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Background: The use of social media daily could nurture a fragmented reading habit.
However, little is known whether fragmented reading (FR) affects cognition and what are
the underlying electroencephalogram (EEG) alterations it may lead to.

Purpose: This study aimed to identify whether individuals have FR habits based on the
single-trial EEG spectral features using machine learning (ML), as well as to find out the
potential cognitive impairment induced by FR.

Methods: Subjects were recruited through a questionnaire and divided into FR and
noFR groups according to the time they spent on FR per day. Moreover, 64-channel
EEG was acquired in Continuous Performance Task (CPT) and segmented into 0.5–
1.5 s post-stimulus epochs under cue and background conditions. The sample sizes
were as follows: FR in cue condition, 692 trials; noFR in cue condition, 688 trials; FR in
background condition, 561 trials; noFR in background condition, 585 trials. For these
single-trials, the relative power (RP) of six frequency bands [delta (1–3 Hz), theta (4–
7 Hz), alpha (8–13 Hz), beta1 (14–20 Hz), beta2 (21–29 Hz), lower gamma (30–40 Hz)]
were extracted as features. After feature selection, the most important feature sets were
fed into three ML models, namely Support-Vector Machine (SVM), K-Nearest Neighbor
(KNN), and Naive Bayes to perform the identification of FR. RP of six frequency bands
was also used as feature sets to conduct classification tasks.

Results: The classification accuracy reached up to 96.52% in the SVM model under
cue conditions. Specifically, among six frequency bands, the most important features
were found in alpha and gamma bands. Gamma achieved the highest classification
accuracy (86.69% for cue, 86.45% for background). In both conditions, alpha RP in
central sites of FR was stronger than noFR (p < 0.001). Gamma RP in the frontal site of
FR was weaker than noFR in the background condition (p < 0.001), while alpha RP in
parieto-occipital sites of FR was stronger than noFR in the cue condition (p < 0.001).
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Conclusion: Fragmented reading can be identified based on single-trial EEG evoked
by CPT using ML, and the RP of alpha and gamma may reflect the impairment on
attention and working memory by FR. FR might lead to cognitive impairment and is
worth further exploration.

Keywords: fragmented reading, single trial EEG, machine learning, continuous performance task, cognition

HIGHLIGHTS

- The current study has identified fragmented reading
(FR) by machine learning models based on single-
trial electroencephalogram (EEG), with the classification
accuracy up to 96.52%.

- Alpha (8–13 Hz) and lower gamma (30–40 Hz) were found to
make important contributions to the identification of FR.

- Compared with noFR subjects, FR subjects had alpha power
significantly increased in central and parieto-occipital sites,
which might reveal the impairment on attention, as well as
gamma power significantly decreased in frontal sites, which
might reveal the impairment on working memory.

INTRODUCTION

It is common nowadays for us to obtain information from
social media, such as from Twitter, Facebook, TikTok, and
Weibo, among others. Given the prevalence of fragmented
information from various social media (Liu and Gu, 2019),
people frequently engage in multiple types of information
processing activities, which would build up so-called fragmented
reading (FR) (Hodgkinson-Williams et al., 2013). FR provides
an opportunity to receive a wealth of information in various
forms, but it might also increase cognitive load and even lead
to cognitive impairment. Current studies on FR mainly analyzed
its mechanism and influence from psychology and sociology
perspectives (Li, 2011; Xie, 2019), proposing that FR could
cause impatience, inattention, and difficulty in logical thinking,
to name a few. Little studies are involved in quantitatively
and objectively evaluating the negative effect on the key
cognitive abilities of an individual, such as attention, through
neurophysiological techniques.

As the most commonly used neuroimaging tools, functional
MRI (fMRI) and electroencephalogram (EEG) have been widely
applied to find out sensitive biomarkers and explain the
underlying cognitive neural mechanism. Due to the high spatial
resolution of fMRI, it is widely used to study cognition and
has made fruitful achievements (Catalino et al., 2020; Williams
et al., 2021). However, cognitive processes, such as attention,
usually evolve fast. While fMRI has difficulties in tracking
the dynamics of cognitive processes, EEG has unparalleled
time resolution (Mulert et al., 2004) and can capture transient
cognitive processes in real-time. In addition, the power spectrum
of EEG can reflect the number of neurons that discharge
synchronously and is a meaningful measure that indicates the
capacity or performance of cortical information processing
(Klimesch, 1999). Therefore, in this study, we conducted machine

learning (ML) predictions of FR and studied its influence
on cognition mainly by employing spectrum characteristics of
EEG epochs acquired during Continuous Performance Task
(CPT) experiments.

