
Hindawi Publishing Corporation
Journal of Skin Cancer
Volume 2013, Article ID 537028, 9 pages
http://dx.doi.org/10.1155/2013/537028

Review Article
AP1 Transcription Factors in Epidermal Differentiation and
Skin Cancer

Richard L. Eckert,1,2,3 Gautam Adhikary,1 Christina A. Young,1 Ralph Jans,1

James F. Crish,4 Wen Xu,1 and Ellen A. Rorke5

1 Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, 108 North Greene Street,
Rm 103, Baltimore, MD 21201, USA

2Department of Dermatology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
3Department of Obstetrics and Genecology and Reproductive Sciences, University of Maryland, School of Medicine,
Baltimore, MD 21201, USA

4Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH 44106, USA
5Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA

Correspondence should be addressed to Richard L. Eckert; reckert@umaryland.edu

Received 21 February 2013; Accepted 2 May 2013

Academic Editor: Deric L. Wheeler

Copyright © 2013 Richard L. Eckert et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte
survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is
complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and
because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo
genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and
expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that
individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1
transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response
and disease and cancer development.

1. Introduction

Keratinocytes are the major cell type responsible for the
structure of the epidermis. They begin as stem cells in
the basal epidermal layer and hair follicles [1–3]. During
differentiation, as the cells migrate to the surface, cell division
ceases and morphological changes ensue to produce the
spinous, granular, transition, and cornified layers. Spinous
layer cells are distinguished by the presence of desmosomal
connections, whereas granular layer cells are characterized
by the presence of granules that contain the products of
keratinocyte differentiation. Differentiation of the granular
layer cells results in the formation of the transition zone
which separates the dead from living epidermal layers. It is in

this zone that the cellular constituents are extensively enzy-
matically remodeled. This remodeling results in the covalent
crosslinking of proteins to produce terminally differentiated
corneocytes that form the skin surface [4, 5]. Achieving
these morphological alterations relies on executing a preset
program of differentiation that requires tight regulation of
gene transcription [6].

The process of activation and suppression of gene tran-
scription is controlled by a diverse family of regulators called
transcription factors. Transcription factors mediate the final
steps in the relay of information from the cell surface to the
nucleus and the gene.This is accomplished by the interaction
of the transcription factor with specific DNA elements that
are usually located immediately upstream of the sequence
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that encodes the gene. DNA elements are generally a short
DNA sequence of 8–20 nucleotides that encode a specific
consensus sequence. A host of transcription factors has
been implicated in control of epidermal differentiation and
function, including activator protein 1 (AP1), AP2, Sp1, POU
domain proteins, and CCAAT enhancer binding proteins
[7]. AP1 transcription factors are among the most interesting
and important regulators in epidermis [7]. Members of this
family (c-fos, fosB, Fra-1, Fra-2, c-jun, junB, and junD) are
expressed in specific epidermal layers and control multiple
key functions [8]. This review focuses on summarizing
interesting animal-based studies designed to identify the
impact of perturbing AP1 transcription factor function on
epidermal homeostasis and cancer.

2. MAPK and AP1 Transcription
Factors Are Key Regulators of
Keratinocyte Differentiation

The mitogen-activated protein kinases (MAPK) comprise
major signaling cascades that regulate differentiation-
associated gene expression in epidermis [9–14]. Each
MAPK cascade consists of three kinase modulates which
include an MEK kinase (MEKK), a mitogen-activate protein
kinase/extracellular signal regulated kinase (MEK), and a
mitogen-activated protein kinase (MAPK) [15–18]. Activated
MEKK phosphorylates MEK which phosphorylates the
MAPK. Activated MAPKs phosphorylate a variety of target
proteins including transcription factors [10, 19–21]. The most
extensively studied MAPKs are the ERK kinases (ERK1,
ERK2), the c-jun N-terminal kinases (JNK1, JNK2), and
the p38 kinases (p38𝛼, 𝛽, 𝛿, and 𝛾). Figure 1 presents a
schematic of the p38𝛿 MAPK pathway which regulates
expression of differentiation-associated genes during
keratinocyte differentiation [7, 11]. The cascade consists of
upstream regulator proteins (novel protein kinase c and
Ras), an MAPK module (MEKK1, MEK3, and p38𝛿) and
AP1 transcription factors. Activation of this cascade by a
differentiation stimulus causes sequential phosphorylation
and activation of kinases in the MAPK module which leads
to increased AP1 transcription factor level and binding to
the DNA response element in the target gene. This leads to
increased target gene transcription [10–14, 22].

