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Abstract
Purpose:We present a framework for robust automated treatment planning
using machine learning, comprising scenario-specific dose prediction and
robust dose mimicking.
Methods: The scenario dose prediction pipeline is divided into the prediction of
nominal dose from input image and the prediction of scenario dose from nominal
dose, each using a deep learning model with U-net architecture. By using a
specially developed dose–volume histogram–based loss function, the predicted
scenario doses are ensured sufficient target coverage despite the possibility
of the training data being non-robust. Deliverable plans may then be created
by solving a robust dose mimicking problem with the predictions as scenario-
specific reference doses.
Results:Numerical experiments are performed using a data set of 52 intensity-
modulated proton therapy plans for prostate patients. We show that the pre-
dicted scenario doses resemble their respective ground truth well, in particu-
lar while having target coverage comparable to that of the nominal scenario.
The deliverable plans produced by the subsequent robust dose mimicking were
showed to be robust against the same scenario set considered for prediction.
Conclusions:We demonstrate the feasibility and merits of the proposed
methodology for incorporating robustness into automated treatment plan-
ning algorithms.
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1 INTRODUCTION

Radiation therapy treatment planning is a time-
consuming process that typically requires multiple
iterations between a dosimetrist and an oncologist.1 In
recent years, automated treatment planning methods
have been developed to speed up the process while
ensuring a consistent quality of treatment plans, using
historically delivered treatment plans to aid in the pro-
cess of creating plans for new patients. A common
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approach is using a machine learning model to predict
a reference dose distribution for each new patient,2–4

which is then used in an optimization problem to find a
configuration for a treatment machine that would deliver
a similar dose.5 These parts are commonly referred to
as dose prediction and dose mimicking, respectively.
However, in many cases, especially in proton therapy,
it is important to take into account uncertainties in the
treatment delivery such as patient setup and density
calculations.6 While robust optimization is the current
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state-of -the-art method of handling such uncertainties,
optimizing on, for example, the near-worst-case over a
set of sampled scenarios, current methods for auto-
mated planning in the literature have yet to be able to
incorporate robustness. The contribution of this paper
is a framework that unifies ideas from automated treat-
ment planning and robust optimization by predicting a
set of scenario reference doses, each corresponding
to a specific scenario, to be used in a robust dose
mimicking problem.

Typically, for the non-robust case, machine learning–
based automated treatment planning is divided into two
steps: predicting the achievable values of certain dose-
related quantities from the patient geometry, and find-
ing machine parameters of a plan to reconstruct the
same values.2 For example, the dose-related quantities
may be the spatial dose distribution, dose–volume his-
tograms (DVHs), or a combination thereof. A common
approach to spatial dose prediction is using a neural net-
work, often with a U-net architecture, to predict a dose
value for each voxel in the discretized dose grid.7–12

Likewise, for DVH prediction, one may either use the
DVHs evaluated on a spatially predicted dose distribu-
tion or employ separate models for the purpose.13–18

Using the reference dose and the reference DVHs,
a dose mimicking optimization problem is then con-
structed, where the goal is to find a set of machine
parameters for a specific treatment machine such that
the delivered dose is as similar as possible to the refer-
ence dose and DVHs.5,19,20 Thus, given that the plans
used for training the models are clinically acceptable
and follow the desired protocol, the idea is that the auto-
mated planning pipeline should produce a high-quality
plan for each new patient.

In robust optimization, reference dose levels are usu-
ally set for different regions of interest (ROIs), and the
goal of the optimization is to find a resulting treatment
plan that minimizes some cost functional that depends
on the outcome in a number of fixed scenarios.21 These
scenarios may be seen as samples from some proba-
bility distribution specifying the geometric uncertainties
in the treatment delivery that we want to account for.
Typical examples of such uncertainties include setup
uncertainties, related to inaccuracies in the setup of
the patient or the inaccuracy of the treatment machine,
as well as range uncertainties, related to uncertainties
in the CT imaging or the conversion from CT values
to density values.6 For particle modalities such as pro-
tons, since the dose delivered is relatively sensitive to
the density of the material through which they pass,
using margins around the clinical target volume (CTV)
is often insufficient to account for density uncertainty
effects. Hence, robust optimization is especially impor-
tant in such cases. In robust dose mimicking, one would
use a reference dose corresponding to each scenario,
with the goal of finding a robust treatment plan that is
good across most or all of these scenarios.22 However,

in a robust prediction–mimicking pipeline,how to choose
these scenario reference doses is a matter previously
unaddressed in the literature.

