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Alzheimer’s disease (AD) is the most common form of dementia. According to one hypothesis, AD is caused by the reduced
synthesis of the neurotransmitter acetylcholine. Therefore, acetylcholinesterase (AChE) inhibitors are considered to be an effective
therapy. For clinicians, however, AChE inhibitors are not a predictable treatment for individual patients. We aimed to disclose the
difference by biosignal processing. In this study, we used multiscale entropy (MSE) analysis, which can disclose the embedded
information in different time scales, in electroencephalography (EEG), in an attempt to predict the efficacy of AChE inhibitors.
Seventeen newly diagnosed AD patients were enrolled, with an initial minimental state examination (MMSE) score of 18.8 + 4.5.
After 12 months of AChE inhibitor therapy, 7 patients were responsive and 10 patients were nonresponsive. The major difference
between these two groups is Slope 2 (MSE6 to 20). The area below the receiver operating characteristic (ROC) curve of Slope 2 is
0.871 (95% CI = 0.69-1). The sensitivity is 85.7% and the specificity is 60%, whereas the cut-off value of Slope 2 is —0.024. Therefore,
MSE analysis of EEG signals, especially Slope 2, provides a potential tool for predicting the efficacy of AChE inhibitors prior to
therapy.

1. Introduction

Alzheimer’s disease (AD) is the most common form of
dementia [1, 2], with the dominant presentation of a pro-
gressive decline in cognitive functioning beyond what is
expected from normal aging. The neurodegeneration in
AD may be caused by deposition of amyloid beta-peptide
in plaques or formation of neurofibrillary tangle in brain
tissue [1, 2]. Although little is known of the actual cause
of AD, many of its symptoms are generally accepted to be
related to a cholinergic deficit in the cerebral cortex and
other areas of the brain [3-5]. Acetylcholinesterase (AChE)

inhibitors, which inhibit the acetylcholinesterase enzyme
from breaking down acetylcholine and thereby increasing
the level and duration of the neurotransmitter acetylcholine
activity, have been proven to be an effective therapy for AD
[6-11]. Pharmacoeconomic studies have demonstrated that
therapies can postpone dementia from progressing to more
severe stages and may also result in economic benefits for
patients’ families and caregivers, as well as for society [12-16].
However, clinicians have argued that AChE inhibitors have
an effect on a subgroup of only 25-50% of AD patients [17-
19], which cannot be identified objectively prior to therapy.
Furthermore, the time scale for measuring the effect of AChE
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inhibitors can last anywhere between several months to
several years.

Recently, numerous studies have attempted to identify
a prognostic predictor of AD by using artificial neural
networks [20], brain magnetic resonance imaging (MRI) [18,
21], single-photon emission computed tomography (SPECT)
[22], and cognitive function tests [23]. However, technical
dependence, high costs, contrast-agent related allergies, and
potential exposure to radionuclide irradiation have limited
their clinical application. On the other hand, numerous forms
of quantitative electroencephalographic (EEG) analyses have
been used to elucidate the characteristics of EEGs to enhance
diagnostic power with the assistance of signal processing,
suggesting a potential objective tool in the evaluation of
AD [24-36]. The surface EEG represents the electrical activ-
ity of innumerable cortical neurons, which determine the
fundamental patterns that indicate the interaction between
various mechanisms with multiple and spatial scales. As it
is quite difficult to explain the underlying neurophysiology
mechanism, nonlinear based methods have recently been
used more frequently to explore the EEG activity [37, 38].
The majority of the studies that have used nonlinear methods
showed the loss of the complexity of EEG signals to be
correlated with the severity of the dementia [31, 32, 34,
35]. However, it is difficult to determine which specific
physiological mechanism degrades the complexity of the
EEG, and, as a result, clinicians lack information regarding
the effective responder to AChE inhibitors in AD patients.

