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Abstract

Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of

neonatal meningitis and septicaemia. Most clinical isolates express simulta-

neously a b-haemolysin/cytolysin and a red polyenic pigment, two phenotypic

traits important for GBS identification in medical microbiology. The genetic

determinants encoding the GBS haemolysin and pigment have been elucidated

and the molecular structure of the pigment has been determined. The cyl operon

involved in haemolysin and pigment production is regulated by the major two-

component system CovS/R, which coordinates the expression of multiple viru-

lence factors of GBS. Genetic analyses indicated strongly that the haemolysin

activity was due to a cytolytic toxin encoded by cylE. However, the biochemical

nature of the GBS haemolysin has remained elusive for almost a century because

of its instability during purification procedures. Recently, it has been suggested

that the haemolytic and cytolytic activity of GBS is due to the ornithine rham-

nopolyenic pigment and not to the CylE protein. Here we review and summa-

rize our current knowledge of the genetics, regulation and biochemistry of these

twin GBS phenotypic traits, including their functions as GBS virulence factors.

Introduction

Streptococcus agalactiae [Group B streptococcus, (GBS)] is

a leading bacterial agent in neonatal infections, an emerg-

ing cause of life-threatening infections in adults and an

important pathogen in veterinary medicine. In addition

to its role as a pathogen, GBS asymptomatically colonizes

the lower gastrointestinal and genitourinary tract of up to

30% of healthy human adults (Ewards & Baker, 2010). In

the early 1930s, GBS was first recognized as an animal

pathogen and the main cause of bovine mastitis (Sher-

man, 1937; Keefe, 1997). However, despite its isolation

from a number of human sources, including the birth

canal (Lancefield, 1933; Lancefield & Hare, 1935), GBS

was only reported as a human pathogen by Fry (1938)

with the description of three fatal cases of puerperal sep-

sis. Since the early 1960s (Hood et al., 1961) GBS has

been considered a leading cause of neonatal infections,

associated with sepsis, meningitis and pneumonia (Verani

et al., 2010; Edwards & Nizet, 2011; Rodriguez-Granger

et al., 2012). GBS emerged recently as a significant patho-

gen responsible for invasive infections in adults with

predisposing underlying diseases such as diabetes and

cancer (Farley, 2001; Ewards & Baker, 2010).

In addition to human and bovine infections, GBS has

been isolated from animals such as chickens, camels,

dogs, dolphins, horse, lizards, cats, fish, frogs, hamsters,

mice and monkeys (Garcia et al., 2008). Thus, in contrast

to other streptococcal species that display a fairly

restricted host spectrum, GBS can cause infections in a

wide range of cold- and warm-blooded animals (Kornbl-

att et al., 1983; Messier et al., 1995; Evans et al., 2008;

Delannoy et al., 2012, 2013; Shuster et al., 2013).

Although interspecies transmission of GBS strains among

animals has not been demonstrated (Garcia et al., 2008),

transmission between human and animal species has been

suggested recently (Delannoy et al., 2013).

Streptococcal haemolysins

b-Haemolysins are potent exotoxins that play a key role

in the virulence of pyogenic streptococci, such as Strepto-

coccus pyogenes [Group A streptococcus, (GAS)], GBS and

S. dysgalactiae spp. equisimilis. One of the most noticeable
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phenotypic characteristics of these species is a zone of

b-haemolysis surrounding the colonies when grown on

blood agar plates (Ayers & Rupp, 1922). Therefore,

b-haemolysis as a phenotypic trait has been widely used

for the preliminarily identification of pyogenic streptococ-

cal species in the clinical laboratory (Facklam et al., 1979;

Facklam, 2002; Spellerberg & Brandt, 2011). Despite the

similar phenotypic appearance of b-haemolysis in most

streptococci from the pyogenic group, the molecular

details of these b-haemolysins differ considerably.

GAS produce two different haemolytic toxins, strepto-

lysin S (SLS) and streptolysin O (SLO) (Todd, 1938). SLS

is a 2.7-kDa bacteriocin-like peptide, oxygen-stable and

nonimmunogenic, encoded by the sag gene cluster (Nizet

et al., 2000) and responsible for b-haemolysis (Todd,

1938). Its cellular substrates include erythrocytes, leuko-

cytes, platelets and subcellular organelles (Datta et al.,

2005; Molloy et al., 2011). SLS-encoding gene clusters are

not only present in many streptococcal species (Fuller

et al., 2002; Humar et al., 2002; Rato et al., 2011), but

have also been found in Staphylococcus aureus, Clostrid-

ium botulinum and Listeria monocytogenes (Cotter et al.,

2008; Gonzalez et al., 2010) indicating that this toxin is

widespread and conserved among gram-positive patho-

gens. SLO is a 57-kDa protein belonging to the group of

thiol-activated cytolysins including listeriolysin O of

L. monocytogenes, and perfringolysin O (PFO) of Clostrid-

ium perfringens. Based on the high overall degree of simi-

larity in the primary structure, all members of the family

are thought to share a common mechanism of action that

involves binding to cholesterol-containing membranes

(Billington et al., 2000) followed by insertion, oligomeri-

zation of 20–80 monomers, and formation of a pore of

20–30 nm diameter (Dramsi & Cossart, 2002). In contrast

to SLS, SLO is an immunogenic protein, and antibodies

against SLO are useful for documenting recent exposure

to GAS (McCormick et al., 2006) or S. dysgalactiae spp.

equisimilis (Jansen et al., 1999; Brandt & Spellerberg,

2009).