Electroencephalogram collected in CPT has been widely used
to study cognitive impairment (Rosvold et al., 1956; Hagh-Shenas
et al., 2002; Banaschewski et al., 2008; Loo et al., 2009; Dias,
2011). Many of these studies have found spectral indicators
related to cognitive abilities, such as an alpha activity that is
negatively correlated with attention (Singh and Sharma, 2015).
CPT is now cited as the most frequently used measure of
attention (Riccio et al., 2002). In this study, we selected a numeral
version of AX-type CPT (AX-CPT) (Wang et al., 2013). Multiple
cognitive processes are involved in CPT (Riccio et al., 2002)
and thus, time window selection is crucial for cognition-related
issues (Bickel et al., 2012) so as for researchers to focus on
specific segments of EEG, in which desirable cognition occurs.
In this study, 0.5–1.5 s post-stimulus epochs were selected as
target time windows.

Manually identifying FR is inefficient and could not take full
advantage of the whole EEG spectrum information. Group-level
statistics analysis has difficulty in identifying FR at the individual
level. ML is currently a popular tool to conduct individual-level
accurate identification (Bzdok et al., 2018). Therefore, ML models
were used to make full use of all the EEG spectrum information
to conduct identification of whether a subject has an FR habit
or not. Furtherly, we also statistically compared EEG spectrum
distributions on a basis of groups and conditions so as to evaluate
the effect of FR on cognition.

We acquired EEG data through CPT, extracted 0.5–1.5 s
post-stimulus epochs, and calculated the relative power (RP)
of six frequency bands as features. Then, these features of six
frequency bands, alone or collectively, were fed into ML models
to conduct FR identification. Furthermore, in order to find out
how FR impairs cognition, frequency bands that showed superior
performances in classification were further analyzed by statistical
comparison at the group level.

MATERIALS AND METHODS

Subjects
All the subjects were college students from Fourth Military
Medical University, Xi’an, China. They were required to
complete a self-reported questionnaire on demographic
information and habits of social media apps usage. Demographic
information included age, sex, height, weight, family
structure, urbanization, ethical group, smoking habits,
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alcohol consumption, color blindness, handedness, history
of brain trauma, and family history of mental illness. To
prevent biases and fit with the theme of this study, only
three social media apps most commonly used in China were
included. The main contents of one app (Weibo, whose
function was similar to Twitter or Facebook) were short
text and pictures, and of the other two software (TikTok
and Kwai) were short videos, which contained a lot of
fragmented information.

First, the subjects were excluded according to the following
criteria: BMI > 30 or <18.5, smoking, alcohol consumption,
color blindness, left-handedness, history of brain trauma,
or family history of mental illness. Afterward, from the
questionnaire results of the habits of social media apps usage,
the time that subjects spend on social media apps per day
was considered as the time they spend on FR per day
and defined as FR-time in this study (measured in hours).
In order to investigate whether FR has an influence on
cognition, this study extracted two groups of extreme cases for
comparison according to the FR-time: (i) FR group, subjects
who spend a lot of time on FR, i.e., at the top of the FR-
time list; (ii) noFR group, subjects who spend little time on
FR, i.e., at the bottom of the FR-time list. Therefore, after
removing the subjects with questionable data quality, the top
12 subjects were selected as FR group (age 20.75 ± 0.75),
while the bottom 12 subjects were selected as noFR group (age
20.67 ± 0.98) (Table 1). This study received approval from the
institutional review board of Tangdu hospital, Fourth Military
Medical University.

