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Abstract: Multi-walled carbon nanotubes (MWCNTs) are promising nanoreinforcing materials
for cement-based composites due to their superior material properties. Dispersion of MWCNTs
is key for achieving the most effective way of enhancing efficiency, which is challenging in an
alkaline cementitious environment. In this study, humic acid (HA) was used to stabilize the
degree of dispersion of MWCNTs in an alkaline environment. The efficiency of HA in stabilizing
MWCNT dispersion in cement composites was characterized using an ultraviolet spectrophotometer.
The influences of HA on the workability and mechanical properties of ordinary Portland cement
(OPC) reinforced with MWCNTs were evaluated, and the results revealed that the addition of HA
can improve the stability of MWCNT dispersion in an alkaline environment. A concentration of
0.12 wt.% HA/S added to MWCNT suspensions was found to perform the best for improving the
dispersion of MWCNTs. The addition of HA results in a decreased workability of the OPC pastes
but has little influence on the strength performance. HA can affect the mechanical properties of OPC
reinforced with MWCNTs by influencing the dispersion degree of the MWCNTs. An optimum range
of HA (0.05–0.10 wt.%) is required to achieve the optimum reinforcing efficiency of MWCNTs.
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1. Introduction

Due to their high aspect ratio, low density [1,2], and superior mechanical [3], thermal [4],
and electrical properties [5], multi-walled carbon nanotubes (MWCNTs) have proven to be quite
efficient in reinforcing the material properties of organic polymers [6], biomaterials [7], and ceramics [8].
Recent studies [9–12] have shown that the superior material properties of MWCNTs make them
promising candidates to be mixed into ordinary Portland cement (OPC) for the purpose of strength
improvement and microstructure reinforcement. Zou et al. [13] added 0.075 wt.% of MWCNTs into
OPC pastes and improved the flexural strength and elastic modulus by 63% and 32%, respectively.
Xu et al. [14] determined that MWCNTs can fill nano-scale gel pores between calcium silicate hydrate
products and reduce the porosity of OPC pastes.

In order to achieve the maximum enhancing efficiency, MWCNTs should be dispersed individually
in the final matrices [15]. Agglomerated MWCNTs function as defects that lead to stress concentration,
resulting in the degradation of strength performance [9,13]. Pristine MWCNTs interact strongly
with each other due to the van der Waals attraction [16,17] and tend to form large agglomerates.
Currently, MWCNT suspensions are generally used as alternatives to pristine MWCNTs for addition
to matrices [18]. MWCNT suspensions are prepared by adding surfactants such as air entrainers,
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calcium naphthlaene sulfonate, and polycarboxylates under ultrasonication [18]. However, the stability
of dispersed MWCNTs in aqueous solutions is challenging to achieve in the alkaline environment
of cementitious mixtures [19]. In cementitious mixtures, surfactants will chemically react with ions
(i.e., Ca2+, Na+, K+, SO4−, and OH− ions) [20,21], thus the amount of surfactant molecules participating
in the dispersion of MWCNTs will decrease, resulting in re-agglomeration of the MWCNTs. In previous
studies [19], it has been found that re-agglomerated MWCNTs in fresh cementitious mixtures can
reach over 80% after 18 h. Du et al. [22] have found that methylcellulose can help to stabilize dispersed
MWCNTs in an alkaline environment owing to the viscosity-increasing effect that retards the movement
of MWCNTs. However, the in-situ applications of the prepared cementitious mixtures will be limited
owing to the decreased workability, especially in conditions where high fluidity is required [15,23].
Workability is another significant factor for fresh OPC pastes in civil engineering, particularly grouting
projects [23], which has a major influence on the transport of cement particles when the mixtures
are fresh. Maintaining a high water-to-cement (w/c) ratio has some benefits, such as increasing
workability and reducing the carbon footprint [22]. Although lowering the w/c ratio is one of the most
common methods to increase the strength of cement pastes, benefits such as workability will suffer
severely. Therefore, the introduction of well-dispersed MWCNTs into cementitious composites holds
the potential to overcome the shortage of paste strength.