GBS exhibit two different cytolytic toxins, the b-haem-

olysin and the CAMP (Christie Atkins Munch-Petersen)

factor. The CAMP factor is a heat-stable 226-aa protein

which is independent of b-haemolysin and pigment pro-

duction (Marchlewicz & Duncan, 1980; Tapsall & Phil-

lips, 1987). The CAMP factor is not haemolytic per se,

although it can lyse sheep erythrocytes pretreated with

staphylococcal sphingomyelinase. It is used as a diagnostic

tool in identifying GBS strains (Christie et al., 1944;

R€uhlmann et al., 1988; Hensler et al., 2008b). The GBS

b-haemolysin accounts for the haemolytic phenotype on

blood agar plates. Nevertheless, in spite of the wealth of

literature referring to its role in virulence and its mecha-

nism of action (Rajagopal, 2009), the biochemical nature

of the GBS haemolysin has remained elusive until the

publication of a recent report indicating that the haemol-

ysin is not a pore-forming toxin but a rhamnolipid iden-

tical to the GBS pigment (Whidbey et al., 2013).

GBS b-haemolysin/cytolysin (b-h/c)

Most human GBS strains produce a surface-associated

b-h/c, which plays a key role in GBS pathogenesis. It can

target a wide spectrum of cells, and hyperproduction of

this haemolysin is associated with fulminant disease in

clinical GBS cases as well as severe cases of infection in

animal models.

Biological characteristics

The prototypical phenotype of GBS clinical isolates dis-

plays a narrow zone of b-haemolysis on blood agar plates

(Rotta, 1986). GBS haemolysin is primarily a broad-spec-

trum cytolysin capable of destroying many eukaryotic

cells (Tapsall & Phillips, 1991; Nizet et al., 1996). It is

therefore referred to as the GBS b-h/c (Doran et al.,

2002). In contrast to other well-characterized streptococ-

cal haemolysins (Nizet, 2002), such as SLS and SLO, not

much is known about the molecular details responsible

for the membrane alterations (Rajagopal, 2009). However,

membrane defects observed as a result of exposure of ery-

throcytes with a haemolytic GBS wild-type strain appear

irregular in shape and exhibit different sizes (Fig. 1), sug-

gesting a mechanism different from a classical pore-form-

ing toxin. The cytolytic activity of the GBS b-h/c was

shown to be inhibited by phospholipids such as phospha-

tidylcholine and phosphatidylethanolamine (Marchlewicz

& Duncan, 1980; Ferrieri, 1982; Dal & Monteil, 1983;

Tapsall & Phillips, 1991; Fettucciari et al., 2011). This led

to the hypothesis that GBS b-h/c could have a similar

affinity for phospholipids in the eukaryotic cell mem-

brane guiding the toxin to its site of action (Liu & Nizet,

2006).

It has long been assumed that the GBS b-h/c could be

a surface-associated protein requiring a direct contact

with the target membrane to induce cell lysis (March-

lewicz & Duncan, 1980, 1981; Dal & Monteil, 1983; Platt,

1995; Nizet, 2002; Liu & Nizet, 2004). Haemolytic activity

can be extracted from the bacterial surface using mole-

cules such as starch, Tween or bovine serum albumin that

act as stabilizer or carrier molecules (Marchlewicz &

Duncan, 1980, 1981; Ferrieri, 1982Dal & Monteil, 1983).

As the elution profiles of the carrier molecules in gel size-

exclusion chromatography did not change in the presence

of the haemolysin (Marchlewicz & Duncan, 1980; Tsai-

hong & Wennerstrom, 1983), it was assumed that GBS

haemolysin is a small molecule. As attempts to produce
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specific antisera in rabbits with a haemolytic preparation

obtained after gel exclusion chromatography of crude

bacterial surface extracts had been unsuccessful (Dal &

Monteil, 1983), the GBS haemolysin was characterized as

being a nonimmunogenic substance.

Many attempts to purify and study this elusive cytoly-

sin have failed, raising doubts about its proteinaceous

nature (Marchlewicz & Duncan, 1980, 1981; Dal & Mont-

eil, 1983; Tsaihong & Wennerstrom, 1983; Nizet et al.,

1997a;). The main obstacles encountered in b-haemolysin

purification include rapid loss of activity when stored at

room temperature (Tapsall & Phillips, 1991), due to its

high thermolability (Marchlewicz & Duncan, 1981; Dal &

Monteil, 1983), and the loss of haemolytic activity upon

detachment from the carrier molecule (Liu & Nizet,

2004). As most studies have been carried out using com-

plex haemolysin-carriers, an accurate analysis has been

hampered, leading to the production of confusing results

about the proteinaceous nature of the molecule. The bio-

logical characteristics of the GBS haemolysin can be

summarized as a broad-range surface-associated nonim-

munogenic cytolysin of small molecular size displaying a

rapid loss of activity.

The cyl gene cluster

The genes responsible for b-haemolysis of GBS are

encoded in the cyl gene cluster Spellerberg et al., 1999,

2000a, b; (Pritzlaff et al., 2001). They were identified by

screening transposon mutant libraries of a serotype Ia

and a serotype III GBS strain (Spellerberg et al., 1999).

