting”  
of TH cells (Figure 5).

The integrated perception of immune objects is performed 
at the scale of SLOs
At the single cell level, a large number of immune cells may inte-
grate antigenic, temporo-contextual and/or localization signals 
within or outside SLOs. Besides TH cells and CD8 T-cells, these 
include B-cells and plasma cells as well as NKT-cells and γδ T-cells. 
Moreover, recent findings indicate that innate myeloid or lym-
phoid cells may also integrate and memorize distinct categories of  
primary immune signals65. However, the immune perception theory 
sheds a new light on the obvious although frequently neglected 
statement that SLOs are indispensable to the generation of any inte-
grated immune response and, in the context of perceptive immunity, 
any integrated immune perception. Indeed SLOs harbor a unique 

ability to: i) concentrate a large array of cells involved in primary 
integration tasks, ii) provide a multitude of niches for single cell 
integration processes.

Immune perception orientates and adjusts decision making 
in the immune system
The sensory nervous system allows perceiving as a whole the iden-
tity and nature of visual objects, their precise localization, visual 
context and time-related features (motion, memory traces). Visual 
perception and other facets of our sensory skills are functionally 
crucial in the orientation of decision making. Such an orientation 
may schematically follow three main axes: 1) neglect, 2) engage 
a neurocognitive activity (memorization, attention, thoughts, emo-
tions…), 3) engage a motor activity (grasp, repel, approach, flee…)  
(Figure 6). Of note, visual perception is a dynamic process that not 
only orientates but continuously adjusts decision making. Thus, 

Figure 5. Higher order integrated immune perception. Higher order integration tasks may take place in the efferent lymphatic system. This 
process is proposed to rely on interclonal communications leading to a functional “cross-imprinting” of TH cells.

Figure 6. Functional diagram of the visual system. Distinct primary perception tasks allow the shape, color and motion of a visual object to 
be perceived separately. Output signals generated from this primary perception step instruct an integrated perception allowing the “What”, 
“How”, “When” and “Where” of a visual object to be perceived as a whole. Such an integrated perception orientates decision making along 
three main axes: 1) neglect, 2) engage a neurocognitive activity (memorization, attention, thoughts, emotions…) or 3) engage a motor activity 
(grasp, repel, approach, flee…).
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motor activity and visual perception are finely coupled via a whole 
of feedforward and feedback mechanisms allowing the execution 
of motor programs to be adjusted66. In a similar manner, the soma-
tosensory perception of movements is essential to the control of 
motor activity67.

Similar to sensory neural perception, it may be suggested that 
the main function of immune perception is to orientate decision  
making toward the engagement of proper immune responses 
or immune programs. When bringing out the danger theory68,69,  
Polly Matzinger was the first to emphasize the importance of con-
textual inputs in the initiation of “reject” vs “tolerate” immune 
responses. Since then, the concept of “protective autoimmunity” 
enunciated by Michal Schwartz and Jonathan Kipnis70 stated that 
the recognition of tissue-specific auto-antigens allows the immune 
system to provide a tissue-specific support that is shaped by contextual 
signals71,72. A semantic adjustment to these major conceptual 
advances would consist in proposing that contextual inputs orien-
tate decision making along 3 main axes: “Reject”, “Tolerate” or 
“Support” i.e provide molecular and cellular instructing signals  
that maintain homeostasis73–75 or favor tissue repair76,77. A func-
tional diagram of immune perception and decision making in the  
immune system could be then aligned with the model of visual 
perception and decision making in the nervous system (Figure 7). 
Along this line, it may be proposed that, similar to the visuomotor  
and sensorimotor feedback processes, effector immune cells 
that may be drained from tissues to SLOs deliver output signals  
reflecting the execution of immune programs. The efferent phase 
of any immune response would be thus constantly adjusted via  
feedback signals that are captured and integrated in SLOs.