Experiment
A numeral version of AX-CPT was carried out according
to the study by Wang et al. (2013; as shown in Figure 1),
containing three stimulus context conditions (Go, NoGo, Lure).
These conditions were embedded in a vigilance task with a
pseudorandom sequence of white Arabic numeral symbols (1,
2, 3, 4, 5, 6, 7, 8, and 9, a total of 462 trials) presented
in the center of a black screen. Each numeral was presented
for 500 ms, separated by a 1,000 ms black screen with a
white cross in the middle. Numeral “1” served as a cue
initiating a Go–NoGo task and inducing continuous attention
and response preparation. Participants were instructed to press
a button on an optical fiber pad with the index finger of
their dominant hand as fast as possible when numeral “1”
was followed directly by “9” (Go condition, 6.5% probability),
but had to withhold response to when “1” was not followed
by “9” (NoGo condition, 6.5% probability). The single “9”
preceded by a numeral other than “1” (Lure condition,
6.5% probability) and sequences involving neither “1” nor
“9” (Background condition, 80.5% probability) also required
no response. The procedure was designed and controlled
using E-Prime 2 software (Psychology Software Tools Inc.,
Pittsburgh, PA, United States). The behavior indicators, i.e.,
reaction accuracy and reaction time, of the experiment between
the FR group and the noFR group were compared by
t-test. There were no significant differences between them on
the behavior level.

Electroencephalogram Acquisition and
Preprocessing
Continuous EEG data was recorded by a 64-channel electrode
cap of GSN-Hydrocel64 (EGI, Electrical Geodesics Incorporated,
Eugene, OR, United States), sampling rate equaled to 500 Hz.
During recording, the impedance of electrodes was kept below
30 k�. EEG was acquired simultaneously with fMRI in this
study, so it was firstly preprocessed through the software
NetStation (EGI, Electrical Geodesics Incorporated, Eugene, OR,
United States) to reducing the artifacts caused by fMRI (mainly
including gradient artifacts and ECG artifacts). In order to get
pure EEG, EEGLAB (Delorme and Makeig, 2004) was used
for further preprocessing. Data were re-referenced to average
reference and filtered by a.1–45 Hz band-pass FIR filter. In
particular, raw data was segmented into one-second-long epochs
(post-stimulus, 0.5–1.5 s). Epochs under two conditions were
extracted (see Figure 1): (i) cue, 0.5–1.5 s after the onset
of numeral “1” stimulation; (ii) background, 0.5–1.5 s after
the onset of numeral “4” stimulation. Afterward, bad epochs
were deleted firstly. Then, artifacts were manually selected out
and removed based on independent component analysis (ICA),
mainly including artifacts caused by eye-blink, head movement,
and ECG. After preprocessing, the numbers of good trials left
for each group under each condition were as follows: FR in
cue condition, 692 trials; noFR in cue condition, 688 trials;
FR in background condition, 561 trials; noFR in background
condition, 585 trials.

Feature Extraction Based on Spectral
Analysis
The original power spectrum was calculated by multitaper
methods (Riedel and Sidorenko, 1995), in which the taper type
was set as sine and the time-half bandwidth product was set
as 2. Then, the EEG spectrum was divided into six frequency
bands including delta (δ, 1–3 Hz), theta (θ, 4–7 Hz), alpha (α,
8–13 Hz), beta1 (β1, 14–20 Hz), beta2 (β2, 21–29 Hz), and lower
gamma (γ, 30–40 Hz) bands. The power of each frequency band
was obtained by summing up the power of all the frequency
points within the corresponding frequency range. For different
individuals, there might be a different baseline state in the
original power spectrum. This will affect the comparison between
and within the groups. Therefore, RP of these six frequency bands
was calculated out, i.e., the ratio of the power of each frequency
band to the total power of six frequency bands, so as to convert
the power spectrum of all subjects to the same scale.

For two groups (FR and noFR) under two conditions (cue and
background), all the RP of six frequency bands in 64 channels
were considered as features. First, a total of 384 features (6
bands ∗ 64 channels) were used for the classification of FR and
noFR under each condition, and the classification of cue and
background conditions in each group. Moreover, RP of each
frequency band on 64 channels was also used separately for the
classification of FR and noFR. Before classification, to ensure the
balance of sample size, trials in other cases were randomly down-
sampled according to the case with the least number of trials.
Finally, all the trials were randomly divided into train sets and
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TABLE 1 | Age and FRtime of subjects in two groups.