Nonhaemolytic mutants were shown to harbour various

mutations in a cluster of genes, designated as cyl genes in

reference to the cytolytic function of the toxin. The link

between these genes and b-haemolysin production was

substantiated by analysing naturally occurring nonhaemo-

lytic GBS strains. 1–5% of human GBS isolates are non-

haemolytic (Merrit & Jacobs, 1976; Noble et al., 1983;

Reardon et al., 1984; Brimil et al., 2006; Adler et al.,

2008; Verani et al., 2010) and often harbour insertion

sequences (ISs) in one of the cyl genes (Spellerberg et al.,

1999, 2000b; Sigge et al., 2008). The cyl operon, which is

made up of 12 genes (cylX, cylD, cylG, acpC, cylZ, cylA,

cylB, cylE, cylF, cylI, cylJ, cylK) (Fig. 2), is unique to GBS.

The cyl operon was initially linked to haemolytic activity

(Spellerberg et al., 1999) and later to pigment production

by genetic studies of nonpigmented mutants (Spellerberg

et al., 2000b). CylD, CylG, ApcC, CylZ (Spellerberg et al.,

1999) and CylI (Spellerberg et al., 2000a; Pritzlaff et al.,

2001) display homologies with enzymes of prokaryotic

fatty acid biosynthesis: CylD with a malonyl-CoA-ACP

transacylase, CylG with a 3-ketoacyl-ACP-reductase, ApcC

with an acyl carrier protein and CylZ with FabZ enzymes

(fatty acid biosynthesis, 3R-hydroxymyristoyl ACP dehy-

dratase). The genes cylA and cylB encode an ABC (ATP-

binding cassette) transporter (Spellerberg et al., 1999).

(a)

(b)

(c)

Fig. 1. Electron micrographs of human erythrocytes incubated with

haemolytic extracts of the b-haemolytic GBS wild-type strain AC450

(b, c) and a nonhaemolytic GBS mutant (a) carrying an ISS1 insertion

in the acpC gene of the cyl gene cluster. Preparation of the

haemolytic extracts and the generation of the nonhaemolytic mutant

strain have been described previously (Spellerberg et al., 1999). A 4%

solution of human erythrocytes was incubated with the respective

haemolysin extract for 5 min at 17 °C to allow attachment of

haemolysin to the erythrocyte membrane, at a temperature at which

no haemolysis occurs. Following fixation of the erythrocytes the assay

was incubated for 3 min at 37 °C to induce erythrocyte lysis. Images

were taken with an Hitachi S 5200 scanning electron microscope at

magnifications as indicated.

FEMS Microbiol Rev 38 (2014) 932–946ª 2014 The Authors. FEMS Microbiology Reviews
published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

934 M. Rosa-Fraile et al.



The CylAB transporter displays significant similarities to

multidrug resistance (MDR) transporters and can export

MDR substrates (Gottschalk et al., 2006): cylX has been

predicted to encode an acetyl coenzyme A (CoA) carbox-

ylase; the cylE gene product displays homologies with an

N-acetyltransferase; cylF encodes a putative aminomethyl-

transferase; CylI displays homologies with a 3-ketoacyl-

ACP synthase; CylJ displays homologies with with a

glycosyltransferase; and cylK encodes a putative phospho-

pantetheinyl transferase (Spellerberg et al., 1999, 2000a;

Pritzlaff et al., 2001; Whidbey et al., 2013). While initial

studies found that mutations in different cyl genes led to a

loss of haemolytic activity (Spellerberg et al., 1999), a sub-

sequent publication demonstrated that only mutation of

cylE invariably resulted in a nonhaemolytic phenotype that

could be restored upon complementation (Pritzlaff et al.,

2001). In addition, overexpression of cylE in Escherichia

coli conferred to the recombinant bacteria the ability to

lyse erythrocytes. These results suggested strongly that

CylE represented the GBS haemolysin. Attempts to purify

and characterize the cylE product, a protein of 78.3 kDa,

were unsuccessful, and CylE did not show significant

homology to any known pore-forming toxin (Pritzlaff

et al., 2001).

Moreover, the reintroduction of cylE including the adja-

cent cylA/B in a GBS nonhaemolytic mutant harbouring a

deletion of the cyl cluster did not lead to a restoration of

the haemolytic phenotype (Whidbey et al., 2013). Today,

sequence analysis supports that CylE is an acyl CoA acyl-

transferase involved in the biosynthesis of the rhamnolipid

(Tettelin et al., 2005; Whidbey et al., 2013; http://www.

uniprot.org/uniprot/Q3K232-). Furthermore, attempts to

confirm the previous report that recombinant expression

of cylE in E. coli results in a haemolytic phenotype have

failed (Whidbey et al., 2013). These findings show that

cylE is necessary but not sufficient for expression of the

haemolysin (Gottschalk et al., 2006; Whidbey et al., 2013).

A recent study challenged the idea of CylE as a pore-

forming toxin (Whidbey et al., 2013). This result is sup-

ported by the fact that no protein could be found in

12 kb

Promotor

cylK

CylB

CylA
export

(Ornithine rhamnolipid)                                                                                                      

ABC-transporter

cylX cylD cylG acpC cylZ cylA cylB cylE cylF cylI cylJ

Fig. 2. A representation of the 12 genes belonging to the cyl gene cluster of GBS and the theoretical biosynthetic steps toward granadaene

formation. The biosynthesis of granadaene should take place by sequential condensation of malonyl-ACP blocs in an iterated cycle of

condensation reduction and dehydratation similar to the fatty acid biosynthesis pathway. The cyl operon genes coding for the respective enzymes

are shown.
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haemolytic cell-free extracts of GBS; extracts were analy-

sed by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) (Whidbey et al., 2013) as well

as nuclear magnetic resonance (NMR) spectroscopy

(M. Rosa-Fraile, unpublished results). The same study

demonstrated also that the haemolytic and cytolytic activ-

ity of GBS is due to the ornithine rhamnolipid pigment.