Figure 7. Functional diagram of the sensory immune system. Distinct primary perception tasks allow the antigenic, temporo-contextual 
and localization signals characterizing an immune object to be perceived separately. Output signals generated from this primary perception 
step instruct an integrated perception allowing the “What”, “How”, “When” and “Where” of an immune object to be perceived as a whole. 
Such an integrated perception orientates decision making along three main axes: 1) tolerate, 2) reject, 3) support. i.e provide molecular and 
cellular instructing signals that maintain homeostasis or favor tissue repair.

Conclusion
The immune perception theory proposes that immunity is driven 
by several basic principles that are shared between the immune and 
nervous system. The first proposed principle is that immune cells 
are not only recognizing antigens +/- danger signals but are indeed 
perceiving immune objects that are formed by a whole of antigenic, 
contextual, temporal and localization signals. The second proposed 
principle is that immune signals are not only individually captured 
by immune cells but collectively integrated at the scale of SLOs. 
Such a cooperative functional organization holds relevance for the 
communications between innate and adaptive immune cells but also 
for the interactions between T-cell and B-cell clones that recognize 
a common immune object. The third basic principle is that immune 
perception is shaped by a number of parameters that are independ-
ent from the perceived immune objects11. These include notably the 
age, gender, metabolic status and gut microbiota composition of 
the host.

Over the last decades, the research fields covered by immu-
nology have considerably expanded along with the number of 
breakthrough discoveries relating with the immune system. As a  
consequence, capturing an up-to-date global image of the 
immune system functions has become an increasingly difficult  
task for education professionals and for students as well. In this 
regard, the theoretical framework proposed here may be essen-
tially considered as a potentially valuable tool for the teaching of  
immunology. In addition, while neuroimmunology encompasses, 
for the most part, the study of neuroimmune interactions, the 
present work suggests that a larger partnership could be envi-
sioned between neuroscientists and immunologists, on the realm  
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Serge Nataf has admirably schematized the “cognitive paradigm,” so aptly coined by Irun Cohen 25(!)
years ago (see his citations in the accompanying review). The immune system is, indeed, a “mobile” brain
(Fridman 1991) and the parallels between the immune and nervous systems is far from metaphorical or
idealized modeling: their inter-connections include the origins of their respective developments, that
continue with intimate anatomic relationships, as well as shared messengers and receptors. Indeed, 

 comprises a large research field, whose wealth of studies have confirmed thepsychoneuroimmunology
close evolutionary histories of what are, in essence, similar information processing systems (Ader, Felten
and Cohen 1991; Ader 2006; Orosz 2001; Forrest and Hofmeyr 2001). (Note, instead of using the visual
system as his example, Nataf might have shown the obvious similarities in the molecular-sensing
perception of taste or smell to make the same point about perception and, in that example, emphasized
the similarities of structural correspondence and subsequent activation employed by both the immune
and taste systems.)

Two historical notes:

First, while Nataf credits Jerne with introducing cognitive terminology to immunology (citing the 1974
idiotypic network paper), the origins of immunity as  appears earlier in the cybernetics craze ofcognitive
the early 1950s and Burnet’s musings a decade later (Tauber 1994). (Although Burnet first used
"cognate" in passing in 1959 [Burnet 1959, p.70], by 1962, he invoked an analogy with language to
account for antibody selection [Burnet 1962, p. 94-5].) But historical primacy is not the matter of interest
regarding Jerne’s seminal paper, but rather his introduction of how the  of antigen presentationcontext
determined the immune response. According to his hypothesis, the disruption of the network by antigen,
and more to the point, the extent of that interruption in terms of breaking the inter-connections of the
lattice-like structure, determined the immunogenicity of the introduced substance. That fundamental idea
is the source of Matzinger’s Danger Theory and Pradeu’s more recent continuity/discontinuity theory.