Subject Age FR-time (hours) Subject Age FR-time (hours)

noFR001 21 0.5 FR001 21 3

noFR002 21 1 FR002 20 3

noFR003 20 1 FR003 20 3

noFR004 22 1 FR004 21 3

noFR005 20 1 FR005 20 3

noFR006 21 1 FR006 21 3.5

noFR007 21 1 FR007 20 4

noFR008 21 1 FR008 21 4

noFR009 18 1 FR009 22 4

noFR010 21 1 FR010 21 5

noFR011 21 1 FR011 20 6

noFR012 21 1.5 FR012 22 7

FIGURE 1 | The modified AX-type Continuous Performance Task (AX-CPT). Participants were instructed to press one key using their index finger only when the
numeral “1” was directly followed by “9”. All other sequences were to be ignored. The one-second-long (0.5–1.5 s) post-stimulus epochs that “+” presented after
numeral “1” stimulus (Go and NoGo, defined as cue condition) and numeral “4” stimulus (only in background condition) were selected in this study.

test set with the ratio of 4 to 1, and the test set was not involved
in model training.

Feature Selection and Classification
Model Estimation
Feature selection methods can be roughly categorized into
filter-based methods, wrapper-based methods, and embedded
methods. Filter-based methods perform feature selection
independently from the learning process, while the last two
methods combine feature selection and the learning process to
select an optimal subset of features. This combination usually
requires the use of nested cross-validation which may lead to
increased computational cost and possible overfitting, especially
when a small number of observations is available (Radovic et al.,
2017). Therefore, Minimum Redundancy Maximum Relevance
[MRMR (Peng et al., 2005), a kind of filter-based methods]
algorithm was chosen to do feature selection in our study.
The algorithm minimizes the redundancy of a feature set and
maximizing the relevance of a feature set to the response variable,
which is based on the mutual information of variables-pairwise
mutual information of features and mutual information of a
feature and the response (Ding and Peng, 2005). Before feature
selection, the whole data of all the subjects in the train set and
test set were standardized by Z-score respectively.

In this study, three common classifiers were selected,
including Support-Vector Machine (SVM, the kernel function
was cubic polynomial), K-Nearest Neighbor (KNN, Minkowski
distance, number of neighbors equaled to 10), and Naive Bayes.
These models were from MATLAB (MathWorks. Inc, Natick,
MA, United States) machine learning toolbox and trained to carry

out classification in 10-fold cross-validation (CV). For the 10-
fold CV, samples of the train set were randomly divided into 10
equal sets, a classifier was then trained on nine of the 10 sets and
tested on the left-out one. The final test set was also input into
the classifier of each fold. This process was repeated 15 times. All
the reported results were the average value from 10-folds in 15
rounds (a total of 10 ∗ 15 values).

To evaluate model performance, we recorded the numbers
of true positives (TP, number of correctly classified FR), true
negatives (TN, number of correctly classified noFR), false
positives (FP, number of misclassified FR), and false negatives
(FN, number of misclassified noFR). Classification accuracy was
computed as a ratio of the sum of TP and TN divided by the
sum of all classified subjects. The precision was calculated as the
number of true positives divided by the number of true positives
plus the number of false positives and the recall was calculated
as the number of true positives divided by the number of true
positives plus the number of false negatives. Besides, Area under
the curve (AUC) (Robert et al., 2014) and F1-scores (Rijsbergen,
2004) were also used to evaluate the classification models, while
F1 was defined as

F1 = precision∗recall
precision+recall =

2∗TP
2∗TP+FP+FN

For comparisons between classification cases, a t-test was used
to compare the accuracies of 10-fold CV between two models.

Statistical Analysis
Statistical analysis was also performed as an auxiliary analysis
method to help understand the cognitive impairment caused
by FR. Results of spectral analysis and ML showed the most
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TABLE 2 | Results of classifying FR and noFR based on six frequency bands.

Model- condition Train Test

Accuracy (%) Precision (%) Recall (%) F1 AUC Accuracy (%) Precision (%) Recall (%) F1 AUC

SVM

Cue 95.17 95.61 94.77 0.95 0.93 95.46 94.92 96.20 0.96 0.94

Background 95.25 95.94 94.58 0.95 0.93 96.52 98.09 94.90 0.96 0.95

KNN

Cue 89.38 89.01 90.15 0.89 0.86 90.34 89.44 91.91 0.91 0.90

Background 91.22 93.75 88.44 0.91 0.89 91.08 91.28 90.97 0.91 0.89

Naive Bayes

Cue 72.92 72.65 73.71 0.73 0.72 70.81 71.39 70.77 0.71 0.70

Background 73.16 72.82 74.29 0.73 0.72 75.36 75.13 76.15 0.76 0.77

Values are means of the 10-fold CV model calculation repeated 15 times.