Interestingly, analogues of the cyl operon genes, which is

absent in other streptococcal genomes, can be found in

bacteria such as Bacillus spp., Actinomyces viscosus and

Propionibacterium spp. (Whidbey et al., 2013).

Regulation of the cyl operon

The dual nature of GBS – with its ability to shift from a

harmless commensal microorganism to a life-threatening

pathogen – requires the appropriate regulation of viru-

lence factors in response to different environmental con-

ditions encountered in the host. Regulation of virulence

factor expression in bacteria is primarily accomplished by

two-component regulatory systems (TCSs) that allow bac-

teria to adapt to changing environmental conditions

(Stock et al., 2000).

A typical TCS consists of a membrane-associated his-

tidine kinase (HK) – with an extracellular input sensor

domain and a corresponding cytoplasmic effector

domain – and a cytoplasmic response regulator (RR).

Specific environmental stimuli provoke a conformational

change in the input domain of the HK that causes the

activation of its cytoplasmic domain, which autophosph-

orylates at a specific histidine residue. The phosphate

group is then transferred to a specific aspartate residue

in the cognate RR. Phosphorylation of the RR controls

its activity as a transcriptional activator or repressor of

multiple genes and initiates the corresponding cellular

responses.

Transcription of the cyl operon is tightly controlled

by the TCS, CovS/R (control of virulence) also known

as CsrR/S (Csr capsule synthesis regulator). Apart from

regulating the expression of the cyl gene cluster, CovS/R

controls several other virulence factors (Lamy et al.,

2004; Jiang et al., 2005, 2008; Lembo et al., 2010; Cum-

ley et al., 2012; Patras et al., 2013). CovS phosphorylates

the regulator CovR at a conserved aspartate residue

(Asp53), which allows binding of CovR to a conserved

DNA motif in the cyl promoter region repressing cyl

expression. Therefore, inactivation of the regulator CovR

leads to constitutive overexpression of the cyl operon,

resulting in a hyperhaemolytic and hyperpigmented

mutant (Lamy et al., 2004; Jiang et al., 2005). These hy-

perhaemolytic GBS strains have been linked to fulminant

GBS infections in humans (Sendi et al., 2009; Whidbey

et al., 2013).

Additional regulatory elements were shown to allow

the fine-tuning of CovS/R and therefore indirectly control

b-haemolysin expression. GBS encodes a single eukary-

otic-type membrane-associated serine/threonine kinase

Stk1 and its cognate, soluble protein, serine/threonine

phosphatase Stp1 (Rajagopal et al., 2003; Burnside et al.,

2011). Stp1 phosphorylates CovR on threonine 65, which

decreases the phosphorylation of CovR at Asp53 relieving

the CovR-mediated repression of the cyl operon. Stk1

positively regulates transcription of b-h/c, which is critical

for GBS virulence, and Stk1 mutants produce less b-h/c
compared with wild-type strains (Rajagopal et al., 2006;

Lin et al., 2009). Stp1 is the cognate phosphatase of Stk1,

and indeed Stp1 mutants exhibit several phenotypes such

as decreased haemolytic activity, increased autolysis and a

reduction in the ability to cause systemic infections

(Burnside et al., 2011). Abx1 was recently identified as

the third partner of the CovS/R system in GBS through

direct interaction with CovS (Firon et al., 2013). RovS, a

stand-alone transcriptional regulator, activates the expres-

sion of cylE and other genes of the cyl operon through

direct binding to the promoter region (Samen et al.,

2006). Thus, multiple signals sensed through CovS, Stk1

and Abx1 are integrated via CovS/R to fine-tune haemol-

ysin expression (Firon et al., 2013; Fig. 3).

GBS pigment

Approximately 95% of all human GBS isolates produce a

characteristic brick-red pigment that is unique among

streptococci. Expression of the pigment is always linked

to the expression of a key virulence factor, the GBS b-
haemolysin encoded by a single genetic locus known as

the cyl operon.

Biological characteristics

The production of a orange to brick-red pigment by

human GBS strains is a characteristic phenotypic feature

reported very early in the literature (Durand & Giraud,

1923; Sherman, 1937; Plummer, 1941). Fallon (1974) pro-

posed the use of pigment detection as a diagnostic tool

for GBS identification. This orange, brick or red pigment

is unique and highly specific for GBS isolates and is used

in the clinical laboratory for the identification of GBS

(Fallon, 1974; Merrit & Jacobs, 1976; Merrit et al., 1976;

Noble et al., 1983; Rosa-Fraile et al., 1999b; Spellerberg &

Brandt, 2011). Nevertheless, pigment production can be

variable among bovine strains and other animal species

isolates (Mhalu, 1976; Merritt & Jacobs, 1978; Brglez,

1983; L€ammler et al., 1985; Garcia et al., 2008).

