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IL23 Promotes Antimicrobial Pathways in Human Macrophages,
Which Are Reduced With the IBD-Protective IL23R R381Q Variant
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SUMMARY

Interleukin (IL)23 promotes bacterial uptake and intracel-
lular bacterial clearance in human macrophages, and auto-
crine/paracrine IL23 is required for optimal induction of
antimicrobial pathways upon innate receptor stimulation.
Importantly, macrophages from inflammatory bowel
disease–protective IL23R R381Q variant carriers show a
reduction in these antimicrobial processes.

BACKGROUND & AIMS: Interleukin (IL)23 is a major
contributor to inflammatory bowel disease (IBD) pathogenesis
and is being pursued as a therapeutic target, both through
targeting IL23 alone or in combination with IL12. Unexpected
trial outcomes highlight the importance of understanding the
cell types through which IL23 regulates immune responses, and
how IL23 and IL12 compare in these responses. Macrophages
are key players in IBD, and IL23 recently was found to promote
inflammatory outcomes in human macrophages. This raises the
possibility that IL23 may be required for additional essential
macrophage functions, in particular microbial clearance, such
that either blocking the IL23 pathway or the IL23R–R381Q
IBD-protective variant may reduce macrophage-mediated mi-
crobial clearance.

METHODS: We analyzed protein expression, signaling, bacte-
rial uptake, and intracellular bacterial clearance in human
monocyte-derived macrophages through Western blot, flow
cytometry, and gentamicin protection.

RESULTS: Autocrine/paracrine IL23 was critical for optimal
levels of pattern-recognition-receptor (PRR)-induced
intracellular bacterial clearance in human macrophages.
Mechanisms regulated by IL23 included induction of
pyruvate dehydrogenase kinase 1-dependent bacterial uptake,
and up-regulation of reactive oxygen species through nico-
tinamide adenine dinucleotide phosphate oxidase members,
nitric oxide synthase 2, and autophagy through ATG5 and
ATG16L1. Complementing these pathways in IL23R-deficient
macrophages restored PRR-induced bacterial uptake and
clearance. Janus kinase 2, TYK2, and STAT3 were required for
IL23-induced mechanisms. IL23 and IL12 induced antimicro-
bial pathways to similar levels in human macrophages. Rela-
tive to IL23R–R381, transfected IL23R–Q381, or monocyte-
derived macrophages from IL23R–Q381 carriers showed
reduced bacterial uptake and clearance.
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CONCLUSIONS: We identify that autocrine/paracrine IL23 is
required for optimal PRR-enhanced macrophage bacterial up-
take and intracellular bacterial clearance, define mechanisms
regulating IL23R-induced bacterial clearance, and determine
how the IBD-protective IL23R–R381Q variant modulates these
processes. (Cell Mol Gastroenterol Hepatol 2020;10:673–697;
https://doi.org/10.1016/j.jcmgh.2020.05.007)
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he interleukin (IL)23/T-helper cell (Th)17 pathway
1,2
Abbreviations used in this paper: AIEC, adherent invasive Escherichia
coli; GFP, green fluorescent protein; IBD, inflammatory bowel disease;
IFN, interferon; IL, interleukin; JAK, Janus kinase; LC3II, light chain 3-
II; LPS, lipopolysaccharide; MDMs, monocyte-derived macrophages;
NADPH, nicotinamide adenine dinucleotide phosphate; NK, natural
killer; NOD, nucleotide-binding oligomerization domain; NOS2, nitric
oxide synthase 2; PDK1, pyruvate dehydrogenase kinase 1; PI3K,
phosphatidylinositol 3-kinase; PRR, pattern-recognition receptor;
RNS, reactive nitrogen species; ROS, reactive oxygen species; siRNA,
small interfering RNA; STAT, signal transducer and activator of tran-
scription; Th, T-helper cell; TNF, tumor necrosis factor; TYK2, Tyrosine
kinase 2.
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Tis a key driver of intestinal inflammation, and loss-
of-function genetic variants in IL23R confer protection from
inflammatory bowel disease (IBD),3 as well as a variety of
other immune-mediated diseases.4 As such, the IL23/Th17
pathway is being investigated actively as a therapeutic target
in IBD patients. Blocking antibodies to the shared IL23/
IL12p40 subunit showed efficacy in phase III studies for
Crohn’s disease5 and ulcerative colitis,6 and have been
approved for treatment in both Crohn’s disease and ulcera-
tive colitis patients. Phase III studies selectively blocking
IL23p19 are ongoing after positive phase II outcomes.7,8

Despite the contribution of IL23 to Th17 cells, IL17 pro-
duced from these cells does not account for the beneficial
effects of blocking IL12p40 and/or IL23, because blocking
IL17 directly was ineffective in Crohn’s disease.9 Therefore,
an active area of interest has been to define more clearly the
cell types and mechanisms through which IL23 contributes
to inflammation. IL23R is expressed in multiple cell types,
including myeloid cells.1 Studies examining responses to
IL23 through IL23R have focused on IL17-producing cells
such as Th17 cells, innate lymphoid cells, and natural killer
(NK) cells.1,2,10 Similarly, primary human cell studies
focusing on the effects of the IBD-protective IL23R–R381Q
variant primarily have examined T cells, where this variant
leads to a loss-of-function in IL23R.11–13 However, we
recently found that although IL23R is expressed at low levels
on human macrophages, within minutes of exposure to IL23,
cell surface IL23R is up-regulated on macrophages, and in
turn, promotes signaling and cytokine secretion.14 As such,
upon stimulation of innate receptors, autocrine/paracrine
IL23 is required for the secretion of a broad range of cyto-
kines from humanmacrophages.14 These studies highlight an
important role for IL23 in driving inflammatory responses in
macrophages, cells that play a key role in immune-mediated
diseases, including IBD.15 However, they also raise the pos-
sibility that IL23 may contribute to additional essential
macrophage functions, in particular microbial clearance,
which may impact outcomes with therapies blocking the
IL12/IL23 pathway andmay have implications for carriers of
IL23R genetic variants modulating IBD susceptibility.