FIGURE 2 | Model accuracy of the classification of FR and noFR in 10-fold CV train (A) and test (B) repeated 15 times. Results were obtained by three kinds of
models (Naive Bayes, KNN, SVM) based on all the features of six frequency bands in each condition (cue, background). The error bars are standard deviations.
*p < 0.01.

important frequency bands for the classification of FR, that is,
the frequency bands of interest. According to the results, three
regions of interest (ROIs) were selected out, including frontal
site (Fp1 and Fp2), central site (FCz, FC1, FC2, FC3, FC4, FC5,
FC6, C1, C2, C3, C4, C5, C6, CP1, CP2, CP5, and CP6), and
parieto-occipital site (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10,
POz, PO3, PO4, Oz, O1, and O2). For each ROI, the RP of the
frequency bands of interest was calculated by averaging the RP on
all the channels in ROI. Then, one-sided t-tests were conducted
between two groups (FR and noFR) or two conditions (cue and
background) to achieve statistical comparisons at the group level.
False discovery rate (FDR) correction based on Benjamini and
Hochberg method (Benjamini and Hochberg, 1995) was used for
multiple comparison correction.

RESULTS

Classification of Fragmented Reading
and noFR by All Six Frequency Bands
Performance of Classification Models
Three models were trained and tested by all six frequency
bands (384 features in total) in cue and background conditions.

Features were arranged in descending order according to their
importance scores calculated by the MRMR feature selection
method. In this order, the number of features used for model
training and testing was gradually increased one by one. Finally,
the best results were selected to be reported in Table 2 and
Figure 2. In the final test set, the highest classification accuracy
of FR was up to 96.52% by SVM (cubic) model in background
condition (F1 = 0.96, AUC = 0.95, also the highest). All the
models showed meaningful performance for identifying FR,
among which SVM was the best, KNN was the second, and
Bayes was the worst.

The Distributions of Feature Importance Scores
Before model training, feature selection based on MRMR
provided the importance scores of 384 features. We
defined a feature whose importance score > 0 as the
effective feature (EF). As a result, the distributions of
importance scores of EFs are shown in Figure 3, and
the number of EFs of six frequency bands are shown in
Table 3. In each condition, the number of EFs in alpha
and gamma bands was greater than the average value (cue:
19 EFs in alpha, 19 EFs in gamma, average value = 17.33;
background: 28 EFs in alpha, 28 EFs in gamma, average
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FIGURE 3 | The distributions of the importance scores of features in every frequency band are based on MRMR. (A,B) Are the two-dimensional coordinate maps,
which show the importance score of EFs in descending order. (C,D) Are the topographic maps (C: cue, D: background), black dots mark the channel positions of
EFs in the corresponding frequency band.

TABLE 3 | Number of EFs for each frequency band.

Delta Theta Alpha Beta1 Beta2 Gamma Average

Cue 15 19 19 19 13 19 17.33

Background 28 24 28 23 21 28 25.33

Frequency bands whose number of EFs is greater than the average value are marked in bold.

value = 25.33). It revealed that alpha and gamma contribute
more EFs to the classification of FR and noFR under
both conditions.

Classification of Fragmented Reading
and noFR by Each Frequency Band
Performance of Models and Comparisons
To further explore the performance of each frequency band in
the classification of FR and noFR, we chose the SVM classifier,
which has the best classification performance, and respectively
input the RP of each frequency band as features without feature
selection. Results are shown in Figure 4 and Table 4. The

highest classification accuracy of FR reached 86.69% by gamma
in the cue condition.

In cue condition, theta (Accuracy = 82.82%, F1 = 0.83,
AUC = 0.8), alpha (Accuracy = 83.48%, F1 = 0.83, AUC = 0.83),
and gamma (Accuracy = 86.69%, F1 = 0.87, AUC = 0.86)
showed top three classification ability for FR. Delta was the
worst to classifying FR (Accuracy = 73.79%). In background
condition, beta1 (Accuracy = 80.24%, F1 = 0.79, AUC = 0.77),
beta2 (Accuracy = 82.18%, F1 = 0.83, AUC = 0.81), and gamma
(Accuracy = 86.45%, F1 = 0.86, AUC = 0.85) showed top three
classification ability for FR. At the same time, delta still showed
the worst ability for FR classification (Accuracy = 75.23%).
In general, among six frequency bands, gamma had the most
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FIGURE 4 | Model accuracy of classification of FR and noFR in the test set. Results were obtained by SVM model trained by features of each frequency band
respectively (δ, θ, α, β1, β2, and γ) in each condition (cue and background). The error bars are standard deviations. ***p < 0.001 for t-test between models in two
conditions on each band. • Marks the good models whose test accuracy > 85%.