The second historical note is that an important chapter of the cognitive paradigm’s history must include
the work of Antonio Coutinho (1991; 1995; 2003), Francisco Varela (Varela  1988; 1991, 1993;et al.,
Varela and Coutinho 1991), John Stewart (1992; 1994a; 1994b; Stewart and Varela 1989), and Nelson
Vaz (2016; Vaz  2006). These publications developed Jerne’s cognitive point in its full theoreticalet al.,
array and attempted to draw both theoretical and practical parallels between the nervous and immune
systems. Those studies comprise the rich mulch for the emergence of our current thinking about how
immunity may be properly regarded as an information processing faculty and as such shares
organizational (and ultimately regulatory) characteristics with the brain.
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organizational (and ultimately regulatory) characteristics with the brain.

In terms of going beyond Nataf’s schema as an educational tool (which it certainly is), a deeper
assessment must be made as to how well modelers have applied the integrative principles employed
here. In other words, to the extent systems biology has offered models of immune responses or
steady-state conditions, has the hierarchical structure employed by Nataf been utilized and if so, what
insights does such an approach offer? That assessment would be useful not only in terms of confirming
Nataf’s schema, but perhaps modelers might develop this approach for their own efforts. A review of this
issue, as well as a critical discussion about the cognitive paradigm applied to immunology, is found
elsewhere (Tauber 1997; 2013; 2017).
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The paper by Serge Nataf, Clonal selection versus clonal cooperation: the integrated perception of
, is aptly named: here Nataf draws an analogy between the immune system (IS) and theimmune objects

central nervous system (CNS); both systems, he points out, are cognitive in the sense that they construct
their objects of attention through the integration of discrete features perceived individually. The CNS 

 specific visual objects by  information between networks of neurons that gatherconstructs integrating
discrete and separate information about shape, location, color and motion; similarly, the IS constructs
immune objects by integrating discrete information about antigens, cytokines, chemokines, and other
signals obtained separately by various cell types such as macrophages, dendritic cells, and B and T
lymphocytes. Integration of information between different cells and cell types requires cooperation
between the interacting cells; thus the IS, like the CNS, makes functional decisions based on clonal
cooperation and not on clonal competition for survival of the fittest. The cognitive analogy is presented in
a clear and stimulating manner. However, I think that Serge Nataf could increase the impact of his CNS-IS
discussion by sharpening or expanding some additional points:

Functional development requires somatic experience: Both the CNS and the IS combine individual
somatic experience with innate programming acquired through evolution of the species. In fact, the
CNS and the IS are the only two mammalian systems that require post-natal, individual contact
with the world to self-organize their mature structures and functions (see Cohen I.R, (2000)); an IS
deprived of immune experience remains undeveloped as does a CNS deprived of formative
stimulation.
 
Homunculi direct attention to environmental information that serves adaptive fitness: Nataf
mentions briefly that both the CNS and the IS use homunculi – internal representations of selected
features of the self and the outside world; he might add that such homunculi exist to maximize
evolutionary fitness. The human brain, for example, is born hard-wired to be attracted to human
faces; this primitive homuncular sense of facial recognition is sharpened by individual post-natal
experience with real persons, beginning with mother and leading to success in interpersonal
bonding, friendship and other important relationships, and to the capacity to communicate by facial
expressions.
 
The immunological homunculus, which is encoded in innate immune receptors and in shared
autoantibody repertoires (Madi A,  (2015)) and in public T cell receptor repertoires (Madi A, et al. et

 (2014)) is much less appreciated. But, like the Neurological Homunculus, these congenital andal.
acquired receptors are likely to enhance fitness, for example, by enabling the IS to better preserve
and heal the self and its microbiome while protecting the body from pathogenic invaders from
without and from tumor cells from within.
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without and from tumor cells from within.
 
Important points of difference between the CNS and IS would include hard wiring compared to cell
migration, reaction times of milliseconds to hours and days, markedly different cell turnover and
differentiation rates, and others; both systems create and integrate their perceived objects in
markedly different ways. But, as Nataf points out so convincingly, integrated cooperation is the
hallmark of both systems. 
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