In early studies (Merritt & Jacobs, 1978), GBS pigment

was shown to exhibit a three-peak UV–visible absorption
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spectrum at 525, 485 and 455 nm strongly resembling the

characteristic spectrum of a carotene with 12 double con-

jugated bonds (Britton, 1995) and thus suggesting for the

first time that the GBS pigment is a carotene (Merritt &

Jacobs, 1978). Unlike isoprenoid carotenes, which are

lipophilic substances (Schiedt & Liaaen-Jensen, 1995), the

GBS pigment cannot be extracted from GBS cultures with

organic solvents (Merritt & Jacobs, 1978). In addition,

the GBS genome sequences (Glaser et al., 2002; Tettelin

et al., 2002, 2005) do not contain homologues of phyto-

ene synthases, phytoene or carotene dehydrogenases and

lycopene cyclases, which are common enzymes of the car-

otene biosynthesis pathway (Sieiro et al., 2003). The char-

acterization of GBS pigment structure was hampered for

many years by its strong association to the cell wall (Mer-

ritt & Jacobs, 1978). It cannot be extracted using water,

physiological saline, HCl, alcoholic KOH, methanol, etha-

nol, acetone, diethyl ether or petroleum ether (Haug &

Soderlund, 1977; Merritt & Jacobs, 1978). Similar to b-
haemolysin, the GBS pigment was shown to be released

into the culture medium using starch (Merritt & Jacobs,

1978; Tapsall, 1987; Wennestrom et al., 1991).

The chemical structure of the chromophore in the GBS

pigment was elucidated using NMR spectroscopy and

MS. It was shown to be an ornithine rhamnopolyene

named granadaene with a linear chain of 12 unsaturated

conjugated bonds (Rosa-Fraile et al., 2006; Paradas et al.,

2012) (Fig. 2). The granadaene molecule exhibits some

characteristics of an acid–base indicator, and its UV–visi-
ble absorption spectrum shifts from a carotene-like spec-

trum, with three peaks at 525, 485 and 455 nm at low

pH (red colour), to a one-peak spectrum of 420 nm (yel-

low colour) at high pH (Rosa-Fraile et al., 2006). Under

certain conditions, for example in the presence of amylase

or serum, GBS produces a one-peak pigment, which

could explain previous reports suggesting the existence of

two different pigments (Tapsall, 1986, 1987; Haug & So-

derlund, 1977). However, it remains to be determined

whether granadaene represents the full GBS pigment. It is

possible that an additional part that attaches the pigment

to the cell wall was removed during the stringent condi-

tions [dimethylsulfoxide – trifluoroacetic acid (DMSO-

TFA)] used for pigment extraction (Rosa-Fraile et al.,

2006).

GBS pigment is a polyene, and the polyene biosynthesis

pathway closely resembles that of fatty acid biosynthesis

(Schweizer, 1989; Goel et al., 2002). The cyl chromosomal

locus encoding haemolysin and pigment production

includes several genes (cylD, cylG, cylZ, apcC and cylI)

with homology to enzymes involved in fatty acid – and

polyene – biosynthesis (Goel et al., 2002; Aparicio et al.,

2004). Based on these homologies, a theoretical pathway

for the biosynthesis of GBS pigment has been suggested

(Whidbey et al., 2013; Fig. 2).

Inhibitors of the folate pathway trigger pigment pro-

duction in human GBS strains (Rosa et al., 1983, 1992;

Schaufub et al., 1985; Tapsall, 1987). Methylfolate is a

key intermediate in the biosynthesis of thymidine and is

the carrier of the hexose in the biosynthesis of rhamn-

olipids (Pazur & Shuey, 1961; Burger et al., 1963; Ochs-

ner et al., 1994). CylJ displays homology to a

glycosyltransferase (Pritzlaff et al., 2001) and presumably

encodes the rhamnosyltransferase used in the biosynthe-

sis of granadaene. However, the theoretical biochemical

pathway proposed for the biosynthesis of granadaene

(Whidbey et al., 2013; Fig. 2) does not account for the

pigment-enhancing effect of folate inhibitors. Interest-

ingly, the pigment-enhancing effect of folate antagonists

is not seen in most bovine strains (Schaufub et al.,

1985). This fact, together with the lack of pigment pro-

duction in a high proportion of these strains (Mhalu,

1976; Merritt & Jacobs, 1978; Brglez, 1983; L€ammler

et al., 1985; Garcia et al., 2008), prevents the use of Gra-

nada media (Rosa et al., 1992) for the detection of

bovine GBS infections.

CovR not bound->
high hemolytic
activity

CovS

CovR
P

cyl operon

CovR

P

Stk1

cyl operon

CovR bound to 
cyl promoter -> 
low hemolytic 
activity

Abx1

RovS

Fig. 3. Regulators controlling transcription of the cyl operon. The

two-component system CovS/R represents the major regulator of

haemolysis and pigmentation in GBS. In wild-type strains the response

regulator CovR is phosphorylated through CovS and bound to the cyl

promotor region. Binding of CovR results in a repression of cyl gene

transcription. This repression is modulated by an inhibition of CovR

through the serine threonine kinase Skt1 and an inhibition of CovS

through the Abi domain protein Abx1. In addition, the RovS regulator

as a stand-alone system can increase haemolysin and pigment

expression through binding to the cyl promotor region.
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GBS haemolysin and pigment

More than 30 years ago, GBS pigment and haemolysin

were identified as key determinants for GBS pathogenic-

ity. A close link between these two phenotypic traits has

been reported for some time but has never been fully

explained, until a recent study demonstrating that GBS

haemolysin and pigment appear to exhibit, Janus-like, the

two faces of a single virulence factor.