In light of fundamental nonlineal theory, biological sig-
nals represent the outcome of the nonlinear interactions
between different processes at multiple temporal and spatial
scales, including EEGs and electrocardiograms (ECG). With
this understanding, some studies proposed a careful exami-
nation of changes in nonlinear indices with scales. The most
well-known of these changes is the crossover phenomenon
of the fractal correlation exponents between short and long
time scales in the detrended fluctuation analysis (DFA) [39] of
heart-rate dynamics. The short-term exponent is understood
to be determined mostly by cardiorespiratory interaction [39,
40]. Recently, the studies of activity fluctuation with aging
and in AD [41, 42] determined that fractal correlations at
certain scales (i.e., 1.5-8.0 hours) declined with age. These
studies also determined that an age-independent AD effect
further reduced the correlations at these scales, leading
to the greatest reduction of the correlations in very old
people with late-stage AD. This result closely resembles the
loss of correlations at long time scales in suprachiasmatic
nucleus- (SCN-) lesioned animals [43]. In addition to DFA,
multiscale entropy (MSE) analysis, proposed by Costa et al.
[44, 45], is a possible method for measuring the complexity
of nonlineal signals at different temporal scales by means
of an entropy-based algorithm. In our previous study, we
proposed a detrending process [31, 46, 47] to attenuate the
spurious influence caused by nonstationarity in the real
world. This study also demonstrated many features of the
scale function of entropy, including the slope of the scale
function of entropy used to check the existence of fractal
correlation (a negative slope indicates a greater number of
random fluctuations corresponding to loss of interaction),
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which can assist with clinical classification [47]. For example,
sympathetic and parasympathetic activities are correlated
with MSE on different scales of the heartbeat sequence (scales
3-5 and 1-4 for sympathetic activity and parasympathetic
activity, resp.) [46]. Furthermore, congestive heart failure
patients without f-blocker therapy exhibit a very negative
slope for MSEI1-5, indicating the lack of interaction to be a
result of respiratory regulation [40].

Tracing the activation of the neurotransmitter ACh,
which is released from the presynaptic vesicles that are
triggered by action potential (electrical impulse), diffused in
the synapse, and then finally conjugated to the postsynaptic
receptor (5-50 msec) [48-50], these activations are observed
at different time scales, each of which may be studied using
MSE analysis.

In this study, we hypothesize that some features, such as
slope, of MSE analysis of EEG data can be associated with the
therapy efficacy of AChE inhibitors in AD patients, relying on
the ability of MSE to demonstrate different mechanisms with
multiple temporal or spatial scales.

2. Materials and Methods

2.1. Participants. All participants in this study were diag-
nosed with dementia and enrolled from the neurological
clinic at the National Yang Ming University Hospital. After
screening for dementia, all participants received further
medical, neurological, neuropsychological, and psychiatric
assessments, as well as blood examinations. Neurological
assessments for all participants included cerebral computed
tomography (CT) scans to rule out intracranial pathology
(i.e., brain tumors or stroke) that may have contributed to
cognitive decline. Trained research assistants administered
the Chinese version of the minimental state examination
(MMSE) [51], which features a total score of 30. The clinical
dementia rating (CDR) was also used to determine the
severity of dementia after a neurologist conducted separate
semistructured interviews with the patient and a knowledge-
able informant. The scores are as follows: 0 for normal, 0.5 for
questionable, 1 for mild, 2 for moderate, and 3 for severe [52].
AD was diagnosed according to the diagnostic criteria of the
Diagnostic and Statistical Manual of Psychiatric Disorders,
4th revised [53]. EEG was not included as part of the routine
workup.

The inclusion criteria for participation in the EEG study
included (1) a diagnosis of probable AD based on the
Diagnostic and Statistical Manual of Psychiatric Disorders,
4th revised (DSM-1V) criteria [53] and (2) a rating of either 1
or 2 on the CDR scale [52]. Patients with dementia that may
have been caused by reasons other than AD, as determined
by the patient’s history, neurological examinations, imaging,
and blood studies, were excluded from this study so as
to ensure that alterations in EEGs were caused exclusively
by AD. The research was approved by the institutional
review board of National Yang-Ming University Hospital, Yi-
Lan, Taiwan, a local community teaching hospital. Written
informed consent was obtained from each participant prior
to the study.
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Seventeen newly diagnosed AD patients (9 men and 8
women, mean age 74.6 + 7.4) were enrolled in this study,
with an initial MMSE score of 18.8 + 4.5. Two of these
patients were moderately demented (CDR = 2), whereas the
remaining 15 were mildly demented (CDR = 1). None of
the patients received any antipsychotics prior to the first
EEG. Each participant received the AChE inhibitor donepezil
hydrochloride (Aricept) 5 mg/d for 12 months and follow-up
MMSE 12 months after therapy.