AP1 transcription factors are key downstream targets
of MAPK signaling in keratinocytes [12–14, 22–24]. Activa-
tor protein one (AP1) transcription factors include jun (c-
jun, junB, junD) and fos (c-fos, FosB, Fra-1, Fra-2) family
members [25–28]. They form jun-jun and jun-fos dimers
that interact with specific AP1 transcription factor con-
sensus DNA binding elements in target genes to regulate
expression. They control keratinocyte proliferation [29–31],
differentiation [10, 11, 32], and apoptosis [23, 33] and are
important in tumor progression and disease development [9–
11, 14, 22, 23, 34–38]. As an example, increased p38𝛿 MAPK
activity results in increased AP1 transcription factor level,
increased AP1 transcription factor binding to DNA elements
on the involucrin promoter, and increased involucrin gene
transcription via a scheme similar to that shown in Figure 1
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Figure 1: MAPK and AP1 transcription factor control of gene
expression.The p38𝛿MAPK cascade that controls the expression of
differentiation-associated genes in epidermis is depicted [10]. The
three kinases of the MAPK module include MEKK1, MEK3, and
p38𝛿 MAPK. A differentiation stimulus activates upstream regula-
tory proteins, in this case novel protein kinase c (nPKC) and the Ras
small GTPase. These events lead to phosphorylation and activation
ofMEKK1which phosphorylatesMEK3which phosphorylates p38𝛿
MAPK. Ultimately p38𝛿 MAPK increases AP1 transcription factor
expression and activity and the AP1 transcription factors bind
to the response element on the target gene promoter to increase
transcription.

[8, 39].Themajor AP1 factors that interact with the promoter
are JunB, JunD, and Fra-1. Moreover, TAM67, a dominant-
negative mutant of c-jun that inhibits the activity of all AP1
transcription factors [40], inhibits p38𝛿-dependent involu-
crin promoter activation [13]. MAPK activation by p38𝛿 also
results in increased C/EBP𝛼 and Sp1 binding to DNA binding
sites in the involucrin gene promoter [41–43]. Thus, a PKC,
Ras,MEKK1,MEK3pathway activates p38𝛿MAPKandp38𝛿,
in turn, acts to increase binding of selected AP1, Sp1, and
C/EBP factors to the hINV promoter to increase promoter
activity. However, the AP1 transcription factors are the most
important family of regulators. In fact, it would be difficult to
envision a more important family of transcriptional regula-
tory proteins in epidermal keratinocytes.

AP1 action in epidermis is complicated for several rea-
sons. First, multiple AP1 family members are expressed in
epidermis and form multiple dimer pairs. AP1 transcription
factors can theoretically form eighteen different homo- and
heterodimers, and work in other systems show that the par-
ticular dimer that is formed influences activity. For example,
coexpression of c-fos with c-jun, leading to c-fos:c-jun dimer
formation, enhances the transforming capacity of c-jun,
whereas pairing c-jun with junB inhibits c-jun transforming
capacity [44–46]. These differences may be related to the
higher DNA binding and transcriptional activity of c-jun:c-
fos heterodimer in comparison to c-jun:junB heterodimer
[47]. Thus, it is safe to assume that the dimer that is formed
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influences activity in differentiating keratinocytes. Second,
the expression level of most AP1 family members changes
during keratinocyte differentiation [8, 48]. This means that
different pairing combinations exist in the basal versus
suprabasal layers and that this is likely to drive differences
in activity and target gene selection. Third, covalent mod-
ification of individual AP1 transcription factors (e.g., phos-
phorylation) influences activity [49, 50]. For example, c-jun
undergoes transient N-terminal phosphorylation as cells exit
theG2phase of the cell cycle, and this state ismaintained until
the cells complete mitosis [45]. An important lesson from
these studies is that the composition of AP1 transcription
factors in the tissue and the posttranslational modification
state can influence biological activity. The fact that each AP1
transcription factor forms multiple hetero- and homodimers
indicates that manipulating the level of one AP1 transcription
factor, either by overexpression or knockout, will modify
the function of other members. These features must be
considered when interpreting the results of studies that alter
AP1 transcription factor level or function in epidermis.