Phenotypic linkage of GBS haemolysin and

pigment production

A strong link exists between the b-haemolytic phenotype

and the production of GBS pigment (Lancefield, 1934;

Sherman, 1937; Plummer, 1941). Systematic studies could

not identify nonhaemolytic pigmented GBS strains or non-

pigmented haemolytic strains (Fallon, 1974; Noble et al.,

1983; Tapsall, 1987; Wennestrom et al., 1991). Moreover,

the amount of pigment produced by GBS wild-type iso-

lates always correlates with the amount of haemolysin pro-

duced (Wennerstrom et al., 1985; Tapsall, 1987; Nizet

et al., 1996). Nonhaemolytic mutants isolated from a large

GBS mutant library were mapped in the cyl operon and

were simultaneously altered in pigment production (Wen-

nerstrom et al., 1985; Nizet et al., 1996; Spellerberg et al.,

1999, 2000a; Forquin et al., 2007; Pritzlaff et al., 2001). As

a proof that haemolysin and pigment activities are carried

by the same molecule, it has been shown that a nonhaemo-

lytic preparation of GBS pigment displays haemolytic

activity after the addition of starch (Whidbey et al., 2013).

Pigmentation and haemolysis in veterinary

GBS strains

In veterinary GBS isolates nonpigmented strains are fre-

quently reported in addition to a lack of correlation

between pigment and haemolysin production (Mhalu,

1976; Islam, 1977; Merritt & Jacobs, 1978; Brglez, 1983;

L€ammler et al., 1985; Garcia et al., 2008). This discrep-

ancy may have been caused by the diversity of culture

media used to detect pigment and haemolysin (Merrit

et al., 1976; Mhalu, 1976; L€ammler et al., 1985), given

that media lacking proteose peptone 3 and folate pathway

inhibitors (Rosa-Fraile et al., 1999a) may lead to an over-

estimation of nonpigmented strains. Therefore, a careful

re-evaluation of these findings using quantitative meth-

ods, standard media for the detection of GBS pigment

(e.g. Granada medium) and sequencing of the cyl gene

cluster may solve previously reported discrepancies

between pigment and haemolysin production.

Moreover, variations in the cyl gene cluster were

reported in recently sequenced GBS strains from fish.

Some strains harbour the complete cyl gene cluster and

display b-haemolysis, while other strains are nonhaemo-

lytic and contain mutations in the cyl locus (Liu et al.,

2012, 2013; Pereira et al., 2013). Analysis of the nonhae-

molytic STIR-CD-17 GBS strain isolated from tilapia (Or-

eochromis sp.) indicated that only parts of the cyl operon

are present in this strain (Delannoy et al., 2012). Interest-

ingly in another nonhaemolytic GBS strain isolated from

tilapia an incomplete cyl operon was found containing

cylE, cylA and cylB (Liu et al., 2013; Pereira et al., 2013),

thus supporting the interpretation that these genes are

necessary but not sufficient for GBS haemolysis. In fish

pathogenic strains, most hypervirulent isolates are non-

haemolytic, indicating that the b-haemolysin is not an

important virulence factor in these hosts (C.M.J. Delan-

noy, pers. commun.). Genome analysis of veterinary GBS

strains reveals a considerable heterogeneity and shows

that mechanisms of acquisition, duplication and reshuf-

fling have permitted GBS to adapt to different environ-

mental niches (Tettelin et al., 2005; Delannoy et al., 2012;

Liu et al., 2012; Pereira et al., 2013; Rosinski-Chupin

et al., 2013; Wang et al., 2013; Zubair et al., 2013).

The role of GBS haemolysin and
pigment in virulence

Haemolysin

GBS, a commensal bacterium that asymptomatically colo-

nizes human mucosal surfaces, can turn into a life-threat-

ening pathogen in susceptible hosts (Ewards & Baker,

2010; Rodriguez-Granger et al., 2012). The molecular

bases underlying GBS infections have been unveiled in

the last decade and several reviews described the identifi-

cation and importance of these virulence factors (Doran

& Nizet, 2004; Nizet & Rubens, 2006; Maisey et al., 2009;

Rajagopal, 2009).

Among them, the cell surface-associated b-haemolysin

is thought to play a key role by promoting GBS penetra-

tion of host cell barriers such as the epithelial and endo-

thelial cells of the lung and the blood–brain barrier.

Furthermore, b-h/c was shown to induce host inflamma-

tory responses (Doran et al., 2002; Bebien et al., 2012;

Costa et al., 2012). The membrane-damaging effect of

b-haemolysin is not restricted to erythrocytes; GBS b-
haemolysin extracts exert a direct cytotoxicity against dif-

ferent eukaryotic cell types (Liu et al., 2004; Hensler

et al., 2008a; Alkuwaity et al., 2012). Different studies

suggest that GBS b-haemolysin has immunomodulatory

properties that favour intracellular survival of GBS con-

tributing to virulence (Doran et al., 2002; Liu et al., 2004;

Bebien et al., 2012). Haemolysin-deficient mutants are

attenuated in virulence in several animal models of GBS
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infections. By contrast, hyperhaemolytic GBS strains exhi-

bit increased virulence (Wennerstrom et al., 1985; Tapsall

& Phillips, 1991; Wennerstrom et al., 1991; Nizet et al.,

1996, 1997b; Gibson et al., 1999; Puliti et al., 2000; Doran

et al., 2002, 2003; Ring et al., 2002; Liu & Nizet, 2004;

Hensler et al., 2005, 2008a; Forquin et al., 2007; Kaplan

et al., 2008; Lembo et al., 2010; Fettucciari et al., 2011;