Humic acid (HA), a biological macromolecule, is one of the most common natural organic matters.
It is neutral in aqueous solutions, environmentally-friendly, and non-toxic [24]. The mass content of
hydroxy and phenolic hydroxyl functional groups in HA is generally lower than 1% [25]. Strong steric
repulsion forces exist between HA molecules [26]. Previous studies [27,28] have found that HA can
absorb onto the surface of MWCNTs through electrostatic interaction, π-π interaction, hydrophobic
interaction, and hydrogen bonding, and the dispersion of MWCNTs in water can be stabilized due to
the steric repulsion effect. Han et al. [26] have found that the addition of 0.005 wt.% HA to 0.01 wt.%
carbon black nanoparticles can increase the dispersion degree of carbon black nanoparticles in an
aquatic environment by 78%. Saleh et al. [25] have found that mixing 0.002 wt.% HA in aqueous
solutions could improve the colloidal stability of MWCNTs and reduce the re-aggregation rate by
about two orders of magnitude. In work conducted by Yang et al. [29], HA was found to be quite
effective in enhancing the dispersibility of nanobiochar in an alkaline aqueous medium with pH higher
than 10. Since the steric repulsion effect of HA is not influenced by the alkaline environment [29]
and the mass content of functional groups is so low that chemical reactions between HA and cement
will not happen [24], HA holds the potential to be used to stabilize the dispersion of MWCNTs in
cementitious composites.

In this paper, the stabilizing effect of HA on the dispersion of MWCNTs in OPC was experimentally
studied. The dispersion degree of MWCNTs in simulated cementitious pore solutions and aqueous
solutions containing HA was characterized using ultraviolet-visible spectrophotometry (UV-vis).
The workability and mechanical properties of the MWCNT-enhanced OPC matrices were studied.
The nanostructure of MWCNT-reinforced OPC matrices was investigated using a scanning electron
microscope (SEM). The results of this study reveal that the addition of HA can improve the stability
of MWCNT dispersion in an alkaline environment, with an increase of 21.9–45.8% compared to no
HA. An optimum range of HA (0.05–0.10 wt.%) can achieve the best enhancement efficiency of the
mechanical performance of OPC reinforced with MWCNTs. The findings of this study provide a
new method for improving the degree of dispersion of MWCNTs and guide further understanding of
MWCNT-OPC composites.

2. Experimental Process

2.1. Materials and Instrumentation

OPC, type P.O. 42.5, referring to the requirements of Chinese Standard GB175-2007 [30], was used
as the binder material in this study. The commercially purchased MWCNTs have an average diameter
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of 5–15 nm and an average length of 10–20 µm. A commercial polycarboxylate-based surfactant (PC)
was used as the dispersing agent to improve the dispersion degree of the MWCNTs in water [13]. HA
containing two types of functional groups (i.e., hydroxy and phenolic hydroxyl) with a mass content
of 0.9% was used.

A horn ultrasonicator (VCX 500W) (SONICS Inc., Newtown, CT, USA) with a 13-mm-diameter
cylindrical tip was used to disperse the agglomerated MWCNTs in an aqueous solution.

UV-vis tests were performed using ultraviolet-visible spectrophotometry (TU-1901) (PERSEE Inc.,
Beijing, China) to characterize the dispersion degree of the MWCNTs.

The uniaxial compression and flexural tests of the specimens were carried out using a DNS100
electronic universal testing machine (Changchun research institute for mechanical science Co., Ltd,
Changchun, China).

A scanning electron microscope (SEM, Su8200) (HITACHI Inc., Tokyo, Japan) was used to
investigate the microstructure of the hardened MWCNT-OPC pastes.