3. Animal Models of AP1 Transcription
Factor Function

A number of laboratories have used in vivo mouse genetic
models to study AP1 transcription factor function [34, 51,
52, 52–55]. These include embryonic knockout [54, 56–64],
conditional knockout, inducible knockdown, expression of
mutant dominant-negative AP1 proteins [65, 65–71], and
targeted expression of intact wild-type proteins [72–74, 74–
76].These studies have targeted a variety of tissues, including
the epidermis, liver, mammary gland, heart, bone, and blood
[77]. The first lesson from these studies is that appropriate
AP1 transcription factor expression is required for survival.
For example, c-jun knockout mice die at embryonic day E13
due to defects in liver and heart development [78]. Likewise,
junB null mice display extraembryonic tissue defects and
die at embryonic E9.5 [56]. Fra-1 null mice survive only till
embryonic day E9.5, and death is associated with defects in
the yolk sac and placenta [54]. JunD knockout mice are born
but fail to reproduce due to defects in spermatogenesis and
reproduction [64]. These studies indicate that AP1 factors
are essential for embryonic survival and are necessary for
sustained development and reproduction. This is consistent
with a central role for this family of proteins in maintaining
tissue and organ homeostasis [77].

AP1 transcription factors also have tissue-specific effects.
An in vivo example of this is that transgenic re-expression of
junB in junB-null embryos rescues the mice from embryonic
death. This is associated with normalization of most tissues;
however, the junB transgene is silenced by an epigenetic
mechanism in themyeloid lineage, and so thesemice develop
progressive myeloid leukemia [79]. This is also true in
the context of tumor formation where AP1 transcription
factors can function as oncogenes or tumor suppressors. For
example, junD promotes cell survival by protecting cells from
p53-dependent senescence and apoptosis [80, 81]. In contrast,
JunD can also antagonize ras-mediated transformation [82].

Fra-1 has a complex role in that it enhances breast cancer
cell chemosensitivity by driving cancer stem cells from dor-
mancy [83]. In addition, Fra-1 deficient embryonic fibroblasts
are resistant to peroxide-induced cell death, presumably
because Fra-1 attenuates Nrf2-driven antioxidant responses
[84]. Moreover, Fra-1 is increased in breast cancer where it
functions as an oncogene to enhance tumor cell migration
[85]. Thus, Fra-1 has multiple roles depending upon the
tumor type and conditions.

4. AP1 Transcription Factors in Epidermis
Knockout and Overexpression Studies

4.1. c-Jun and JunB—an Epidermal Oncogene and a Tumor
Suppressor. Altering AP1 transcription factor expression
changes epidermal function. Mice in which c-jun is condi-
tionally knocked out in the epidermis develop normal skin,
but epidermal growth factor receptor (EGFR) level is reduced
in the eyelids leading to open eyes at birth [86]. This mimics
the phenotype observed in EGFR- or TNF𝛼-null mice [87–
90]. In addition, in the absence of c-jun, the tumor-prone K5-
SOS-F transgenic mice develop smaller epidermal papilloma,
suggesting that c-jun is required for tumor formation [86],
and it has been noted that c-jun expression is increased in
tumors, and overexpression of c-jun in an oncogenic Ras
background enhances tumor formation [91]. These findings
suggest that c-jun functions as an oncogene in keratinocytes.