Upon exposure to bacteria, bacterial components stim-
ulate pattern recognition receptors (PRRs) to initiate re-
sponses to defend the host. These responses must be
regulated tightly during infection and at mucosal surfaces to
reduce the risk of ongoing inflammation and tissue damage.
Given the importance of balancing inflammation with
effective bacterial clearance, genetic variants resulting in
decreased inflammation may be protective from IBD. How-
ever, these same genetic variants may increase susceptibil-
ity to microbial-mediated diseases.3 Similarly, targeting
pathways to reduce inflammation may confer an increased
risk for infection. IL23 contributes to microbial defenses,
including defenses against intracellular bacteria and fungi;
however, the focus for these IL23-mediated defenses has
been on its role in T cells and innate lymphoid cells.4,16

Although macrophages are critical for mediating microbial
defenses, IL23 contributions to macrophage-mediated anti-
microbial defenses have not been reported given its under-
recognized role in macrophages. Furthermore, IL12 also is
known to play an important role in microbial defenses.
Much of the focus even with IL12 has been on its secretion
from macrophages and dendritic cells to regulate T cells and
NK cells.16,17 Nonetheless, reports also have shown roles for
IL12 in directly regulating macrophages to reduce bacteria,
such as Mycobacterium tuberculosis, in particular through
generation of interferon (IFN)g secretion that, in turn, can
induce nitric oxide production.18–21 However, the insight
into IL12-induced mechanisms for enhancing macrophage-
mediated bacterial clearance is limited. Genetic mutations
in the IL12 pathway that confer risk for infections highlight
the role of IL12 in microbial defenses.16,21 In some cases
these mutations are in either the p40 cytokine subunit
shared between IL12 and IL23, or in IL12Rb1, which is
shared between the functional IL12 and IL23 receptors.16

As such, the susceptibility conferred may be through
either IL12, IL23, or a combination of the two. In fact, there is
evidence for the ability of IL23 to compensate for IL12 defi-
ciency.22 These findings, combined with current therapeutic
targeting of both the shared IL12p40 subunit and the unique
IL23p19 subunit in IBD patients, highlight the importance of
defining the roles for both IL23 and IL12 in microbial clear-
ance functions in macrophages. Mouse and human cell in-
flammatory outcomes can differ dramatically,23 such that it is
critical to examine these questions in human cells.

In this study, we define key roles for IL23R in mediating
microbial clearance in human macrophages, identify previ-
ously undefined mechanisms mediating these IL23R effects,
determine similarities between IL23 and IL12 in regulating
antimicrobial pathways, show an autocrine/paracrine role
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for these cytokines in promoting PRR-induced microbial
clearance, and elucidate how the IBD-protective
IL23R–R381Q variant modulates these outcomes.

Results
Autocrine/Paracrine IL23 Promotes Intracellular
Bacterial Clearance in Human Monocyte-Derived
Macrophages

To assess if IL23 promotes intracellular bacterial clear-
ance in human monocyte-derived macrophages (MDMs), we
treated cells for a prolonged period (48 h) with IL23 and
then cultured the cells with the resident intestinal bacteria
Enterococcus faecalis. Clearance of E faecalis was more
effective after prolonged IL23 treatment (48 h) (Figure 1A).
We saw similar outcomes upon infection with adherent
invasive Escherichia coli (AIEC), which are enriched in the
ilea of Crohn’s disease patients,24 and Salmonella Typhi-
murium, an invasive enteric pathogen (Figure 1A).
Because IL12 and IL23 share a common cytokine subunit
(IL12p40) and a common receptor subunit (IL12Rb1) and
both are being examined in therapeutic trials for immune-
mediated diseases,9 we assessed how IL12 regulates these
outcomes. IL12 treatment enhanced intracellular bacterial
clearance to a similar degree as IL23 (Figure 1A). To ensure
that IL23 effects were mediated through interactions with
IL23R, we effectively reduced IL23R expression through
small interfering RNA (siRNA) (Figure 1B). We ensured that
IL12Rb1 and IL12Rb2 expression was not reduced under
these conditions (Figure 1C and D). As expected with IL23R
knockdown, IL23 treatment no longer effectively enhanced E
faecalis clearance (Figure 1F). Moreover, intracellular levels
of E faecalis were higher in IL23R siRNA- compared with
scrambled siRNA-transfected non–IL23-treated MDMs,
thereby showing a role for autocrine/paracrine IL23 in
promoting bacterial clearance in macrophages at baseline
(Figure 1F). Similar outcomes were observed with AIEC and
S Typhimurium (Figure 1F). Moreover, similar results were
observed when effectively and selectively knocking down
IL12Rb2 (Figure 1B–F). We ensured that IL12Rb1 and
IL23R expression were not reduced under these conditions
(Figure 1C and E). Cell survival was unchanged with both
IL23R and IL12Rb2 knockdown (Figure 1G), and cells
remained responsive to stimulation with Dectin-1
(Figure 1H). We confirmed similar outcomes when using
neutralizing antibodies to either IL23 or IL12 (Figure 1I).
Taken together, IL23 promotes intracellular bacterial clear-
ance in human MDMs.
Autocrine/Paracrine IL23 Promotes Pyruvate
Dehydrogenase Kinase 1-Dependent Bacterial
Uptake Through Janus Kinase 2/TYK2-Mediated
Pathways in MDMs

We next sought to address mechanisms for the IL23-
induced clearance of intracellular bacteria in macrophages.
The initial step in bacterial clearance involves bacterial
uptake, such that we first assessed if IL23 regulates bacte-
rial uptake and if the lower levels of intracellular bacteria
after prolonged IL23 treatment were the result of lower
levels of bacterial uptake. In fact, relative to untreated
MDMs, prolonged IL23 treatment (48 h) resulted in higher
levels of S Typhimurium–green fluorescent protein (GFP)
uptake (Figure 2A). We observed similar outcomes when
examining fluorophore-labeled E coli bioparticles
(Figure 2A). Outcomes were similar when examining
chronic treatment with IL12 (Figure 2B). We ensured that
the bacterial uptake occurred at physiological temperatures
(data not shown). Therefore, the reduced intracellular bac-
teria observed after prolonged IL23 treatment is, in fact,
occurring in the context of higher levels of bacterial uptake
under these IL23-treated conditions.

We next assessed mechanisms through which IL23
promotes bacterial uptake. The phosphatidylinositol 3-
kinase (PI3K) pathway contributes to phagocytosis,25 such
that we asked if IL23 regulation of PI3K might be a mech-
anism through which IL23 regulates bacterial uptake. We
assessed pyruvate dehydrogenase kinase 1 (PDK1) activa-
tion as a measure of PI3K pathway activation. IL23 treat-
ment of human MDMs led to PDK1 activation within 15
minutes as assessed by both flow cytometry (Figure 2C) and
Western blot (Figure 2D). Results were comparable when
examining IL12 treatment (Figure 2E–F). Importantly,
effective PDK1 knockdown, as assessed by both flow
cytometry and Western blot (Figure 2G–H), led to a slight
reduction in the low levels of bacterial uptake in untreated
macrophages, but a much greater reduction in the higher
levels of live bacterial and bacterial particle uptake after
prolonged IL23 treatment (Figure 2I). Similar results were
observed for IL12 treatment (Figure 2J). We confirmed the
essential role of the PDK1 pathway through an independent
approach using a PDK1 pharmacologic inhibitor
(Figure 2K–N). Cell viability was unimpaired with both
PDK1 knockdown and PDK1 inhibition (Figure 2O).