2.2. Preparation of MWCNT Suspensions

The suspensions were prepared by mixing MWCNT powder with PC in distilled water under
ultrasonication (Figure 1a). The ultrasonication power and time were fixed at 150 W and 15 min,
respectively. To prevent overheating, the suspensions were placed in an ice-water bath. According
to previous studies [13,19,22], the concentration of the MWCNT powder was defined as 0.08 wt.%
relative to the weight of the suspensions. The PC-to-suspension ratio was 0.64 wt.%, which was eight
times the concentration of the MWCNTs.
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Figure 1. Preparation of: (a) Multi-walled carbon nanotubes (MWCNT) suspensions; (b) MWCNT
samples for UV tests; (c) MWCNT-OPC samples for mini-slump tests and the characterization of
mechanical properties.
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As shown in Figure 1b, the MWCNT suspensions were first subjected to ultrasonication before
adding the HA powder and stirring for 3 minutes [31]. The concentration of HA was defined by
the weight ratio of the HA powder to the MWCNT suspension (HA/S), and four concentrations
of 0.00 wt.%, 0.12 wt.%, 0.25 wt.%, and 0.50 wt.% were designed, as exhibited in Table 1. Both the
preparation of the MWCNT suspensions and the dissolving of the HA powder were conducted
at room temperature (20 ± 5 ◦C). To test the stabilization of the MWCNT suspensions in an
alkaline environment, a simulated cementitious pore solution was added into the suspensions after
ultrasonication. The concentrations of chemicals [21] in the simulated OPC pore solution are presented
in Table 2. The composition of the cementitious pore solution provided the Ca2+, Na+, K+, SO4−,
and OH− ions found in early-age (within 8 h) concrete [20].

Table 1. Mix design of plain ordinary Portland cement (OPC) and multi-walled carbon nanotube-
ordinary Portland cement (MWCNT-OPC) pastes.

Mix C/S (wt.%) P/S (wt.%) HA/S (wt.%) C/G (wt.%) P/G (wt.%) HA/G (wt.%)

Ref

0.08 0.64

0

0.032 0.256

0
MWCNTs-1 0 0
MWCNTs-2 0.12 0.05
MWCNTs-3 0.25 0.10
MWCNTs-4 0.50 0.20

Note: C/S and P/S represent MWCNT- and PC-to-suspension weight percentages. C/G and P/G represent
MWCNT- and PC-to-cement weight percentages.

Table 2. Concentration of prepared chemicals in the simulated cementitious pore solution.

Compounds NaOH KOH CaSO4·2H2O Ca(OH)2

Concentration (g/L) 8 22.4 27.6 Saturated

2.3. Preparation of Specimens

The specimens were cast in steel molds (50 mm × 100 mm and 40 mm × 40 mm × 160 mm)
after mixing each solution (containing 0.00 wt.%, 0.05 wt.%, 0.10 wt.%, and 0.20 wt.% of HA powder)
and cement (using HA/G to represent the weight ratio of HA to cement; see Table 1). Then, the
solutions and the cement powder were mixed based on a water-to-cement ratio (w/c) of 0.4 (Figure 1b).
Two types of specimens were prepared for the compressive and flexural strength tests. The samples
were demolded after 24 h and cured in a saturated lime water bath at a temperature of 20 ± 5 ◦C
and a relative humidity of 95% for another 27 d before testing [22]. Aqueous solutions containing
distilled water, PC, and HA powder were used to make the reference cementitious pastes (Ref pastes;
see Table 1).