TABLE 4 | Results of classifying FR and noFR based on each frequency band.

SVM Train Test

Features Accuracy (%) Precision (%) Recall (%) F1 AUC Accuracy (%) Precision (%) Recall (%) F1 AUC

Delta (1–3 Hz)

Cue 70.97 71.38 69.75 0.70 0.69 73.79 74.93 73.92 0.74 0.73

Background 76.01 75.78 77.33 0.76 0.74 75.23 75.97 71.56 0.74 0.75

Theta (4–7 Hz)

Cue 82.81 83.63 81.60 0.82 0.82 82.82 85.07 80.91 0.83 0.80

Background 78.82 79.42 77.97 0.79 0.76 79.95 79.37 81.71 0.81 0.78

Alpha (8–13 Hz)

Cue 79.40 80.10 79.50 0.80 0.77 83.48* 79.58 86.47 0.83 0.83

Background 79.32 78.77 81.04 0.80 0.77 76.39* 75.29 77.06 0.76 0.75

Beta1 (14–20 Hz)

Cue 80.46 82.02 78.36 0.80 0.79 80.47 81.45 79.17 0.80 0.79

Background 80.84 80.91 81.15 0.81 0.79 80.24 84.62 73.74 0.79 0.77

Beta2 (21–29 Hz)

Cue 83.88 84.70 82.95 0.84 0.81 81.79 84.71 77.82 0.81 0.80

Background 82.86 81.91 83.97 0.83 0.80 82.18 84.13 81.75 0.83 0.81

Gamma (30–40 Hz)

Cue 88.99 88.99 89.39 0.89 0.87 86.69 85.27 88.01 0.87 0.86

Background 88.29 88.04 89.10 0.88 0.87 86.45 84.76 87.84 0.86 0.85

Values are means of the 10-fold CV model calculation repeated 15 times.
*p < 0.001 for t-test between models in two conditions on each band.

significant classification ability for FR (Accuracy greater than 85%
under both conditions).

Meanwhile, for each frequency band, comparing the
accuracies of 10-fold CV in 15 times training and test between
two different conditions by t-test, alpha showed a highly
significant difference in the classification accuracies between cue
and background conditions (83.48 vs. 76.39%, p < 0.001).

Statistical Analysis of Alpha and Gamma
Feature selections showed that theta, alpha, and gamma
contribute more EFs to the classification of FR and noFR,

especially alpha (see Table 3). Meanwhile, the results of ML
(Figure 4 and Table 4) showed the most important frequency
bands for the classification of FR mainly include alpha and
gamma. Therefore, statistical analysis was further performed
among alpha and gamma frequency bands. Figure 5 shows
the distribution of the RP of alpha and gamma of each group
under each condition. Alpha was mainly activated in central and
parieto-occipital sites, gamma was mainly activated in the frontal
sites. Accordingly, three ROIs were selected out, including frontal
site (Fp1 and Fp2), central site (FCz, FC1, FC2, FC3, FC4, FC5,
FC6, C1, C2, C3, C4, C5, C6, CP1, CP2, CP5, and CP6), and
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FIGURE 5 | Topographic map of RP of alpha (A) and gamma (B) bands in FR and noFR groups under cue and background conditions. Values are the group
average results.

parieto-occipital site (Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10,
POz, PO3, PO4, Oz, O1, and O2). The RP of alpha and gamma
in each ROI for two groups (FR and noFR) under two conditions
(cue and background) and the results of the one-sided t-test are
shown in Table 5.

Fragmented reading had a lower RP of gamma in the frontal
site than noFR in both conditions (not significant for the cue,
p = 0.089; significant for background, p < 0.001). For RP of
alpha in the central site, FR had a significantly higher RP of
alpha than noFR in both conditions (p < 0.001 for both cue
and background). In the parieto-occipital site, FR also had a
higher RP of alpha than noFR (significant for cue, p < 0.001
while not significant for background, p = 0.033). This was in line
with the result in the classification of FR and noFR based on
features of alpha that there was a significant difference between
the classification accuracies in cue and background conditions
(83.48% for cue while 76.39% for background, p < 0.001, see
Table 4 and Figure 4).