IL23 activates the Janus kinase (JAK)–signal transducer
and activator of transcription (STAT) pathway,11–13,26 and
we previously found that JAK2 and Tyrosine kinase 2
(TYK2) were required for optimal levels of IL23-induced
cytokines in human MDMs.14 JAK2 and TYK2 activation
were induced in human MDMs to similar levels upon
treatment with either IL23 or IL12 (Figure 3A). We effec-
tively knocked down JAK2 and TYK2 through siRNA
(Figure 3B) to assess if these pathways were required for
IL23-induced PDK1 activation. JAK2 and TYK2 each were
required for optimal IL23-induced PDK1 activation, with
some cooperation for this activation (Figure 3C). Moreover,
JAK2 and TYK2 were required for IL23-enhanced live
bacterial and bacterial particle uptake (Figure 3D).
Importantly, complementing PDK1 activation (Figure 3E)
upon IL23 treatment of JAK2/TYK2-deficient MDMs was
able to restore IL23-enhanced bacterial uptake (Figure 3F).
Similar results were observed for each of these measures
upon IL12 treatment of MDMs (Figure 3G–J). Cell viability
was not affected by either signaling molecule knockdown
or PDK1 agonist treatments (Figure 3K). Taken together,
these data show that IL23 activates the PDK1 pathway in a
JAK2/TYK2-dependent manner in human MDMs, and that
this, in turn, promotes bacterial uptake.
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Figure 1. IL23 promotes clearance of intracellular bacteria. (A) MDMs (n ¼ 4 for E faecalis; n ¼ 8 from 2 independent ex-
periments for AIEC and S Typhimurium) were treated with 10 ng/mL IL23 or 10 ng/mL IL12 for 48 hours. Intracellular bacterial
clearance as per the Materials and Methods section with colony-forming units (CFU). (B–H) Human MDMs were transfected with
scrambled, IL23R, or IL12Rb2 siRNA. (B–E) Representative flow cytometry with mean fluorescence intensity (MFI) values and
summary graphs for (B) IL23R or IL12Rb2 (n ¼ 6), (C) IL12Rb1 (n ¼ 6), (D) IL12Rb2, or (E) IL23R surface expression (n ¼ 14 from 3
independent experiments). (F) MDMs (n ¼ 8) then were treated with 10 ng/mL IL23 or 10 ng/mL IL12 for 48 hours. Intracellular
bacterial clearance (CFU). (G) Percentage of dead cells as assessed by annexin V staining. A total of 50-100 J/m2 UV-treated cells
served as a positive control (n ¼ 4). (H) Cells were treated with 100 mg/mL curdlan (cur) or 100 mg/mL dispersible whole glucan
particles (WGP) for 24 hours (n ¼ 4). IL10 secretion. (I) MDMs (n ¼ 8) were treated with neutralizing anti-IL23p19 or anti-IL12p35 for
1 hour before treatment with 10 ng/mL IL23 or 10 ng/mL IL12 for 48 hours. Intracellular bacterial clearance (CFU). Means þ SEM.
**P < .01, ***P < .001, †P < 1 � 10-4, and ††P <1 � 10-5. scr, scrambled; Tx, treatment.
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Figure 2. IL23 promotes PDK1-dependent bacterial uptake in human macrophages. (A and B) Human MDMs were treated
with (A) 10 ng/mL IL23 or (B) 10 ng/mL IL12 and then co-cultured with S Typhimurium–GFP (n ¼ 12 from 3 independent experiments,
similar results in an additional 4 donors) or E coli–fluorescein isothiocyanate (FITC) bioparticles (n¼ 8 from 2 independent experiments,
similar results in an additional 4 donors) and uptake was assessed 20 minutes later by flow cytometry (mean fluorescence intensity
[MFI]). (C–F) MDMs were treated with (C and D) 10 ng/mL IL23 or (E and F) 10 ng/mL IL12 for 15 minutes and PDK1 activation was
assessed by (C and E) flow cytometry (n ¼ 12 from 3 independent experiments, similar results in an additional 12 donors) with
representative histograms (MFI) and summary of fold phospho-PDK1, or (D and F) Western blot. Glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH) is shown as a loading control. (G–J) MDMs were transfected with scrambled or PDK1 siRNA. PDK1 expression
was assessed by (G) flow cytometry with representative histograms and summary graph of MFI (n ¼ 4), or (H) Western blot. (I and J)
MDMs (n¼ 10 from 2 independent experiments, similar results in an additional 4 donors) then were treated with (I) 10 ng/mL IL23 or (J)
10 ng/mL IL12 for 48 hours and uptake of S Typhimurium–GFP or E coli–FITC bioparticles was assessed (MFI). (K–N) MDMs were
treated with a PDK1 inhibitor (GSK 2334470) for 1 hour before (K and M) IL23 or (L and N) IL12 treatment. (K and L) Fold phospho-
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particles (MFI) was assessed (n ¼ 10 from 2 independent experiments, similar results in an additional 4 donors). (O) Cell death per
annexin Vþ cells in MDMs either transfected with scrambled or PDK1 siRNA or pretreated for 1 hour with GSK 2334470 before
treatment with IL23 or IL12 for 48 hours (n ¼ 4). A total of 50–100 J/m2 UV-treated cells served as a positive control. Means þ SEM.
**P < .01, ***P < .001, †P <1 � 10-4, and ††P < 1 � 10-5. inhib, inhibitor; NT, no treatment; scr, scrambled; Tx, treatment.
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IL23 Promotes Earlier and More Effective
Induction of Intracellular Bacterial Clearance in
MDMs

Given that prolonged IL23 treatment of human MDMs
leads to enhanced bacterial uptake at early times (Figure 2)
but reduced intracellular bacteria at later times (Figure 1),
we examined the levels of S Typhimurium–GFP in MDMs
over time to integrate the consequences of bacterial uptake,
bacterial growth, and bacterial clearance under these con-
ditions. Cells were treated with gentamicin 20 minutes after
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S Typhimurium co-culture, and as expected based on
Figure 2, the levels of S Typhimurium–GFP in IL23-treated
MDMs were higher at this time owing to the enhanced
ability of the cells to take up bacteria relative to untreated
MDMs (Figure 4). The slope of the line was similar within
untreated and IL23-treated MDMs over the next 30 minutes
(Figure 4). However, after 30 minutes, IL23-treated mac-
rophages began to reduce intracellular bacteria whereas
levels of bacteria in untreated MDMs continued to increase,
such that by 100 minutes levels of intracellular bacteria in
IL23-treated MDMs were less than that in untreated MDMs
(Figure 4). The kinetics of regulation were similar with IL12
treatment (Figure 4). Taken together, IL23 promotes
increased bacterial uptake and then induces a more rapid
and effective clearance of these intracellular bacteria in
human MDMs.
IL23 Promotes Nicotinamide Adenine
Dinucleotide Phosphate Oxidase and NOS2
Induction in MDMs

To assess mechanisms mediating IL23-enhanced intra-
cellular bacterial clearance, we considered antimicrobial
pathways that IL23 might be promoting. We first assessed
reactive oxygen species (ROS) given the important role
that ROS production plays in mediating bacterial clear-
ance.15 IL23 induced ROS production in MDMs (Figure 5A).
Polymorphisms in various genes in the nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase complex
required for ROS production are associated with an
increased risk for both the common form of IBD3 and early
onset IBD.27 IL23 induced the NADPH oxidase members
p40phox, p47phox, and p67phox as assessed by both flow
cytometry (Figure 5B) and Western blot (Figure 5C). Upon
effective knockdown of these NADPH oxidase members as
assessed by both flow cytometry and Western blot
(min)
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Figure 4. IL23 promotes early and effective intracellular
bacterial clearance. MDMs (n ¼ 6, similar results in
an additional 4 donors) were left untreated or treated with
10 ng/mL IL23 or IL12 for 48 hours. Cells then were co-
cultured with S Typhimurium–GFP, gentamicin was added
20 minutes later, and intracellular S Typhimurium was
assessed over the next 2 hours by flow cytometry. MFI þ
SEM. ***P < .001 and †P <1 � 10-4. MFI, mean fluorescence
intensity; NT, no treatment.
(Figure 5D and E), the low levels of ROS production in
MDMs at baseline (Figure 5F) and bacterial clearance in
untreated MDMs under the conditions assessed
(Figure 5G) were not changed. However, NADPH oxidase
members contributed to IL23-induced ROS production
(Figure 5H) and bacterial clearance (Figure 5I). We
observed similar regulation upon treatment of MDMs with
IL12 (Figure 5A–C and H–I). Cell viability was intact under
these knockdown conditions (Figure 5J).