Alkuwaity et al., 2012; Bebien et al., 2012; Whidbey et al.,

2013). In addition, strong haemolytic GBS strains but not

weak or nonhaemolytic strains are able to trigger macro-

phage apoptosis and to disrupt the macrophage cytoskele-

ton (Fettucciari et al., 2000, 2006, 2011; Liu et al., 2004;

Liu & Nizet, 2006; Whidbey et al., 2013). Hyperhaemolyt-

ic GBS strains have been reported to be more frequently

associated with women in preterm labour (Whidbey

et al., 2013) and with cases of GBS streptococcal toxic

shock syndrome and necrotizing fasciitis (Sendi et al.,

2009). In line with these findings, it has also been

reported that GBS nonhaemolytic strains are quite infre-

quent among GBS strains causing neonatal infections

(Rodriguez-Granger et al., 2011). Moreover, the effect of

intravenous administration of partially purified haemoly-

sin in rabbits or rats produced dose-dependent hypoten-

sive changes and deaths due to shock (Nizet et al., 1996).

Nevertheless, controversial reports exist about the exact

role of b-haemolysin in GBS infections (Sendi et al.,

2009; Cumley et al., 2012; Sagar et al., 2013). Two reports

indicate no differences between haemolytic and their non-

haemolytic counterparts in a mouse or a neonatal rat sep-

sis model (Wennerstrom et al., 1985; Weiser & Rubens,

1987). Surprisingly, GBS strains belonging to the hyper-

virulent clonal complex 17 that are responsible for the

majority of invasive neonatal infections in Europe (Poyart

et al., 2008; Fluegge et al., 2011) exhibit very low levels of

haemolysis (Tazi et al., 2012). However, it remains possi-

ble that the amount of b-haemolysin production observed

in vitro may not reflect the in vivo situation.

Pigment

It was first suggested in the 1980s that the pigment of

GBS can neutralize superoxide and therefore pigment

could confer resistance to radical oxygen species (Nemer-

gut & Merritt, 1982, 1983). Indeed, it has been shown

that a filtered extract of GBS pigment confers the ability

to resist to the antimicrobial effects of reactive oxygen

species during phagolysosomal killing (Liu & Nizet, 2004;

Liu et al., 2004). Nevertheless, these studies assumed that

GBS pigment was a carotene, whereas it is a polyene

(nonisoprenoid) (Rosa-Fraile et al., 2006). Polyenic pig-

ments share with isoprenoid carotenes a conjugated dou-

ble-bond system with delocated electrons resulting in a

characteristic carotene-like UV–visible spectrum (Britton,

1995). Polyenic pigments can also act – as do carotenes –
as antioxidants (Krinsky, 1979; Krinsky & Yeum, 2003)

and can protect membrane lipids against peroxidation, as

described for some plant pathogenic bacteria, i.e. xanto-

monadin in Xantomonas orizae (Rajagopal et al., 1997;

Goel et al., 2002). A recent study reported no difference

in survival within mouse monocyte-derived macrophages

between a nonpigmented cylE mutant and its wild-type

counterpart, challenging the idea that pigment is a crucial

virulence factor for resisting macrophage killing (Cumley

et al., 2012).

Other bacterial components displaying
similarity to GBS haemolysin and
granadaene

While the GBS granadaene is unique among streptococci,

it has been found in other bacterial species. Propionibacte-

rium jensenii is a gram-positive, high-G + C-content bac-

terium that causes splitting and formation of red spots in

Swiss-type cheeses. Propionibacterium jensenii is b-haemo-

lytic and produces a red pigment identical to GBS gra-

nadaene. A genetic link between pigmentation and

haemolytic activity in P. jensenii was suggested by chemi-

cal mutagenesis studies using nitrosoguanidine. Nonpig-

mented mutants of P. jensenii are nonhaemolytic, while

mutants demonstrating a reduced pigmentation also dis-

play a diminished haemolytic activity (Vanberg et al.,

2007). Pigment is also invariably linked with b-haemolysis

in other species of Propionibacterium, such as P. thoenii

and P. rubrum (Vedamuthu et al., 1971). As for P. jesenii,

chemical mutagenesis in P. thoenii causes a simultaneous

loss of haemolysis and pigment production (Vanberg

et al., 2007). Nevertheless, to the best of our knowledge,

the production of granadaene in P. rubrum and P. thoenii

has not been investigated. Granadaene has been detected

in P. jensenii, and it is interesting to note that a gene

cluster with considerable similarities to the cyl genes has

been identified in this bacterium. With the exception of

cylK, homologues of all of the cyl genes are present in

P. jensenii, but with a different gene organization (C.

Vanberg C., Langsrud T., Nes I.F. & Holo H, unpublished

data, P. jensenii strain LMG 2818 granadaene gene cluster,

complete sequence GenBank: FJ617193.1).

With the increasing availability of bacterial genomes,

orthologues and paralogues of the cyl gene cluster could

be identified in a number of bacterial species distantly

related to streptococci such as Bacillus cereus, propioni-

bacterium spp., Arthrobacter aurescens and Actinomyces

viscosus (Whidbey et al., 2013). Interestingly, all these

species are gram-positive rods, some as in the case of

Arthrobacter spp. are frequently found in environmental

soil samples and these species do not represent classical
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human pathogens. This observation may indicate a func-

tion of the cyl genes that is not linked to human patho-

genesis.

GBS pigment and haemolysin, identical
or nonidentical twins?