2.4. Characterization

2.4.1. Dispersion Tests for MWCNT Suspensions

The time-dependent stabilization of the prepared MWCNT suspensions in alkaline environments
was characterized by UV-vis. The measured absorbance (ABS) at a certain wavelength can reflect
the degree of dispersion [32,33]. The prepared solutions were diluted by a factor of 50 and tested at
a wavelength (λ) of 500 nm every hour up to 18 h after mixing to calculate the dispersed MWCNT
concentration (Cd). Although the cement paste hardening normally happens at about 3–4 h, the initial
setting time seriously delayed by higher w/c and the environmental humidity, particularly in the
underground grouting engineering projects [23]. Therefore, in this study, the UV-vis tests measured
0–18 h to ensure the cement paste hardened, which is consisted with previous research studies [19,22].
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Three samples were measured in each UV-vis test to ensure that the concentration of MWCNTs in the
solution was consistent. Cd was calculated using Beer-Lambert’s law [34–36], given as:

Cd =
A
εl

(1)

where A is the average absorbance, ε is the extinction coefficient [34–36], and l = 1 cm is the optical
path length of the light through the MWCNT suspensions.

To determine ε, the well-dispersed suspensions with 0.08 wt.% MWCNTs were first diluted with
distilled water by factors of 50, 75, 100, 125, and 150.

The above suspensions were thoroughly ultrasonicated to guarantee that the maximum ABS was
reached. ε was then determined by fitting a zero-intercept linear correlation between the measured
ABS and the theoretical maximum concentration of the suspensions (Ct). The zero-intercept linear
regression equation in Figure 2 suggests that ε is 43.12 mL mg−1 cm−1, which is consistent with the
reported values between 41 and 46 mL mg−1 cm−1 [34–36]. The goodness of fit is indicated by the
correlation coefficient (R2) of the equation (98.3%).
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2.4.2. Characterization of Workability

The workability of fresh MWCNT-OPC and plain OPC pastes was measured using mini-slump
tests [18]. The setup and geometry of the mini-slump cone are presented in Figure 3. The cone was
first placed on a flat sheet, then fresh paste was poured into the cone and compacted. The excess paste
was then removed from the top surface, and the cone was lifted vertically to ensure minimal lateral
disturbance during the tests. The diameter of the hardened spread samples was measured at five
different locations around the outline after 24 h. Workability was defined as the average measurement.
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2.4.3. Mechanical Properties and Microstructure Tests

The compressive strength (σc) of the MWCNT-OPC pastes were measured using a universal
testing machine. Constant loading rates of 0.5 mm min−1 were adopted for the compressive strength
tests. Three specimens were prepared and tested for each paste.

The flexural strength (σt), Young’s modulus (E), and fracture energy (GF) of the cement pastes
were measured using three-point bending tests [13], as presented in Figure 4. An extensometer with a
gauge length of 50 mm and a +5 mm measurement range was attached to the beam with a glue stick.
A constant loading rate of 0.1 mm min−1 was adopted. Both the crack mouth opening displacement
(CMOD) and the load line deflection were measured. Three specimens were prepared and tested for
each paste.
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Based on the area under the load–deflection curve, GF can be calculated using the following
equation [37,38]:

GF =
A0 + mgδ0

(d − a0)b
(2)

where A0 is the area under the load–deflection curves, mg is the weight of the sample, δ0 is the
deflection of the beam at final failure, b is the beam width, d is the depth, and a0 is the notch depth.
E was calculated based on the initial linear elastic segment of the load–CMOD curves [37]. σt was
calculated from the peak load results [39].

The microstructure of the fracture surface was characterized using SEM to observe the dispersion
of the MWCNTs in the hardened pastes.

3. Results and Discussion

3.1. Stabilizing Effect of HA on the Dispersion of MWCNTs in an Alkaline Environment

Figure 5 presents the MWCNT suspensions with different HA/S in an alkaline pore solution
and an aqueous solution at different times after ultrasonication. Visual observations show that all
the prepared suspensions possessed a uniform black color. Re-agglomeration and sedimentation
of MWCNTs in the suspensions occurred after settling for 3 h, especially for the suspensions in the
alkaline pore solution without HA. After 18 h, most of the MWCNTs settled to the bottom and the color
of the aqueous solutions became gray with greater transparency. The suspensions in pore solutions
with HA/S of 0.12 wt.% remained darker in color than the suspensions in alkaline pore solutions with
other values of HA/S, indicating that more MWCNTs were in dispersion.
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Figure 5. MWCNT suspensions containing different concentrations of humic acid (HA) in cementitious
pore solutions and aqueous solution at different times: (a) 0 h; (b) 3 h; (c) 6 h; (d) 18 h after ultrasonication.