Reactive nitrogen species (RNS) also can contribute to
bacterial clearance, and a combination of ROS and RNS
pathways is central in maintaining homeostasis in the in-
testinal mucosa.28 IL23 treatment induced nitric oxide
synthase 2 (NOS2) expression as assessed by both flow
cytometry (Figure 6A) and Western blot (Figure 6B). Upon
effective knockdown of NOS2 as assessed by both flow
cytometry and Western blot (Figure 6C and D), bacterial
clearance in untreated macrophages under these conditions
was not changed (Figure 6E). However, NOS2 was required
for IL23-induced bacterial clearance (Figure 6F). Similar
regulation was observed upon treatment of MDMs with IL12
(Figure 6A–F). Cell viability was intact under these knock-
down conditions (Figure 6G). Taken together, IL23 induces
ROS and RNS pathways, which, in turn, are required for
optimal IL23-induced bacterial clearance.
IL23 Promotes Autophagy in MDMs
Autophagy is another key bacterial clearance mecha-

nism induced with PRR stimulation,29 and polymorphisms
in the autophagy-associated gene ATG16L1 confer altered
susceptibility to Crohn’s disease.3 IL23 induced expression
of the autophagy marker light chain 3-II (LC3II) as
assessed by both flow cytometry (Figure 7A) and Western
blot (Figure 7B). We therefore assessed if IL23 promotes
induction of autophagy-associated proteins, including
ATG5 and ATG16L1, and found that this was the case as
assessed by both flow cytometry (Figure 7C) and Western
blot (Figure 7D). Consistent with the importance of lyso-
somal function in autophagy and in contributing to bacte-
rial clearance, IL23 treatment activated cathepsin D
(Figure 7E). Upon effective ATG5 and ATG16L1 knockdown
(Figure 7F and G), the low levels of LC3II expression in
MDMs at baseline (Figure 7H) and bacterial clearance
(Figure 7I) in untreated macrophages under the conditions
assessed were not significantly different. However, ATG5
and ATG16L1 were required for optimal levels of IL23-
induced autophagy (Figure 7J) and intracellular bacterial
clearance (Figure 7K). We observed similar regulation by
IL12 (Figure 7). Cell viability was intact under these
knockdown conditions (Figure 7L). Taken together, IL23
promotes induction of autophagy pathways, which, in turn,
mediate IL23-induced bacterial clearance.
ROS, RNS, and Autophagy Cooperate to
Mediate IL23-Induced Bacterial Clearance

Reduction of each ROS, RNS, and autophagy pathways
partially reversed the enhanced bacterial clearance
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Figure 5. IL23 promotes induction of ROS pathways in human macrophages. (A–C) MDMs were treated with 10 ng/mL
IL23 or IL12 for 48 hours. (A) Representative flow cytometry for ROS with mean fluorescence intensity (MFI) values and
summary graph with MFI (n ¼ 8 from 2 independent experiments). (B and C) NADPH oxidase members were assessed by (B)
flow cytometry (MFI) (n ¼ 4, similar results in an additional 6 donors) or (C) Western blot. (D–J) MDMs were transfected with
scrambled or the indicated siRNAs, alone or in combination (comb). (D and E) Effective knockdown by (D) flow cytometry (n ¼
4) or (E) Western blot. (F) ROS production (n ¼ 12 from 2 independent experiments). (G) Intracellular bacterial clearance (CFU)
(n ¼ 12 from 2 independent experiments). (H and I) Cells then were treated with 10 ng/mL IL23 or IL12 for 48 hours (n ¼ 10
from 2 independent experiments). (H) ROS production (MFI) or (I) intracellular clearance of E faecalis or AIEC (CFU).
(J) Cell death per annexin Vþ cells (n ¼ 4). A total of 50–100 J/m2 UV-treated cells served as a positive control. Means þ SEM.
**P < .01, ***P < .001, †P <1 � 10-4, and ††P <1 � 10-5. NT, no treatment; scr, scrambled; Tx, treatment.
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observed with chronic IL23 treatment. We therefore
assessed if these pathways might cooperate to mediate
IL23-induced bacterial clearance through knockdown of
the molecule in each pathway that most contributed to
IL23-induced bacterial clearance, specifically p47phox
(Figure 5I), NOS2 (Figure 6F), and ATG5 (Figure 7K).
Relative to knockdown of each molecule alone, we
observed a greater impairment of IL23-induced clearance
of E faecalis, AIEC, and S Typhimurium when these mol-
ecules were knocked down in combination as assessed by
comparison of the combined knockdown with p47phox
knockdown as the condition that most contributed to
IL23-induced bacterial clearance (Figure 8A). We
observed a similar cooperation between these pathways
for IL12-induced bacterial clearance (Figure 8B). There-
fore, the ROS, RNS, and autophagy pathways cooperate to
mediate IL23-induced bacterial clearance in human
macrophages.
The JAK-STAT Pathway Is Required for IL23-
Mediated Induction of Antimicrobial Pathways

We next sought to assess the role of the JAK-STAT path-
ways in mediating the IL23-dependent intracellular bacterial
clearance and antimicrobial mechanisms identified. We
therefore evaluated the role of the JAK family members
JAK2 and TYK2 given our previously identified role for
these members in IL23-induced cytokines in human
MDMs.14 We further evaluated the role of STAT3 because
we previously had identified it to be the STAT family
member that was most activated and played the most
contributory role to IL23-induced cytokines in human
MDMs.14 We confirmed activation of STAT3 in MDMs
upon both IL23 and IL12 treatment (Figure 9A). With
effective knockdown (Figure 9B) and intact cell viability
(Figure 9C), we found that each JAK2, TYK2, and STAT3
was required for optimal IL23-induced ROS and NADPH
oxidase members (Figure 9D), NOS2 (Figure 9E), and
autophagy and autophagy-associated molecules
(Figure 9F) in MDMs. Further, each of these JAK-STAT
molecules were required for optimal IL23-induced intra-
cellular bacterial clearance and they cooperated in this
clearance (Figure 9J). We identified similar contributions
for these JAK-STAT family members in IL12-induced
antimicrobial pathways and intracellular bacterial clear-
ance (Figure 9G–J). Taken together, these data show that
JAK2, TYK2, and STAT3 are required for induction of
IL23-induced antimicrobial pathways, and that they
cooperate to mediate optimal IL23-induced intracellular
bacterial clearance in human macrophages.
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IL23 and IL12 Appropriately Activate Their
Respective Receptors