Because of the close link between haemolysin and pig-

ment production, it has been suggested that the pigment

could be the natural carrier for the haemolysin or that

GBS pigment and haemolysin are identical (Tapsall, 1987;

Pritzlaff et al., 2001; Liu & Nizet, 2006; Whidbey et al.,

2013). The addition of starch to a nonhaemolytic GBS

pigment solution in DMSO-TFA results in a haemolytic

and cytolytic preparation (Whidbey et al., 2013) leading

to the conclusion that GBS pigment and haemolysin are

identical molecules. Nevertheless, it remains possible that

– although closely related – pigment and haemolysin

could be slightly different molecules. For example, the

pigment dissolved in DMSO-TFA and the haemolytic

mixture of pigment and starch are stable, in contrast to

the poor stability of GBS haemolysin–starch preparations

(Dal & Monteil, 1983), and haemolytic colonies of GBS

on blood agar plates are not pigmented. Different culture

conditions can result in different haemolysin and pigment

production (Rosa-Fraile et al., 1999a; Tapsall, 1987).

Many early studies reporting differences between haemol-

ysin and pigment production relied on qualitative visual

detection of haemolysin and pigment, and this may

explain the observed discrepancies between pigment and

haemolysin to some extent. Some reports indicate that

trimethoprim increases pigment production but does not

have a stimulatory effect on haemolysin production

(Schaufub et al., 1985; Tapsall, 1987). However, in con-

trast to these reports, on blood agar plates inoculated

with a haemolytic GBS strain and with a sulfamethoxaz-

ole/trimethoprim (23.75/1.25 lg) antibiotic paper disc, an

increased haemolysin production occurs in the GBS colo-

nies surrounding the antibiotic disc (Fig. 4). This obser-

vation raises doubts about the validity of previous reports

indicating that folate pathway inhibitors do not increase

GBS haemolysin production. It is also worth pointing out

that GBS pigment is stabilized by the same carrier mole-

cules – albumin and starch – that are required to stabilize

haemolysin (Tapsall, 1986), and both carrier substances

can closely bind to long-chain fatty acids (Mikus et al.,

1946; BeMiller, 1965; Spector et al., 1969; Spector, 1975;

Blazek, 2008).

Polyenes display a high affinity to sterols and phospho-

lipids of the cell membrane, and they are haemolytic as

well as cytolytic (Bolard, 1986; Knopik-Skrocka & Bielaw-

ski, 2002; Aparicio et al., 2004; Knopik-Skrocka et al.,

2007). The toxicity of polyenes against mammalian cells

is well documented in polyenic antibiotics (Bolard, 1986),

and cytotoxicity is observed even in polyene molecules

harbouring only four conjugated double bonds (Bae

et al., 2013). The formation of polyene–lipid complexes

can lead to changes in membrane permeability, resulting

in haemolysis and cytolysis (Hsuchen & Feingold, 1973;

Siegel, 1977; Brajtburg et al., 1980; Bolard, 1986; Aparicio

et al., 2004). However, cholesterol, which inhibits the

haemolytic activity of some polyenic antibiotics (Hsuchen

& Feingold, 1973; Strom et al., 1979), had no inhibitory

effect on the GBS haemolysin that is inhibited by phos-

pholipids (Marchlewicz & Duncan, 1980; Ferrieri, 1982;

Tapsall & Phillips, 1991).

It is also possible that the rhamnose tail of the GBS

pigment may contribute to its membrane-damaging activ-

ity, as bacterial di-rhamnolipids are haemolytic. This hae-

molytic activity has been attributed to their biosurfactant

characteristics as well as their cone-shaped configuration

(Abdel-Mawgoud et al., 2010; Ortiz et al., 2010; Sanchez

et al., 2010). While there appear to be structural differ-

ences between di-rhamnolipids and granadaene, it is pos-

sible that the rhamnose tail of GBS pigment may play a

role in the membrane-damaging effect. The available data

strongly support the hypothesis that GBS haemolysin and

GBS polyenic pigment share a common metabolic path-

way encoded in the cyl operon and that the haemolysin is

a molecule closely related or identical to the granadaene

polyenic pigment.

Fig. 4. Enhancing effect of folate inhibitors on GBS haemolysin.

Depicted is a picture of a blood agar plate inoculated with a

haemolytic GBS strain and with a sulfamethoxazole/trimethoprim

(23.75/1.25 lg) antibiotic paper disc.

FEMS Microbiol Rev 38 (2014) 932–946ª 2014 The Authors. FEMS Microbiology Reviews
published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

940 M. Rosa-Fraile et al.



Summary

Research on the GBS b-h/c and pigment, two major pheno-

typic traits used for bacterial identification, has been being

conducted for almost a century. GBS harbour a unique set

of 12 genes, the cyl operon, responsible for both haemoly-

sin and pigment production. Expression of the cyl operon

is controlled by the CovS/R two-component system, which

coordinates the expression of multiple virulence factors.

Several publications have shown the important role of b-h/
c in virulence. However, due to its small molecular size, the

apparent lack of immunogenicity and a rapid loss of activ-

ity, the biochemical nature of the GBS b-h/c has remained

elusive for many years. In 2000, the cyl operon was shown

to be responsible for haemolysin and pigment production,

and in 2006 the structure of the pigment was solved and

demonstrated to be an ornithine-rhamnolipid designated

‘granadaene’. Recently, this rhamnolipid was shown to be

haemolytic under certain experimental conditions. These

data strongly support the idea that the GBS b-h/c and pig-

ment are identical or very closely related molecules. Purifi-

cation of b-h/c and determination of its structure will

definitely prove this hypothesis.
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