2.2. EEG Recordings. EEGs were recorded for all subjects.
In accordance with International Federation of Clinical
Neurophysiology (IFCN) standards for the digital recording
of clinical EEG [54], the surface EEG signals were recorded
using a digital EEG recorder (NicoletOne) from the 19 scalp
loci of the international 10-20 system (channels Fpl, Fp2, F3,
F4, C3, C4, P3, P4, O, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,
and Pz), with all electrodes referenced to the bilateral ear (Al,
A2) for 30 min. ECGs were recorded on a separate channel as
a part of EEG recordings. The sample frequency was 256 Hz
and the analog-to-digital converter digitalized resolution was
12 bits. All the patients remained awake in a relaxed state in
order to undergo a 30 min eyes-closed EEG.

2.3. Signal Processing and Analysis: Multiscale Entropy Anal-
ysis. We adopted MSE as a complexity measure to feature
digitalized EEG signals. Before conducting the analysis,
one 30 sec artifact-free epoch EEG signal was selected by
an experienced neurologist. Furthermore, empirical mode
decomposition [55], which is considered superior to the tra-
ditional linear quantitative method to ascertain the intrinsic
complexity, was utilized to remove the trend (<1Hz) from
the signals as was also the case in our previous study [31].
The MSE method is comprised of the following two steps: (1)
coarse-graining the signals into different time scales and (2)
quantifying the degree of irregularity in each coarse-grained
time series using sample entropy (SampEn) [56, 57].

2.3.1. Sampling Entropy (SampEn). {x;} = {x}, %5 ..., Xp5 ..
Xy} represents a time series of data length N. The m-length
vector extracted from time series {x;} was defined by u,, (i) =
{xj> X415 . -> Xjym_1} Where n"(r) represents the number of
vectors, u,,(j) that are close to the given vector, u,,(i). To
obtain #;"(r), we first defined the distance, d[u,,(i), u,,(j)]
between the given vector u,,(i) and u,,(j) as the maximum
absolute difference between their corresponding scalar ele-
ments, that is, d[u,, (i), u,, (/)] = maxg_g,,_ [1xix = Xl
Then, #;"(r) was defined by counting the number of u,,(j)
with d[u,, (), t,, ()]l ;=1 41 smaller than the threshold, r,
a given prior. Note that here j # i; that is, self-matches were
not included to avoid the bias of ApEn [58]. The ratio of n)" (r)
to total number of m-vectors extracted from the time series
was evaluated, and the result was denoted as C;"(i). The above
steps were repeated to find C"(i) fromi = 1toi = N—-m+1;
then the natural logarithm of each C"(i) was calculated and
then averaged over i to obtain ¢™(r). Theoretically, sample
entropy [56, 57] is defined as SampEn(m,r) = ¢"(r) —
¢™!(r). Note that the average of C"(i) can be regarded as

the probability that any two vectors extracted from time series
{x;} are similar in some sense; therefore, ¢™ (r) — ¢m+1 (r) and
conceptually represents the average of the natural logarithm
of the conditional probability that the sequences that are close
to each other for m consecutive data points will still be close
to each other when one more point is given.