Figure 6a shows the calculated Cd/Ct over time using Equation (1), based on UV-vis
measurements. Cd/Ct quantifies the degree of dispersion, and a higher ratio means more MWCNTs are
in the dispersed state [19]. Figure 6a shows that the dispersion of MWCNTs in aqueous solution is very
stable, with the Cd/Ct decreasing by less than 9% after 18 h. In contrast, an obvious decline in Cd/Ct is
observed in other curves in Figure 6a, indicating that the addition of a simulated pore environment
reduces the degree of MWCNT dispersion. Over time, more MWCNTs tend to re-agglomerate,
and Cd/Ct decreases constantly to less than 40% after 18 h. Before 15 h, however, suspensions with
HA/S of 0.12 wt.% are found to maintain more dispersed MWCNTs, increasing the stability by
21.9–45.8% compared to no HA.
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It is generally accepted that for cementitious mixtures with w/c of 0.4–0.6, the initial setting
happens at about 3–4 h [19] and after that, the dispersion degree of MWCNTs will be less affected.
At 3 h, the dispersion degree of MWCNT suspensions containing 0.12 wt.% HA is about 85%, whereas
that of MWCNT suspensions without HA is about 58%. When HA/S exceeds 0.12 wt.%, the dispersion



Nanomaterials 2018, 8, 858 8 of 14

degree declines by 89–97% compared to that of suspensions with HA/S of 0.12 wt.%, indicating that
an optimum mass concentration range of HA is required for achieving the maximum stabilizing effect.
Because HA is a biomacromolecule and will absorb onto the surface of MWCNTs at a low concentration,
which contributes to the increment of the steric repulsion in suspensions [40], the van der Waals forces
will decrease and consequently delay the re-aggregation of MWCNTs [41,42]. However, when the
HA/S exceeds 0.12 wt.%, more adsorption of HA becomes less effectual for dispersion due to HA
having a moderate molecular weight (308.24 g/mol) and containing abundant functional groups [43]
that might link adjacent MWCNTs into large agglomerations [44,45].

Figure 6b shows a transition point during the decline of Cd/Ct, which can be identified by the
curve’s gradient. As shown in Figure 6b, before the transition point, the decrease of Cd/Ct can be
regarded as linear (7.1% per hour for MWCNT suspensions without HA), whereas after the transition
point, Cd/Ct experiences its maximum decrease in the 18 h period. The corresponding time for each
transition point is measured for all curves (except MWCNTs in aqueous solution) in Figure 6a and
listed in Table 3. Decreasing rates of Cd/Ct are also found using linear regression (Table 3, column 3).
The rate of decrease is affected by the HA concentration, and a moderate concentration of HA enhances
the steric repulsion and stability of suspensions in an alkaline environment [46,47]. Furthermore, the
transition points are obviously delayed by adding HA, especially at 0.12 wt.% HA concentration,
which had a transition point at 9 h.

Table 3. Transition time in the dispersion state.