Besides, frontal site gamma activity was significantly stronger
in the cue condition than in the background condition for
FR (p < 0.001), while there was no significant difference for
noFR (p = 0.053). Central site alpha activity was significantly
weaker in cue condition than in background for both FR and
noFR (p < 0.001), while parieto-occipital site alpha activity
was significantly weaker in cue condition than in background
condition only for noFR (p = 0.002).

Classification of Cue and Background
Conditions
Furthermore, we also classified cue and background conditions
in FR and noFR groups respectively to compare the performance

of the two groups in distinguishing the two conditions. Again,
three models (SVM, KNN, and Naïve Bayes) were trained
based on the whole 384 features data set. Features were also
arranged in descending order according to their importance
scores calculated by MRMR. In this order, the number of features
used for model training and testing was gradually increased
one by one. The best results were selected to be reported in
Table 6 and Figure 6. In all the test cases, noFR had significantly
higher classification accuracy than FR (SVM: Accuracy-
FR = 86.13%, Accuracy-noFR = 90.40%, p < 0.01; KNN:
Accuracy-FR = 78.75%, Accuracy-noFR = 81.95%, p < 0.01;
Bayes: Accuracy-FR = 66.31%, Accuracy-noFR = 70.49%,
p < 0.01). The highest classification accuracy of cue condition
was up to 90.4% in the noFR group.

DISCUSSION

Fragmented reading can be accurately identified based on single-
trial EEG spectral features of all the six frequency bands. All
the three classifiers (SVM, KNN, and Naïve Bayes) used in
this study demonstrated high classification performance, and
the highest test accuracy reached 96.52% achieved by SVM
under background conditions. Through (1) feature selection
algorithm and (2) comparisons of models trained by features of
each frequency band, alpha (8–13 Hz) and lower gamma (30–
40 Hz) were found to make more important contributions to the
classification between FR and noFR. Considering the statistical
analysis together, it suggests that RP of alpha and gamma might
reflect the differences of the multiple types of cognitive abilities
between FR and noFR, which could help to understand how FR
impacts cognition.
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TABLE 5 | Results of statistical analysis of alpha and gamma’s RP in ROIs.

Frequency band ROI FR noFR p-value (test between groups)

Alpha Cue 0.206 0.191 <0.001

Background 0.223 0.207 <0.001

central site p-value (test between conditions) <0.001 <0.001
Alpha Cue 0.212 0.191 <0.001

Background 0.218 0.207 0.033

parieto-occipital site p-value (test between conditions) 0.087 0.002

Gamma Cue 0.074 0.077 0.089

Background 0.065 0.073 <0.001

frontal site p-value (test between conditions) <0.001 0.053

All the RP values are mean values on the group level. All the p- values are calculated by a one-sided t-test with FDR correction, p-values that show significant difference
are marked in bold.

TABLE 6 | Results of classifying cue and background based on all six frequency bands.

Model- group Train Test

Accuracy (%) Precision (%) Recall (%) F1 AUC Accuracy (%) Precision (%) Recall (%) F1 AUC

SVM

FR 89.77 89.50 89.63 0.89 0.88 86.13 90.50 83.84 0.87 0.87

noFR 88.71 88.95 89.14 0.89 0.88 90.40 86.84 93.17 0.90 0.91

KNN

FR 82.02 87.65 73.58 0.80 0.81 78.85 91.87 67.98 0.78 0.80

noFR 85.95 89.33 82.58 0.86 0.85 81.95 79.03 82.58 0.81 0.84

Naive Bayes

FR 68.12 68.32 64.82 0.66 0.67 66.31 70.66 67.32 0.69 0.67

noFR 65.84 67.30 64.72 0.66 0.66 70.49 66.74 70.83 0.69 0.73

Values are means of the 10-fold CV model calculation repeated 15 times.

FIGURE 6 | Model accuracy of classification of cue and background condition in 10-fold cross-valid train (A) and test (B) repeated 15 times. Results were obtained
by three kinds of models (Bayes, KNN, SVM) based on the whole 384 features data set in two groups (FR, noFR). The error bars are standard deviations. *p < 0.01.