2.3.2. Multiscale Entropy (MSE). SampEn is a statistical
measure based on information theory used to quantify the
irregularity of a sequence of data [56-58]. It examines a time
series for occurrences of similar epochs of a preassigned
length; similarity is determined with respect to whether the
distance between epochs is under a tolerance r or not. More
specifically, it calculates the negative natural logarithm of
the conditional probability (i.e., those epochs) similar for m
points that will remain so when one additional point is added
to the subseries [56-58]. The higher the SampEn is, the more
unpredictable the data sequence is. However, complicated
systems typically generate highly irregular output [37] and
also exhibit dynamically diverse tendencies on various time
scales, including, for example, the coexistence of slow and fast
phenomena. Although SampEn provides an adequate way of
quantifying irregularities for physiological output, it is not
sufficient alone to cope with the complex content for the
purpose of physiological research. In contrast, MSE analysis,
based on evaluating the sample entropy at multiple time
scales, has proven useful in this regard. To recast a signal in
another scale, the original series were segregated into blocks,
where each block contained » data points. The mean value
over each block then formed the coarse-grained time series at
scale n. It is clear that the time series at coarse-grained scale
1 is identical to the original signal. Equipped with multiple
scales, the MSE method can disclose the temporal structures
as well as scale-dependent characteristics of signals.

2.3.3. Slope of MSE. In this study, the MSE value of each lead
was calculated individually, which amounts to 380 values for
each patient. Slopes of the mean value of MSE, averaged out
of all leads, over scales 1-5 (Slope 1) and 6-20 (Slope 2) were
estimated using the least-squares method (i.e., one Slope 1
and one Slope 2 for each patient). Throughout the analysis,
we set m = 2 and r = 0.15 times the standard deviation of the
processed signal, as was the case in our previous study [31].

2.4. Statistical Analyses. Based on the differences between
the follow-up and the initial MMSE scores, the patients
were divided into two groups: a responder group and a
nonresponder group. A responder was identified as a patient
whose follow-up MMSE score was greater than or equal to the
initial score; patients whose follow-up MMSE scores were less
than the initial score were classified as nonresponders.
Descriptive statistics were presented as means + standard
deviation (SD). SPSS (verl6.0) for Windows (SPSS Inc.,
Chicago, IL, USA) was used for analysis. Baseline demo-
graphic characteristics, including age, MMSE, CDR, and
MSE of each lead, and Slope 1 and Slope 2 were coded
as continuous variables. Other demographic characteristics,
such as sex, were coded as dichotomous variables. All of



these characteristics were treated as predicable variables for
treatment response. Because of the small sample size in this
study, a Mann-Whitney U test (instead of Student’s ¢-test) was
used to determine which factors were significant. A forward
logistic regression, being a regression model in which the
choice of predictive variables is carried out by an automatic
procedure, which involves starting with no variables in the
model, testing the addition of each variable using a chosen
model comparison criterion, adding the variable (if any) that
improves the model the most, and repeating this process until
none improves the model was then used to calculate the odds
ratio in the variants. All of the statistical tests were two-tailed
and significance levels were set at a P value of less than 0.05.

By conducting the receiver operating characteristic
(ROC) analysis and considering the optimal combination
of sensitivity and specificity, we determined the best cut-oft
points. Likelihood ratios and positive and negative predictive
values with 95% confidence intervals (CI) were assessed at
each of the cut-oft point levels.

3. Results

Seven patients (3M/4F, mean age 76.1 +7.9) were categorized
as responders and ten patients (6M/4F, mean age 73.5 £ 7.3)
were categorized as nonresponders. There were no significant
differences in age and gender between the patients in these
two groups. The initial MMSE score in the responder group
was 15.6 + 5.1, and in the nonresponder group it was 20.9 +2.8
(P = 0.070). The MSE values in each lead were significantly
higher in F7 MSE7, Fz MSE6, Fz MSE7, Fz MSE8, C4 MSES5,
T4 MSE6, T4 MSE7, T4 MSE9, Pz MSE7, Pz MSES, and O1
MSE7 (Table 1). Slope 1 was 0.063 + 0.038 for the responder
group and 0.092 + 0.071 for the nonresponder group (P =
0.333) (Table 1 and Figure 1). Slope 2 was —0.008 + 0.019 for
the responder group and —0.03 + 0.009 for the nonresponder
group (P = 0.021) (Table 1 and Figure 1). After applying the
forward logistic regression, only Slope 2 was preserved. The
other factors, including the initial MMSE, were excluded.