Given the shared cytokine and receptor subunits be-
tween IL23 and IL12, we wished to ensure that the IL23
and IL12 cytokines used for treatment do not cross-react
with the receptor responding to the other cytokine to
then initiate the downstream pathways described earlier.
We previously described that IL23 induces secretion of a
range of cytokines in human myeloid cells.14 IL23 also
induces IL12 secretion (Figure 10A). Moreover, IL23-
induced IL12 feeds back in an autocrine/paracrine
manner to promote additional cytokines as early as 4
hours (Figure 10A). We similarly found that IL12 induces
IL23 and that this autocrine/paracrine IL23 induces the
secretion of a range of additional cytokines over time
(Figure 10B). We therefore focused on the early signaling
pathways that occur before the autocrine/paracrine ef-
fects of these respective cytokines. Upon treating MDMs
with IL23 and blocking with IL23 antibodies, PDK1, JAK2,
TYK2, and STAT3 activation was reduced (Figure 10C),
whereas IL12-induced activation of each of these signaling
pathways remained intact (Figure 10D). Further, upon
treating MDMs with IL12 and blocking with IL12 anti-
bodies, PDK1, JAK2, TYK2, and STAT3 activation was
reduced (Figure 10D), whereas IL23-induced activation of
each of these signaling pathways remained intact
(Figure 10C). Therefore, the IL23 and IL12 cytokines used
do not cross-react with the receptors responding to the
other cytokine.

IL23 Promotes an Inflammatory Macrophage
Phenotype

Macrophages can show a spectrum of phenotypic fea-
tures that can be influenced by the stimulation conditions.30

Because we had identified that IL23 can induce a range of
inflammatory cytokines and antimicrobial pathways in hu-
man macrophages, we assessed the phenotype of IL23-
treated macrophages compared with more commonly
examined lipopolysaccharide (LPS)/IFNg-treated (M1 in-
flammatory) macrophages.30 We also examined IL4-treated
(M2) macrophages as a more anti-inflammatory phenotype.
Inflammatory cytokines were increased 24 hours after IL23
treatment of MDMs, with levels in some cases reaching
those observed in LPS/IFNg-treated MDMs (Figure 11A).
However, in contrast to LPS/IFNg-treated MDMs, anti-
inflammatory cytokines also were increased after IL23
treatment (Figure 11A). Because we were examining anti-
microbial pathways in MDMs after 48 hours of IL23 treat-
ment, we also examined cytokine secretion at this later time
point. Inflammatory cytokines were somewhat lower than at
24 hours, whereas transforming growth factor b levels were
increased and approaching levels observed in IL4-treated
macrophages (Figure 11A). IL23-induced costimulatory
molecules increased as was observed in LPS/IFNg-treated
MDMs (Figure 11B). IL23-treated MDMs also showed an
increase in various transcripts observed in LPS/IFNg-
treated MDMs, although they generally were not increased
to the same degree (Figure 12A). In contrast, IL23-treated
MDMs only up-regulated a subset of the transcripts
observed in IL4-treated MDMs (eg, CD36, MRC1, TGFB, IL10)
(Figure 12B). IL12-treated MDMs showed a similar pheno-
type to IL23-treated MDMs (Figures 11 and 12). Therefore,
IL23-treated macrophages have a mixed phenotype, being
generally similar to inflammatory, LPS/IFNg-treated mac-
rophages, but also showing select anti-inflammatory
features.

Autocrine/Paracrine IL23 Is Required for Optimal
Nucleotide-Binding Oligomerization Domain
2–Induced Antimicrobial Pathways

Autocrine cytokines can regulate myeloid cell out-
comes during a microbial encounter and we previously
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found that autocrine/paracrine IL23 is required for PRR-
induced cytokines.14 We therefore sought to assess if
autocrine/paracrine IL23 promotes PRR-enhanced intra-
cellular bacterial clearance in human MDMs. We31 and
others32,33 have found that chronic PRR stimulation en-
hances antimicrobial clearance pathways and these con-
ditions simulate the ongoing microbial exposure observed
in the intestine. We examined the PRR nucleotide-binding
oligomerization domain (NOD)2 given its association with
Crohn’s disease34; muramyl dipeptide is the minimal
ligand that stimulates NOD2. We effectively reduced
IL23R expression through siRNA (Figure 1B) and then
cultured the cells with E faecalis. Intracellular levels of E
faecalis were higher in IL23R siRNA-transfected MDMs at
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baseline and particularly after chronic NOD2 stimulation
(48 h) compared with scrambled siRNA-treated MDMs
(Figure 13A). We observed similar results with AIEC and
S Typhimurium infection (Figure 13A). Neutralizing IL23
antibodies showed similar outcomes (Figure 13B). Finally,
effective knockdown of IL12Rb2 or neutralizing IL12 an-
tibodies showed similar outcomes (Figure 13).

Given that autocrine/paracrine IL23 was required for
intracellular bacterial clearance with chronic NOD2 treat-
ment, we sought to determine if, with prolonged NOD2
stimulation, autocrine/paracrine IL23 contributed to each
of the antimicrobial mechanisms identified when cells
were treated directly with IL23. Autocrine/paracrine IL23
promoted the enhanced bacterial uptake and PDK1 acti-
vation (Figure 14A and B), ROS production and NADPH
oxidase complex induction (Figure 14C and D), NOS2 in-
duction (Figure 14E), and autophagy and lysosomal acidi-
fication induction (Figure 14F–H) observed with chronic
NOD2 stimulation. Autocrine/paracrine IL12 promoted
these NOD2-induced antimicrobial pathways to a similar
degree (Figure 14).

To clearly establish the contribution of the identified
IL23-induced antimicrobial pathways to NOD2-mediated
bacterial clearance, we sought to complement each of
the respective pathways in IL23R-deficient MDMs in
cells undergoing prolonged NOD2 stimulation. We
therefore selected p47phox (Figure 5I), NOS2
(Figure 6F), and ATG5 (Figure 7K) as the ROS, RNS, and
autophagy pathway molecules, respectively, that
contributed most strongly to IL23-induced intracellular
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bacterial clearance. Transfection of p47phox into IL23R-
deficient MDMs to the levels expressed in chronic
NOD2-stimulated cells (Figure 15A) restored ROS pro-
duction (Figure 15B). We similarly restored NOS2
expression in IL23R-deficient MDMs to levels observed
in chronic NOD2-stimulated cells (Figure 15C). More-
over, we expressed ATG5 in IL23R-deficient MDMs to
levels observed in chronic NOD2-stimulated cells
(Figure 15D), which in turn resulted in restoration of
LC3II induction (Figure 15E). Complementation of each
of these pathways alone, and particularly in combina-
tion, restored intracellular clearance of E faecalis, AIEC,
and S Typhimurium in chronic NOD2-stimulated, IL23R-
deficient MDMs (Figure 15F). We observed similar
restoration in IL12Rb2-deficient MDMs (Figure 15).
Taken together, autocrine/paracrine IL23 is required
for NOD2-induced ROS, RNS, and autophagy pathways,
which, in turn, promote bacterial clearance.
IL23R–Q381–Transfected MDMs Do Not
Increase IL23-Dependent Antimicrobial
Pathways to the Same Degree
IL23R–R381–Transfected MDMs