Mice lacking junB in keratinocytes are born with a
normal epidermis. However, the epidermis is not completely
normal, as epidermal JunB knockout mice display delayed
wound healing [51] and develop systemic lupus erythe-
matosus, an autoimmune disease that influences multiple
tissues [92]. This phenotype is associated with increased
secretion of epidermis-produced interleukin 6 (IL-6) that is
associatedwith loss of JunB-dependent suppression IL-6 gene
expression. IL-6 appears to play an essential role in phenotype
development, as the phenotype is alleviated when epidermal
JunB-null mice are bred to IL-6 deficient mice [92]. Absence
of JunB in the epidermis also results in the release of large
quantities of epidermis-derived granulocyte-colony stimulat-
ing factor (G-CSF) which is associated with skin ulceration,
myeloproliferative disease, and low bone mass [93]. G-CSF
appears to be essential for phenotype appearance, as breeding
JunB null mice into a G-CSF null background reverses the
myeloproliferative phenotype [93]. In addition, simultaneous
conditional deletion of c-jun and JunB in the epidermis
produces a psoriasis-like phenotype [94]. This is associated
with increased production of tumor necrosis factor-alpha
(TNF𝛼) and increased epidermal S100A8/S100A9 expression
[52]. Chemokine/cytokine production in epidermis presum-
ably recruits immune cells to the epidermis to produce the
psoriatic phenotype. Tissue inhibitor of metalloproteinase-
3 (TIMP3) level is reduced in junB/c-jun null epidermis. As
TIMP3 is an inhibitor of TNF𝛼 converting enzyme (TACE),
loss of TIMP3 leads to enhanced epidermal TNF𝛼 cleavage
and release [95]. TNF𝛼 is a key regulator in this context,
as the biological phenotype can be mitigated by breeding
these mice into a TNF𝛼-null background [95]. Moreover,
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vascular endothelial growth factor (VEGF) also influences
this phenotype, as anti-VEGF antibody treated junB/c-jun
nullmice show a pronounced reduction of inflammatory cells
within the dermis andmore normal epidermal differentiation
[94]. JunB absence also increases tumor forming potential
[91]. Tumor formation in Ras-activated cancer cells is inhib-
ited by overexpression of JunB, an effect that requires the
JunB transactivation domain [91]. Moreover, expression of
dominant-negative JunB in this model, which inhibits JunB
function, increases tumor formation [91].

4.2. c-Fos Acts as an Oncogene in Epidermis. JunB and
c-jun are the most heavily studied AP1 transcription
factors, but information is also available regarding the
role of c-fos. Challenge of v-H-ras positive mice with
DMBA (7,12-dimethylbenz[a]anthracene) and TPA (12-O-
tetradecanoylphorbol-13-acetate), in the two-stage carcino-
genesis protocol, increases skin tumor formation. However,
tumor formation is attenuated in the absence of c-fos [34]
which is associated with increased p53 expression [96]. The
higher than normal level of p53 leads to epidermal tumor
cell differentiation and suppression of skin tumor formation,
in part due to p53-dependent transcriptional activation of
TNF𝛼 converting enzyme [96].

4.3. Activating Transcription Factor 2 (ATF2) Suppresses Skin
Tumor Formation. Activating transcription factor 2 (ATF2)
is a stress-regulated transcription factor, and ATF2 tran-
scriptional activity requires leucine zipper-dependent het-
erodimerization with members of the AP1 family, including
c-jun [97, 98]. Expression of an inactivemutant form of ATF2
(lacking the DNA binding and leucine zipper domains) in the
basal epidermis results in reduced tumor formation. When
subjected to a two-stage DMBA/TPA skin carcinogenesis
protocol,mice expressing the inactiveATF2 display increased
tumor formation, and keratinocytes derived from these mice
display enhanced anchorage-independent growth [99]. The
resulting tumors display enhanced 𝛽-catenin and cyclin D1
and reduced Notch1 expression. This is consistent with the
observation of reduced ATF2 and increased 𝛽-catenin in
human squamous and basal cell carcinoma samples [99] and
suggests that ATF2 suppresses epidermal carcinogenesis.