HA Concentration (wt.%) Transition Point (h) Rate of Decrease of Cd/Ct (% per h)

0.00 2 7.1
0.12 9 3.4
0.25 6 4.2
0.50 3 5.9

3.2. Effect of HA on the Workability of Fresh MWCNT-OPC Pastes

The mini-slump spread versus HA/G is shown in Figure 7a, from which it can be seen that
the spread diameter of plain or MWCNT-OPC pastes decreases gradually as HA/G increases from
0.00 wt.% to 0.20 wt.%. For the plain OPC pastes, the slump diameter declined to 117.6 mm from
136.8 mm when 0.20 wt.% of HA was added. The adverse effect of HA on the workability of OPC
is due to the adsorption between HA and PC becoming kinetically less favorable [48], resulting in
electrostatic repulsion and elevated steric [22] hindrance between the collector surface and HA, thus
inhibiting the workability of fresh pastes.
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As can be seen from Figure 7a, adding MWCNTs to the OPC pastes leads to a more significant
decrease in the mini-slump diameter. The further deterioration in workability is affected by two factors:
The first factor is that MWCNTs can act as nucleation sites to accelerate the hydration reaction and
therefore decrease the workability of pastes [49]; the second factor is that the dispersed MWCNTs can
absorb PC molecules [18], resulting in a decreased amount of PC interacting with cement powders
in the MWCNT pastes than in the Ref pastes. Figure 7b shows the deterioration of slump diameter
(Ds) influenced by mixing MWCNTs at the same concentration of HA/G. The maximum deterioration
of the slump diameter at 0.05 wt.% HA/G is 7.2 mm, decreasing from 130.7 mm for the Ref paste to
123.5 mm for the MWCNT-OPC paste. This is likely due to more MWCNTs being in a dispersed state
at 0.12 wt.% HA/S (discussed in Section 3.1), accelerating a stronger hydration reaction and absorbing
more PC molecules.

3.3. Effect of HA on the Mechanical Properties of MWCNT-OPC Pastes

The average values of the compressive strength (σc) and flexural strength (σt) and their variations
versus HA/G are presented in Figure 8. σc and σt of Ref pastes without any MWCNTs vary within
the range of 49.1–52.3 MPa and 6.5–6.9 MPa, respectively, with a maximum variation of about
6%. This observation indicates that the addition of HA contributes little to the ultimate strength
performance of cement pastes.
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HA; (c) Strength enhancement percent versus concentration of HA; (d) E and (e) GF of cement pastes at
the age of 28 d versus concentration of HA. (Note: Due to the error bars in Figure d,e being too small,
for clarity of presentation they are not presented).

After adding the MWCNTs to the OPC pastes, σc and σt of all samples increased. Since both the
addition of PC [13] and HA makes little difference to the ultimate strength of cement matrices when
the w/c is constant, the improved mechanical properties of the hardened pastes are mainly due to the
addition of MWCNTs. For MWCNT-OPC pastes, σc ranges from 62.8 to 71.2 MPa and σt from 9.1 to 10.7
MPa, increasing by about 22–45% and 40–55%, respectively, when HA was added. As can be seen from
Figure 8d,e, the overall variations of E and GF against HA/G are correlated. It is found that the E and
GF increase with mixing HA. The optimal ranges of HA/G for improving ductility and fracture energy
are found to be 0.05–0.10. Compared with the control sample without HA, the maximum enhancement
achieved with HA is found at 0.05, where E and GF are improved by about 56.1–61.5%.
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Figure 8c shows that the maximum increment of strength enhancement was achieved at an HA/G
of 0.05 wt.%. The maximum increments of σc and σt are about 45% and 55%, respectively. With more
HA added to the OPC pastes, the enhancement effect is lower than that of the optimal concentration
range. This finding is in accordance with the dispersion degree of the MWCNTs shown in Figure 8a.
When there is no HA (HA/G = 0.00 wt.%) or too much HA (HA/G = 0.20 wt.%), the stable dispersion
of MWCNTs in an alkaline environment is decreased. Therefore, the enhancing efficiency of MWCNTs
on σc and σt becomes poorer when HA/G is 0.00 wt.% or 0.20 wt.%. An appropriate amount of
HA (0.05 wt.% to 0.10 wt.%) is beneficial for the uniform dispersion of MWCNTs (Figure 6) and
correspondingly enhances the σc and σt of the specimens (Figure 8).