We next assessed how the IBD-protective IL23R–R381Q
variant regulates the IL23-induced antimicrobial pathways we
had identified in MDMs. We transfected IL23R R381 or Q381
into MDMs from IL23R–R381 carriers (Figure 16A). Trans-
fection of IL23R R381 also provides a complementary
approach to IL23R knockdown by examining the ability of
IL23R to enhance outcomes in MDMs. We confirmed that with
IL23 treatment, IL23R–R381–transfected MDMs showed
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increased JAK2, TYK2, and STAT3 activation (Figure 16B).
Furthermore, upon IL23 treatment, IL23R–R381–transfected
MDMs showed increased bacterial and bacterial particle up-
take and PDK1 activation (Figure 16C and D), ROS production,
and NADPH oxidase member induction (Figure 16E and F),
NOS2 induction (Figure 16G), LC3II and autophagy molecule
induction (Figure 16H and I), and intracellular bacterial
clearance (Figure 16J). Importantly, relative to
IL23R–R381–transfected cells, IL23R–Q381–transfected
MDMs showed a decrease in each of these outcomes
(Figure 16). In fact, IL23R–Q381–transfected MDMs showed
a reduction in these outcomes relative to empty
vector–transfected MDMs (expressing endogenous IL23R
R381) (Figure 16), thereby suggesting a possible dominant-
negative effect. Furthermore, IL23R R381 enhanced and
IL23R Q381 reduced each of these antimicrobial outcomes
upon chronic NOD2 stimulation of IL23R-transfected MDMs
(Figure 17). Therefore, the IL23R–Q381 IBD-protective variant
results in decreased IL23-induced and NOD2-induced antimi-
crobial pathways and intracellular bacterial clearance in MDMs.
MDMs From IBD-Protective IL23R R381/Q381
Carriers Show Reduced Antimicrobial Responses
Compared With IL23R–R381/R381 Carriers

We next assessed if human MDMs from IBD-protective
IL23R R381/Q381 (rs11209026 GA) carriers show differen-
tial antimicrobial responses relative to IL23R R381/R381
(rs11209026 GG) carrier cells. Because AA homozygote fre-
quency is low (1.6 per 100 individuals per database of single
nucleotide polymorphisms), we used cells from GG (wild-type)
homozygotes and GA heterozygotes. GA heterozygotes show
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reduced signaling and functional responses in T-cell stud-
ies,11–13 and recently in macrophage studies examining in-
flammatory outcomes.14 We previously found that IL23R
increased at the cell surface within 15 minutes of MDM stim-
ulation and that this increase was reduced in IL23R–R381/
Q381 carriers,14 which we confirmed here (Figure 18A).
Consistent with the transfection studies, upon IL23 treatment
we observed reduced bacterial uptake (Figure 18B) and PDK1
activation (Figure 18C), decreased induction of ROS and
p47phox (Figure 18D), NOS2 (Figure 18E), LC3II and ATG5
(Figure 18F), and reduced intracellular bacterial clearance
(Figure 18G). We observed a similar reduction in these anti-
microbial mechanisms and outcomes upon chronic NOD2
stimulation of IL23R–R381/Q381 MDMs compared with
IL23R–R381/R381 MDMs (Figure 18H–N). Therefore, MDMs
from IBD-protective IL23R–R381/Q381 carriers show a
reduction in antimicrobial mechanisms and intracellular bac-
terial clearance relative to IL23R–R381/R381 carriers.

Discussion
In this study we identify a critical role for autocrine/

paracrine IL23 in promoting PRR-induced bacterial
clearance in human macrophages, define mechanisms
regulating these outcomes, and elucidate how the
IL23R–R381Q IBD-protective variant modulates these anti-
microbial pathways (Figure 19). We found that each of these
IL23-dependent antimicrobial pathways cooperated for
optimal bacterial clearance. We further found that IL23R-
initiated JAK2, TYK2, STAT3, and PDK1 signaling pathways
are required for the antimicrobial mechanisms identified.
We further uncovered that IL23 and IL12 showed similar
regulation of these pathways in human macrophages. These
studies highlight that the susceptibility to infections with
therapeutic blockade of the IL23/IL12 pathways16 may be
owing in part to the essential role for IL23 in mediating
antimicrobial functions in macrophages. They further high-
light that carriers of the IL23R–Q381 variant that are rela-
tively protected from IBD and other immune-mediated
diseases may be at increased risk for bacterial infection.

Although the IL23 pathway is known to protect from
infection through inducing antimicrobial mechanisms in
Th17 cells and innate lymphoid cells, the ability of IL23 to
promote antimicrobial mechanisms in macrophages has
not been defined previously. Interestingly, although we



S
. T

yp
hi

m
-G

FP
 (M

FI
)

siRNA scr IL23R
-MDP + +-

*

***

A B

***
R

O
S 

(M
FI

)

R
O

S 
(M

FI
)

†

C D

p4
7p

ho
x 

(M
FI

)

†***

p4
0p

ho
x 

(M
FI

)

***

p6
7p

ho
x 

(M
FI

)

******

E

N
O

S2
 (M

FI
)

*** ***

F
LC

3I
I (

M
FI

)

† †

G

AT
G

16
L1

 (M
FI

)

******

AT
G

5 
(M

FI
)

******

H

*

†

S
. T

yp
hi

m
-G

FP
 (M

FI
)