5. AP1 Transcription Factors in Epidermis-
Dominant-Negative c-Jun (TAM67)

We have hypothesized that AP1 transcription factors per-
form different functions in the basal (proliferating) versus
suprabasal (differentiating) epidermis [11]. However, testing
this hypothesis is complicated by the fact that virtually all
of the AP1 family members are expressed, at some level,
in both the basal and suprabasal compartments [8, 25, 48].
Thus, we sought a model system where we could achieve
complete suppression of AP1 transcription factor function in
specific epidermal layers.This goal is difficult to achieve using
gene knockout strategies, since knockout normally obviates
expression of the targeted gene in all epidermal layers. Thus,

we turned to targeted expression of dominant-negative c-
jun (TAM67) in specific epidermal layers. In our case, we
targeted TAM67 expression to the upper epidermal layers to
achieve inactivation of AP1 transcription factor function in
the suprabasal epidermis [66].These studies follow a strategy
developed by Nancy Colburn and associates where they
targeted TAM67 to the basal epidermal layers using the K14
promoter [100]. This strategy has several advantages. First,
TAM67 interferes with the function of all AP1 transcription
factors [100]. TAM67 forms heterodimers with other AP1
transcription factors and these complexes bind to DNA, but
the complexes are not able to activate transcription [100, 101].
Moreover, an early study, using a keratin promoter to drive
expression, showed that TAM67 expression reduces TPA-
stimulated invasion of mouse 308 cells through matrigel
[65]. Further studies show that TAM67 inhibits invasion of
human papillomavirus-immortalized human keratinocytes
by suppressing AP1 transcription factor and NF𝜅B signaling
[102, 103]. These studies suggest that TAM67 is a useful
construct for the study of cell function. Second, our use
of the involucrin promoter permits targeting of TAM67 to
the suprabasal epidermis [104–106] and alleviates problems
that are observed with knockout mice where a specific AP1
transcription factor protein is lost from all layers. Third, a
basal layer TAM67-targeted mouse model already existed
[68, 70, 71, 107, 108] which permitted a direct comparison
of the impact of basal versus suprabasal AP1 transcription
factor inactivation.Wewill first discuss the impact of targeted
expression of TAM67 in the epidermal basal layer.

5.1. TAM67 in the Basal Epidermis. In vivo studies in mouse
epidermis show that TAM67-dependent inactivation of AP1
transcription factor function in the basal epidermal layer
does not produce obvious changes in keratinocyte prolif-
eration or epidermal or dermal appearance [68, 71, 107].
However, basal layer TAM67 expression does reduce sus-
ceptibility of SKH-1 hairless mice to UVB-dependent cancer
progression [68, 71, 107]. Both tumor number and size are
reduced and this is associatedwith reduced numbers of cyclin
D1 positive cells in the tumors [107]. Expression of the E7 gene
from human papillomavirus type 16 in mouse skin induces
hyperplasia and enhances tumor promotion, and TAM67
protects mice from E7-enhanced tumorigenesis [70].

Some additional details are known regarding the mech-
anism of impact of AP1 transcription factor inaction in
epidermal cancer cells. TPA treatment induces transforma-
tion of JB6/P+ cells. JB6/P+ cells are murine keratinocytes
that undergo transformation following treatment with 12-
O-tetradecanoylphorbol-13-acetate (TPA) [109]. Screening
of microarrays from TPA-treated JB6/P+ cells, maintained
in the presence or absence of TAM67 expression, revealed
that high-mobility group A1 (HMGA1) protein is induced
by TPA, and this induction is inhibited by TAM67. Fur-
ther studies show that knockdown of HMGA1 with siRNA
reduces JB6/P+ transformation, which is consistent with
HMGA1 being an important AP1 transcription factor target
[109]. A similar approach, also using JB6/P+ cells, identified
sulfiredoxin as an additional gene that is required for TPA-
induced transformation and is suppressed by TAM67 [110].



Journal of Skin Cancer 5

Sulfiredoxin is important for redox homeostasis and acts
to reduce hyperoxidized peroxiredoxins. Cyclooxygenase-
2, osteopontin, programmed cell death-4, and Wnt5a are
additional proteins that may be important in transformation
and have been identified [108, 111, 112]. It is possible that these
proteins play a role in reducing tumor formation observed in
mice where TAM67 is expressed in the basal layer.