The area under the ROC curve of Slope 2 (Figure 2) was
0.871 (95% CI = 0.69-1). The sensitivity was 85.7% and the
specificity was 60%, while the cut-off value of Slope 2 was
-0.024 (Figure 3).

4. Discussion

This pilot study demonstrated the potential of quantitative
EEG, the slope of MSE, to predict the efficacy of AChE
inhibitors in treating AD. When Slope 2 (MSE 6-20) is
less than —0.024, therapy eflicacy is relatively poor, with a
sensitivity of 85.7% and specificity of 60%. However, the
efficacy of AChE inhibitors in AD was affected by various
factors, including antipsychiatric agents for behavior and psy-
chiatric syndromes, other systemic disorders, hypertension,
diabetes, and so on. Therefore, it is difficult to predict the
efficacy of AChE inhibitors using a single biomarker, such
as MSE in this study. However, this study can produce other
findings, including whether or not the dosage of the AChE
inhibitor is sufficient and whether we should try a form of
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TABLE 1: The demographic characteristics of two groups.

Responder Nonresponder P value
Age 76.1+£7.9 735+7.3 0.669
Sex 3M/4F 6M/4F 0.601
MMSE 159 +5.1 209+238 0.070
CDR 0.8+0.6 1.2+0.6 0.230
Slope 1 0.063 £ 0.038 0.092 £ 0.071 0.475
Slope 2 -0.008 £ 0.019 —-0.03 + 0.009 0.010"
F7 MSE7 1.85+0.15 1.98 £ 0.10 0.043"
Fz MSE6 1.84+£0.26 2.04 £ 0.06 0.025"
Fz MSE7 1.87+£0.23 2.04+0.08 0.043"
Fz MSES8 1.84+0.21 2.01 £0.09 0.033"
C4 MSE5 1.84 +£0.25 2.05+0.10 0.043"
T4 MSE6 1.77 £ 0.21 1.99 +0.10 0.019"
T4 MSE7 1.79 £ 0.20 1.99 +0.12 0.033"
T4 MSE9 1.79£0.22 2.00 £0.16 0.019*
Pz MSE7 1.92+0.20 2.13+0.10 0.010"
Pz MSES8 1.95+0.17 2.13+0.10 0.007"
O1 MSE7 1.89£0.23 2.08 £0.10 0.033"

Demographic characteristics of two groups, including age, sex, MMSE, CDR,

Slope 1, Slope 2, and MSE values of each lead with significant differences in

Mann-Whitney U test. “Indication that the correlation is significant at the
0.05 level (2-tailed).
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FIGURE 1: The mean value of MSE in the responder and nonrespon-
der. The red dashed line indicates the responder and the black solid
line indicates nonresponders.

combination therapy (i.e., AChE inhibitor and N-methyl-d-
aspartate (NMDA) receptor antagonist) for patients with a
very negative slope at the region with scales 6-20 (i.e., Slope
2).

Understanding the complexity at certain scales may
correspond to the illness of specific physiology processes;
furthermore, MSE analysis of EEG signals is a possible way
to profile the cholinergic effect in cortex. Figure 1 illustrates
the maximum value of MSE which occurred at MSE6
(approximately 20 msec in the time scale) in nonresponders
and almost a plateau from MSE5 to MSEI0 (approximately
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20 msec to 40 msec in the time scale) in responders. This
indicates that time scales are compatible with the transfer
time from the presynapse to the postsynapse, where the
membranes are separated by a synaptic cleft that averages
20 to 50 nm (0.02 to 0.05um) in width [50, 59] and lasts
for approximately 15msec [48-50]. Furthermore, it takes
approximately 20 msec to break the ACh molecules from
the binding receptor sites [48]. For the sampling rate of
256 Hz, the small (1-5) and large scales (6-20) of MSE could
be associated with transfer time from the presynapse to
postsynapse and binding time of ACh molecules, respectively.
Therefore, the features of MSEI to MSE5 are responsive to the
amount of released ACh or the concentration of ACh in the
synapse. In addition, the higher value in F7 MSE7, Fz MSES6,