UPTAKE

Fo
ld

 �
�in

C
at

he
ps

in
 D

 a
ct

iv
ity

Fo
ld

 �
� in

C
at

he
ps

in
 D

 a
ct

iv
ity

Fo
ld

 �
�p

-P
D

K1

MDP

siRNA scr IL2
3R

IL1
2R
β2

***

0

20

40

60

80

0

25

50

75

scr IL12Rβ2
- + +-

0.0

2.5

5.0

7.5

0

50

100

150

0

50

100

150

siRNA scr IL23R
-MDP + +-

scr IL12Rβ2
- + +-

0

10

20

30

0

25

50

0

20

40

60

-MDP

siRNA scr IL2
3R

IL1
2R
β2

+

scr IL2
3R

IL1
2R
β2 scr IL2

3R

IL1
2R
β2

0

10

20

30

0

40

80

0

20

40

0

10

20

30

-MDP

siRNA scr IL2
3R

IL1
2R
β2

+ -MDP

siRNA scr IL2
3R

IL1
2R
β2

+ -MDP

siRNA scr IL2
3R

IL1
2R
β2

+ -

scr IL2
3R

IL1
2R
β2

+

0

2

4

6

0

2

4

6

siRNA scr IL23R
-MDP + +-

† ††

scr IL12Rβ2
- + +-

- +

- + - +

***

***

Figure 14. IL23 is
required for optimal in-
duction of antimicrobial
pathways upon chronic
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man macrophages.
MDMs were transfected
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muramyl dipeptide (MDP).
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previously found that autocrine/paracrine IL23was required
for optimal inflammatory responses upon stimulation of a
broad range of PRRs in human macrophages, responses
downstream of Dectin-1, a PRR involved in fungal response
pathways, remained intact.14 This raises the possibility that
IL23 pathway contributions to control of fungal infections
are independent of its role in macrophages. We found that
IL23 induces ATG16L1 expression and autophagy. ATG16L1
loss-of-function variants impair bacterial clearance,15 which
also can lead to altered ileal bacterial composition.35 With
respect to the antibacterial pathways examined in the cur-
rent study, IL23 and IL12 induce these identified pathways
to similar levels. This provides a basis for one means by
which IL23 may be compensating to clear microbes in
studies in IL12-deficient mice22 or in patients with IL12
pathway genetic variants conferring infectious risk.21 In fact,
the focus for IL12-mediated antimicrobial mechanisms also
has been predominantly on it role in T cells and NK cells,17
with IL12 antimicrobial mechanisms in macrophages
incompletely defined. Reports have shown roles for IL12 in
promoting clearance in macrophages of bacteria, such as
mycobacteria, through autocrine/paracrine IFNg-induced
RNS production.18 IL12 effects in macrophages frequently
are best observed in cooperationwith additional stimuli. For
example, IL12 and IL18 cooperate to induce cathelicidin and
autophagy in human MDMs.36 In general, cytokines both
amplify the secretion of additional cytokines and cooperate
with each other for downstreammechanisms. We show that
both IL23 and IL12 can promote the secretion of the other
cytokine, as well as the secretion of additional inflammatory
cytokines such as tumor necrosis factor (TNF) and IL1b. TNF
treatment also can promote the secretion of IL12/IL23p40
from intestinal myeloid cells.37 Such cytokine interactions
are highlighted further with anti-TNF therapy, in which
reduced levels of IL12p40 are observed,38 such that
improved outcomes in patients likely also reflect the
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reduction in IL12/IL23p40 levels. Overall, the current study
highlights a previously undefined role for IL23 in up-
regulating antimicrobial mechanisms in macrophages, and
also expands the roles and mechanisms for IL12-mediated
antimicrobial responses in human macrophages.
The immune system must effectively balance controlling
microbial infections with simultaneously regulating the
resulting inflammatory responses. Consistently, genetic
variants resulting in less microbial-induced inflammation
can reduce the risk of immune-mediated diseases but
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simultaneously be detrimental to optimal clearance of in-
fectious challenges. The reduced inflammatory responses
observed in IL23R Q381 carriers are associated with pro-
tection from multiple immune-mediated diseases.3,4,39 This
would imply that the loss-of-function observed with the
common IL23R–R381Q variant may lead to a disadvantage
in select infectious diseases, including through its now
identified role in promoting antimicrobial pathways in mac-
rophages. One report identified that IL23R–R381Q carriers
showed an increased severity of pulmonary M tuberculosis,40
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an infection wherein macrophages play an important role.
Whether common genetic variants confer a slight increase in
susceptibility to transient bacterial infections can be difficult
to assess and track,41 and therefore is not as well studied as
how these variants affect chronic immune-mediated diseases
or chronic infectious diseases (eg, M tuberculosis). In contrast
to data with the common IL23R genetic variants, carriers with
dramatic loss-of-function, rare variants in the IL23/Th17
pathway, show an increased risk of both bacterial and fungal
infections.16 Our findings identify critical functions for IL23
in promoting mechanisms leading to bacterial clearance in
human macrophages, and consequences for the IBD-
protective IL23R–R381Q variant in mediating these func-
tions. These findings advance our understanding of the roles
for IL23R in balancing immune- and microbial-mediated
diseases and indicate that the macrophage-intrinsic roles
for IL23R may contribute to the risk for microbial infections
when targeting the IL23 pathway therapeutically.

Materials and Methods
Patient Recruitment and Genotyping

Human cell studies in healthy donors were conducted as
approved by the Yale University Institutional Review Board.
Genotyping was conducted by TaqMan (Life Technologies,
Grand Island, NY).

Primary Myeloid Cell Culture
Human peripheral blood mononuclear cells were iso-

lated from peripheral blood using Ficoll-Paque (Dharmacon,
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Lafayette, CO). Monocytes were purified from peripheral
blood mononuclear cells by adhesion and tested for purity
(>98% by CD11c expression). Monocyte differentiation was
conducted in 10 ng/mL macrophage colony-stimulating
factor (Shenandoah Biotechnology Systems, Warwick, PA)
for 7 days to generate MDMs.

MDM Stimulation
MDMs were treated with 10 ng/mL recombinant human

IL23 (200-23) or IL12p70 (200-12) (Peprotech, Rocky Hill, NJ)
or 100 mg/mL muramyl dipeptide (Bachem, Torrance, CA) for
48 hours. In some cases, cells were given neutralizing anti-
IL23p19 (4 mg; HNU2319) or anti-IL12p35 (4 mg; BT21)
antibody (eBioscience, San Diego, CA) for 1 hour before
treatment. In other cases, MDMs were treated with 100 ng/mL
LPS (MilliporeSigma, Burlington, MA) and 20 ng/mL IFNg
(R&D Systems, Minneapolis, MN) (M1 differentiation) or 20
ng/mL IL4 (R&D Systems) (M2 differentiation) for 24 hours.

Transfection of siRNAs and Vector Constructs
A total of 100 nmol/L scrambled or ON-TARGETplus

SMARTpool siRNA against IL23R, IL12Rb1, IL12Rb2,
PDK1, p40phox, p47phox, p67phox, NOS2, ATG5, ATG16L1,
JAK2, TYK2, or STAT3 (Dharmacon, Lafayette, CO) (4 pooled
siRNAs for each gene), or 2.0-mg vectors expressing
p47phox (generous gift from C. DerMardirossian42), NOS2
(generous gift from T. Eissa43), ATG5 (Addgene plasmid
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Figure 19. Model of IL23 contributions to antimicrobial
pathways in human macrophages. IL23 treatment of hu-
man macrophages activates the PDK1 pathway, which leads
to bacterial uptake, and the JAK2, TYK2, and STAT3 path-
ways, which lead to enhanced clearance of intracellular
bacteria through induction and cooperation of ROS (NADPH
oxidase subunits), RNS (NOS2), and autophagy (ATG5 and
ATG16L1) pathways. Upon PRR stimulation, autocrine/para-
crine IL23 promotes each of the IL23-dependent antimicro-
bial pathways identified. Compared with IL23R–R381/R381
carriers, MDMs from IBD-protective IL23R–R381/Q381 car-
riers show a reduced ability to induce each of these antimi-
crobial mechanisms. MDP, muramyl dipeptide.
24922; kindly deposited by T. Finkel44), or empty vector
(pcDNA3.0) were transfected into MDMs using Amaxa
Nucleofector technology (Lonza Bioscience, Walkersville,
MD). A total of 3 mg empty vector (pcDNA3.0), IL23R/R381,
or IL23R/Q381 (generated from IL23R [Origene, Rockville,
MD] through mutagenesis [QuikChange Lightning Kit; Agi-
lent Technologies]) were transfected into MDMs by Amaxa
Nucleofector technology.