The relative power of alpha might reveal the impairment
on attention caused by FR. FR was found to have significantly
stronger alpha activity than noFR in the central site under both
conditions and the parieto-occipital site under cue conditions.
Besides, parieto-occipital site alpha was significantly suppressed
from background to cue in the noFR group, but not in the

FR group. It suggests that the difference between cue and
background conditions in the FR group might be smaller than
those in the noFR group. This was consistent with the ML
result that cue and background conditions were harder to be
classified in the FR group than noFR. Take previous findings
into consideration stating that a decrease in alpha represents
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an increase in the attentional resources allocated (O’Connell
et al., 2009; Mazaheri et al., 2010; Min et al., 2013; Tillem
et al., 2019), our results indicated that participants with FR
habit have difficulty allocating attentional resources during CPT,
especially when high concentration is required (for example, in
cue condition). These findings suggested that FR might lead to an
impairment in attention.

The relative power of gamma might reveal the impairment
on working memory (WM) caused by FR. In both cue and
background conditions, gamma was found to have the best ability
for the classification between FR and noFR, and FR showed
a significantly weaker gamma activity in the frontal site than
noFR in the background conditions. Previous studies have found
an association between gamma activity and various cognitive
functions in healthy humans (Herrmann et al., 2004; Kaiser and
Lutzenberger, 2005a; Roux and Uhlhaas, 2014), among which
the most prominent is memory processes. Although AX-CPT
is not a specific memory task, short-term WM is involved
since subjects are asked to match numerals according to the
two numerals presented one after the other. Since gamma-band
oscillations have been found involved in the maintenance of
WM information (Howard et al., 2003; Jensen et al., 2007)
and the increase of frontal gamma activity might indicate the
enhancement of maintenance of WM (Kaiser and Lutzenberger,
2005b; Roberts et al., 2013), our results suggest that FR might lead
to an impairment on WM.

Finding out which EEG segments are used to analyze in
CPT is critical since different cognitive processes happen in
different time windows (Riccio et al., 2002; Bickel et al., 2012).
Most previous studies typically chose time windows (such as –
50 to 800 ms) before and after the probe stimulus (rather than
cue stimulus) to perform event-related potential (ERP) analysis
(Friedman et al., 1978; Loiselle et al., 1980; Fallgatter et al., 1998).
In this study, we chose the 0.5–1.5 s post-stimulus epochs after
cue (numeral “1”) and background (numeral “4”) stimulus as
target EEG segments. The advantage of such a choice is that
it made it possible to focus more on the cognitive attention-
controlled processes of subjects (Riccio et al., 2002). Our results
showed that in the 0.5–1.5 s post-stimulus epochs under cue and
background conditions, alpha activity was activated in the central
site and parieto-occipital site. Meanwhile, compared with the
background condition, in the cue condition, alpha activities were
suppressed. These results are in line with the previous findings
of the cognitive mechanism after cue stimulus in CPT (Riccio
et al., 2002; O’Connell et al., 2009; Mazaheri et al., 2010). Such
a specific time window was selected to conduct ML identification
of FR and cognitive process study. This particular EEG epochs
selection strategy rendered it more highly to capture the cognitive
attention-controlled processes in CPT.

There were some limitations to this study. First, since EEG
data were acquired in sync with the fMRI, it would be better
to carry out a fusion analysis of EEG and fMRI. Besides,
while collecting the task state data, it would be better to also
collect the resting-state data to compare these two to clarify the
brain activity of the subjects in each state more clearly. Finally,
more longitudinal studies are needed to further demonstrate the
cognitive impact of fragmented reading habits.

CONCLUSION

Fragmented reading is the most common way we obtain
information today. It provides great convenience for our daily
life, and at the same time, might also impair our cognitive
abilities. Based on RP of single-trial EEG evoked by AX-CPT,
for the first time we successfully identified FR with accuracy up
to 96.52% (SVM model). Alpha and lower gamma were found
to make larger contributions to the classification of FR and
noFR and might indicate the cognitive impairment caused by
FR. Alpha, which was hard to suppress in central and parieto-
occipital sites for FR, might reflect the impairment on attention
caused by FR. Gamma, which was hard to activate in the
frontal site for FR, might reflect the impairment on working
memory caused by FR.

The present study helped to reveal the neural mechanism of
the cognitive impairment caused by FR, which is worth further
exploration. Consequently, we suggest that, for social media
apps, relevant regulations should be introduced to limit the
fragmented way of the content presented, and for the users,
especially children and adolescence, they should be aware of the
impairment of FR and not addicted to the fragmented content in
the online world.
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