Fz MSE7, Fz MSE8, C4 MSE5, T4 MSE6, T4 MSE7, T4 MSE9,
Pz MSE7, Pz MSES8, and O1 MSE7 in nonresponders may be
attributed to the compensative release of ACh to maintain
a similar cognitive activation as the responder. In the larger
scales (>12), the nonresponders have smaller values than
the responders. However, this difference is not significant
statistically (Figure 1), which suggests the poor binding ability
of ACh to the receptor. On the other hand, the significantly
negative slope (the region with scales over 20 msec) of the
scale function of entropy for the nonresponders indicates the
disrupted fractal pattern (i.e., more random fluctuations) and
thus suggests the reduction of interaction in the neurological
network (working at time scales over 20 msec). We can
hypothesize that the slope of MSE in large time scales (n >
6) is responsive to the Ach molecular binding ability or
binding count; the nonresponders have lower ACh molecular
binding ability or binding count and poor interaction in the
neurological network. They therefore may require a higher
dose of AChE inhibitors or other mechanism therapy, such as
NMDA receptor antagonist, to improve clinical syndromes.
A study by Escudero et al. [37] showed the slope of MSE in
long time scale (n > 6) is larger in normal control, which is
compatible with our hypothesis.

Previous studies [37, 38] showed a higher complexity in
demented patients in long time scales, which challenges the
above hypothesis as the long time scales are related to the
ACh molecular binding ability or binding counts. However,
there have been some significant differences with regards to
methods and study design, such as the severity of demented
patients in this study and empirical mode decomposition
(EMD) as a preprocessing to detrend the signals, which
would produce better results in nonstationary physiology sig-
nals [31]. Nevertheless, other neurophysiological mechanisms
might exist to explain both conditions.

The initial MMSE in the responders showed lower scales
than that of the nonresponders (although not significant
statistically), and this may be the reason why there is a higher
response rate to AChE inhibitors among the responders.
However, the usefulness of MMSE was excluded by following
forward logistic regression. A previous study [23] showed no
significant difference in pretreatment MMSE scores between
responders and nonresponders, which is a result that is
similar to the one in our study. In that same study, better
visual-spatial motor ability, clock drawing, and tracking test
results were also recorded among the responders. Therefore,
the lower MMSE score among responders in this study
does not explain the difference between responders and
nonresponders.

MSE analyses of EEG data in this study disclose the
different Slope 2 value in responders and nonresponders for
ACHhE inhibitors, indicating an existing physiologic condi-
tion, which confirms our hypothesis regarding the neuro-
transmitter, Ach, or other nonlinear interactions between
different processes at multiple temporal and spatial scales.
More rigorous study is required to elucidate the physiological
significance of the values and slopes of MSE. Due to a lack
of other types of medication in this study, the application
of predicting the efficacy with respect to different types of
AChE inhibitors or NMDA antagonist is also uncertain.



TABLE 2: The raw data of two groups; MMSE as minimental status
examination; CDR as clinical dementia rating.

Group Age MMSE CDR
Nonresponder 65 25 1
Nonresponder 80 19 1
Nonresponder 81 20 1
Nonresponder 61 24 1
Nonresponder 80 21 1
Nonresponder 73 24 1
Nonresponder 71 16 1
Nonresponder 67 21 1
Nonresponder 81 19 1
Nonresponder 76 20 1
Responder 69 21 1
Responder 67 21 1
Responder 88 16 1
Responder 71 14 1
Responder 84 9 2
Responder 79 10 2
Responder 75 20 1

Lastly, although this study was limited by its small sample
size, the statistical power was still high enough to support our
findings.

5. Conclusion

MSE analysis of EEG recordings can show characteristics
both at short and at long time scales and provide a potential
tool for predicting the efficacy of AChE inhibitors in AD. This
nonlineal method improved EMD-based sampling entropy,
which was introduced as an optimum method for evaluating
embedded information in EEG and as an objective, nonin-
vasive, and cost-effective tool for evaluating and monitoring
AD patients [31], but not for providing enough information
about the possible responder to the AChE inhibitor in AD.

Appendix
See Table 2.
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