Protein Expression Analysis
Protein expression was detected by Western blot or

intracellular flow cytometry after permeabilization using
antibodies to p-PDK1 (C49H2), PDK1, p-JAK2 (D4A8), JAK2
(D2E12), p-TYK2, TYK2, p-STAT3 (D3A7), STAT3 (D3Z2G),
ATG16L1 (D6D5), LC3B (Cell Signaling Technology, Dan-
vers, MA); or ATG5 (EPR1755[2]), NOS2, NCF4 (EP2142Y)
(Abcam, Cambridge, MA); or p40phox (D-8), p47phox (A-7),
p67phox (D-6), NOS2 (C-11) (Santa Cruz Biotechnology,
Santa Cruz, CA); or glyceraldehyde-3-phosphate dehydro-
genase (6C5) (MilliporeSigma). Cell surface flow cytometry
was assessed with fluorophore-labeled antibodies to IL23R
(218213), IL12Rb2 (305719) (R&D Systems), IL12Rb1
(2.4E6), CD80 (L307.4), CD86 (2331), CD40 (5C3), or
intercellular adhesion molecule-1 (HA58) (BD Biosciences,
San Jose, CA). Cytokine secretion was detected by enzyme-
linked immunosorbent assay with antibodies to TNF, IL1b,
IL6, IL10 (BD Biosciences), IL23p19 (eBio473P19; eBio-
science), transforming growth factor b or IL12p70 (7B12)
(Biolegend, San Diego, CA).

Messenger RNA Expression Analysis
After stimulation, total RNA was isolated, reverse-

transcribed, and quantitative polymerase chain reaction
was performed as in Hedl et al45 on the ABI Prism 7000
(ThermoFisher Scientific). Each sample was run in duplicate
and normalized to glyceraldehyde-3-phosphate dehydroge-
nase. Table 1 lists the primer sequences used.

Intracellular ROS Measurement
Intracellular ROS production was measured by flow

cytometry using 10 mmol/L cell-permeant 2’,7’-dichlor-
odihydrofluorescein diacetate (H2DCFDA; Invitrogen/Ther-
moFisher Scientific).

Lysosomal Function Detection
The lysosomal degradation function was measured by

detecting Cathepsin D activity (MilliporeSigma). Pepstatin A
(MilliporeSigma) was used as control for reduced protease
activity. The fluorometric readout was excitation/emission ¼
345/425 nm.

Bacterial Entry
Macrophages were co-cultured with 2.5 � 107/mL E

coli–fluorescein isothiocyanate bioparticles (ThermoFisher
Scientific) or 5 � 107 CFU/mL live bacteria S
Typhimurium–GFP (kindly provided by Jorge E. Galan) for
20minutes. Cell surface fluorescence was quenched with



Table 1.Primer Table

Gene Primer sequences

ATF3 5’-CTCTGCCTCGGAAGTGAGTG-3’
5’-GGATGGCAAACCTCAGCTCT-3’

CCL5 5’-CAGTCGTCTTTGTCACCCGA-3’
5’-CGGGTGGGGTAGGATAGTGA-3’

CCL18 5’-TGAAGCTGAATGCCTGAGGG-3’
5’-GGGCATAGCAGATGGGACTC-3’

CCL23 5’-ATGTAGGTGCCAAGCTCACC-3’
5’-CAGGTCCTCCCTGCAAGATG-3’

CCR7 5’-CTCCCCAGACAGGGGTAGT-3’
5’-TGGTTTCCCCAGGTCCATGA-3’

CD36 5’-ACGTATCATTTTGCCCGTTCT-3’
5’-GAAAAGGGAGACGGACCGAG-3’

COX2 5’-CAAATTGCTGGCAGGGTTGC-3’
5’-AGGGCTTCAGCATAAAGCGT-3’

INDO 5’-GGTCATGGAGATGTCCGTAA-3’
5’-ACCAATAGAGAGACCAGGAAGAA-3’

IL1B 5’-TCGCCAGTGAAATGATGGCT-3’
5’-TGGAAGGAGCACTTCATCTGTT-3’

IL10 5’-GGCGCTGTCATCGATTTCTTC-3’
5’-GCCACCCTGATGTCTCAGTT-3’

TGFB 5’-CCCAGCATCTGCAAAGCTC-3’
5’-GTCAATGTACAGCTGCCGCA-3’

TNF 5’-CCCCAGGGACCTCTCTCTAATC-3’
5’-GGTTTGCTACAACATGGGCTACA-3’

NOS2 5’-CGCAGAGAACTCAGCCTCAT-3’
5’-TGCCTTGAGAACTTCGGGAC-3’

MAF 5’-AGCAAGTCGACCACCTCAAG-3’
5’-CGAGTGGGCTCAGTTATGAAA-3’

MRC1 5’-CGATCCGACCCTTCCTTGAC-3’
5’-TGTCTCCGCTTCATGCCATT-3’

SLC38A6 5’-GCACTCTTTGGGTACCTCACT-3’
5’-TTTTCTGGCAGGGAAGTGGA-3’

SLC7A5 5’-CATCCTGCTGGGCTTCGT-3’
5’-AGTTTGGTGCCTTCAAATGAGAA-3’

TGM2 5’-GCCGAGGAGCTGGTCTTAG-3’
5’-GACTGTCTACACTGGCCTCG-3’

GAPDH 5’-GGCATGGACTGTGGTCATGAG-3’
5’-TGCACCACCAACTGCTTAGC-3’
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0.25mg/mL Trypan blue for 1 minute, and after 4% para-
formaldehyde fixation cells were analyzed by flow cytometry. In
some cases, a PDK1 agonist (10 mmol/L PS 48; Santa Cruz
Biotechnology) or a PDK1 inhibitor (3 mmol/L GSK 233470;
Tocris, Briston, United Kingdom) were added. To observe the
growth curve of S Typhimurium–GFP inside cells, after 20 mi-
nutes of incubation the cells were culturedwith Hank’s balanced
salt solution medium containing 20 mg/mL gentamicin for the
indicated time points.

Intracellular Bacterial Clearance
Human MDMs were infected with Enterococcus faecalis,

AIEC (strain LF82; a generous gift from Dr E. Mizoguchi), or
Salmonella enterica serovar Typhimurium at 10:1 multi-
plicity of infection for 20minutes, washed with phosphate-
buffered saline, and incubated in Hank’s balanced salt
solution medium with 20 mg/mL gentamicin for a total of 2
hours. Cells were washed, lysed with 1% Triton X-100
(Fisher Scientific), and plated on MacConkey or Luria-
Bertani agar.
Statistical Analyses
Measures generally were assessed in 4–6 donors at a

time, run in a side-by-side manner. Each donor is repre-
sented as a distinct symbol. Significance was assessed using
a 2-tailed Student t test. A Bonferroni–Holm correction was
used for multiple comparisons as appropriate. A P value less
than .05 was considered significant.
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