3.4. Distribution of MWCNTs in the OPC Matrix

In addition to mechanical performance reinforcement, MWCNTs can also influence the
microstructure of the cement pastes, which is also linked with the long-term performance of the
composite materials [50,51]. Previous research has suggested that MWCNTs can fill nano/micro-sized
pores [15,52]. Nanomaterials may fill gel pores between calcium silicate hydrate products, contributing
to a reduction in the porosity and an increment in stiffness [15,52,53]. On the other hand, MWCNTs
can bridge capillary pores and enhance higher load capacity, ductility, and fracture energy of the
cement pastes [53]. However, the agglomeration of MWCNTs may heavily decrease the function of
nanomaterials and degrade strength performance [9,13]. To better investigate the reinforcing potential
of HA benefiting the dispersion stabilization of MWCNTs in cement composites, the fracture surface
of the sample was observed under SEM.

As presented in Figure 9a, the agglomeration of MWCNTs appears around the hydration products
in one pore, while there are hardly any MWCNTs visible in other pores. The observation of the
aggregation of MWCNTs is consistent with the measured Cd/Ct (Figure 6a) in Section 3.1. Furthermore,
the agglomerations are likely the cause of the clumped MWCNTs and “pulled-out” MWCNTs shown
in Figure 9b, which are in turn the cause of the decreased mechanical properties, as presented in
Section 3.3 [13].
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Figure 9. Scanning electron microscope (SEM) images of MWCNTs in the cement matrix with: (a,b)
HA/G = 0.00 wt.%; (c,d) HA/G = 0.05 wt.%.
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Figure 9c,d show that the observable agglomerations of MWCNTs are markedly reduced at
0.05 wt.% HA/G. Several cracks can be seen on the surface of the cement paste where an appropriate
amount of dispersed MWCNTs is exposed. Moreover, a large amount of MWCNTs with sufficient
length can bridge capillary cracks or pores (at the nano/micrometer scale) [52,53], indicating that the
well-dispersed MWCNTs could act as a crack bridging material and have the capacity to inhibit crack
propagation, therefore providing improved mechanical performance of the cement matrix, as discussed
in Section 3.3.

This study was consistent with the dispersion stabilization measurements and with the viewpoints
presented in previous research: more dispersed MWCNTs implies that the tube-paste interfacial
bonding is stronger, possibly resulting from the covalent bonds formed between the crack bridging
MWCNTs and the pastes [13,52]. The unique capability of HA suggests that the combination of HA
and MWCNTs may have the potential to reinforce both the strength and the ductility of cement pastes.

4. Conclusions

This study investigated the effects of HA on the dispersion of MWCNT suspensions in an alkaline
environment and the workability and mechanical properties of MWCNT-OPC pastes. The main
findings are as follows:

(1) The addition of HA works effectively for stabilizing the dispersion degree of MWCNT
suspensions. The addition of 0.12 wt.% HA gave the best performance in stabilizing the MWCNT
dispersion in an alkaline environment, increasing the stability by 21.9–45.8%.

(2) The addition of HA decreases the workability of OPC pastes, whereas it has little influence on
the mechanical properties of the hardened OPC.

(3) HA can affect the mechanical performance of MWCNT-reinforced OPC pastes by influencing
the dispersion degree of the MWCNTs. An appropriate range of the mass concentration of HA
(0.05–0.10 wt.%) is required to achieve optimum enhancing efficiency of the MWCNTs. The maximum
increments in the compressive strength, flexural strength, Young’s modulus, and fracture energy are
45%, 55%, 61% and 56%, respectively.

(4) HA markedly improves the degree of dispersion of MWCNT suspensions by absorbing onto
the surface of MWCNTs at a low concentration by enhancing the steric repulsion. The combination
of HA may decrease the van der Waals forces among MWCNTs and inhibit the re-aggregation of
MWCNTs. The SEM images show that the MWCNTs were distributed more uniformly in the cement
matrices when HA was incorporated.
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