5.2. TAM67 in the Suprabasal Epidermis. A recent study
shows that targeted expression of TAM67 in the suprabasal
epidermis results in extensive hyperplasia and hyperkerato-
sis [66]. This is associated with a substantial increase in
proliferation of basal layer keratinocytes as measured by
increased BrdU incorporation and increased appearance of
Ki67-positive cells.This is not due to a direct effect of TAM67
on basal cells, as two different staining methods reveal that
the TAM67-FLAG expression is confined to the suprabasal
layers. Thus, inactivating suprabasal AP1 transcription factor
function appears to feedback on the basal layer in a manner
that stimulates basal layer cell division. In addition, differ-
entiation appears to be delayed and incomplete. Consistent
with delayed differentiation, keratins K5 and K14, which are
normally exclusively expressed in the basal layer, are detected
in all epidermal layers, and K6 is expressed in all epidermal
layers. K6 is a keratin that is expressed under conditions
of hyperproliferation but is not expressed in normal epi-
dermis [66]. Thus, suprabasal TAM67 expression leads to
increased basal layer proliferation and delayed differentiation
and ultimately results in extensive hyperkeratosis. This is
in marked contrast to the finding that targeting TAM67
to the epidermal basal layer using the keratin 14 promoter
(K14-TAM67) produces no overt phenotype under resting
conditions [71]. We propose that normal differentiation leads
to accumulation of signals, generated by suprabasal cells,
that suppress basal layer cell proliferation and that inhibiting
differentiation opens this feedback loop leading to increased
basal keratinocyte proliferation [66].

Because of the hyperproliferative phenotype, it was antic-
ipated that mice expressing TAM67 in the suprabasal epider-
mis would be more susceptible to tumor formation. This was
tested by treating control and suprabasal TAM67 mice with
a DNA mutagenic agent, 7,12-dimethylbenz[𝛼]anthracene
(DMBA) to produce initiated cells, and then inducing
TAM67 expression. Surprisingly, TAM67 expression, and
the associated increase in cell proliferation, did not drive
tumor formation in DMBA treated mice. This is interesting,
because cell proliferation is thought to predispose tissue
to enhanced tumor formation [113]. Treatment with car-
cinogen (7,12-dimethylbenz[𝛼]anthracene, DMBA) followed
by tumor promoter (12-O-tetradecanoylphorbol-13-acetate,
TPA) is known to cause tumor formation [113]. However, in
a protocol where mice were treated with DMBA, followed
by treatment with TPA, TAM67 expression reduced tumor
formation. The possibility that TAM67 may interfere with
the proliferation promoting activity of TPA in the carcino-
genesis protocol was considered; however, these experiments
suggest that TAM67-expressing epidermis is fully competent
to respond to TPA. Taken together, these findings show

that inaction of AP1 transcription factor function in the
suprabasal epidermis increases epidermal proliferation but
reduces carcinogen/tumor promoter-induced cancer devel-
opment. The underlying mechanism responsible for these
surprising observations is under study.

Thus, although the basal and suprabasal targeted TAM67
mice produce very different epidermal phenotypes, these
mice share features in common [66, 71]. First, TAM67 basal
and suprabasal epidermal mice respond to stress agents
(okadaic acid, TPA, etc.) with increased basal cell prolifer-
ation, and this response is not reduced when compared to
control mice. Second, both strains display a reduced sensi-
tivity to DMBA/TPA induced tumor formation.The fact that
inactivating AP1 factor function in the basal or suprabasal
epidermis reduces tumor formation, clearly suggest that, on
balance, AP1 factors have an essential role in driving tumor
formation.

6. Summary

A variety of genetic approaches have been used to study
the in vivo role of AP1 transcription factors in epidermis.
It is clear from these studies that AP1 transcription factors
play a key role in controlling differentiation of epidermal
keratinocytes and that perturbing this process results in a
variety of disease phenotypes including psoriasis and cancer.
It is also clear that some AP1 transcription factors function
as procancer proteins (e.g., c-jun, c-fos), while others inhibit
cancer development (e.g., JunB, ATF2). Additional studies
suggest that a host of cytokines and chemokines is involved
in generation of the disease and cancer phenotypes that
develop when AP1 transcription factor function is perturbed,
and these studies suggest that the epidermis can act as an
endocrine organ to influence the function of other organs.
It also appears that AP1 transcription factors have differing
roles in basal and suprabasal epidermis, as inactivation of
AP1 transcription factor function in these compartments
produces no change (basal targeted TAM67 expression) or
hyperproliferation (suprabasal targeted TAM67 expression).
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