In this paper, we present a method of performing
robust automated treatment planning, combining spa-
tial dose prediction and robust optimization through sce-
nario dose prediction and robust dose mimicking. We
propose to predict scenario doses using a two-step
pipeline: by first predicting the nominal dose using a U-
net model and subsequently deforming, using a second
U-net model, the nominal dose to scenario doses corre-
sponding to a given set of scenarios. Specifically, start-
ing from a non-robustly planned data set, we propose to
use a DVH-based loss function when training the sce-
nario model to ensure that the predicted scenario doses
have comparable target coverage to that of the nomi-
nal dose. The predicted scenario doses are then used
as scenario-specific reference doses in a robust dose
mimicking problem, creating a robust deliverable plan.
Numerical experiments,designed for a proof-of -concept
study, are performed on a data set of prostate cancer
patients treated with intensity-modulated proton therapy.
We show that the proposed scenario dose prediction
pipeline fulfills its purpose satisfactorily, with predictions
mostly following the non-robust ground truth but with
increased target coverage,and that the resulting deliver-
able plans are robust with respect to the considered sce-
nario set. Compared to manually generated benchmark
plans, the automatically generated plans are similar in
terms of DVH, dose statistic spread, and spatial dose.
In particular, we demonstrate the feasibility of a data-
driven, robust automated treatment planning framework.

2 MATERIALS AND METHODS

Let  and  be spaces of patient geometries and dose
distributions, respectively,and  a given set of scenarios
representing realizations of systematic setup or range
uncertainties. For each s ∈ , the patient geometry xs ∈ is defined as its CT image with ROI delineations
along with its spatial location under s. A dose distribu-
tion that has been delivered to this patient previously
is referred to as the scenario dose, denoted by ys. The
nominal scenario, corresponding to no setup or range
errors, is denoted by s0.Given a data set {(xn

s0
, yn

s0
)}

N

n=1
⊂

 ×  of pairs of nominal patient geometries and doses,
our proposed pipeline follows the classical prediction–
mimicking division, with a scenario-specific spatial dose
prediction model followed by a robust dose mimick-
ing optimization.

2.1 Pipeline

We propose to extend the typical nominal spatial
dose prediction and dose mimicking procedure with a
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F IGURE 1 An illustration of the proposed pipeline. A nominal dose ŷs0
is predicted from a nominal geometry xs0

using a nominal model.
Furthermore, for each scenario s ∈ , xs0

is deformed into a scenario geometry xs. The scenario model is then used to predict a scenario dose
ŷs from these for each scenario. The scenario doses are finally used in robust dose mimicking yielding a set of machine parameters 𝜂

scenario-specific dose prediction component, as illus-
trated in Figure 1. First, a nominal model predicts the
nominal dose ŷs0

∈  from the nominal geometry xs0
.To

predict the scenario dose ŷs for any scenario s ∈ , ŷs0
is

deformed in accordance with the change from the nom-
inal geometry xs0

to the scenario geometry xs using a
second scenario model. One such scenario dose is pre-
dicted for each s ∈ , yielding a set {ŷs}s∈ of predicted
scenario doses.

To train such a scenario model, ideally, the training
data would consist of robust treatment plans—in partic-
ular, a set {(xn

s , yn
s )}n, s∈ of geometry–dose pairs where

all doses are planned robustly with respect to the sce-
nario set . However, to remove the need of having
access to a complete data set of robust plans, which
is a relatively strict requirement, we propose an alterna-
tive method of training the scenario model. In this frame-
work,each plan in a data set of previously delivered non-
robust treatment plans is deformed in accordance with
a number of scenarios. As we want the resulting robust
treatment plans to have sufficient target coverage, we
want our scenario reference doses to have sufficient tar-
get coverage as well. Therefore, we propose to train the
scenario model using a loss function that both penal-
izes deviation from the non-robust ground truth scenario
dose, as well as deviation from the target coverage of
the nominal dose. The training pipeline is illustrated in
Figure 2.

2.2 Algorithm

To maintain the target coverage equivalent to that of
the nominal dose, but still predicting a realistic scenario
dose, we propose to train the scenario model using a
loss function that combines a voxel-level spatial loss
Lspat(ŷ, y) : 2 → ℝ with a DVH loss LDVH(ŷ, y) : 2 →
ℝ defined on the targets. In particular, the spatial loss is
given by the weighted mean-squared error

Lspat(ŷ, y) =
∑

i

𝜔i(ŷi − yi)
2
, (1)

where the 𝜔i are nonnegative voxel weights such that∑
i𝜔i = 1. For the DVH loss, let  be the set of all ROIs,

each R ∈  represented as index sets of voxels, and let
yR = (yi)i∈R be the local dose vector for each R. Let, fur-
thermore target ⊆  be the set of all target ROIs which
are to be covered robustly, typically chosen to comprise
all CTVs. Denoting by Dv the dose-at-volume at volume
level 0 ≤ v ≤ 1, which is given for each R by

Dv(yR) = inf

{
x ∈ ℝ :

1|R| ∑
i∈R

1yi ≥ x ≤ v

}
, (2)

the DVH loss may be written as

LDVH(ŷ, y) =
∑

R∈target
∫

1

0

(
Dv(ŷR) − Dv(yR)

)2
dv. (3)

The idea of utilizing a DVH loss for training dose predic-
tion models has previously been explored by Nguyen et
al23 and Zhang et al,24 but for other purposes.Upon pre-
dicting ŷs in a scenario s ∈  with non-robust scenario
ground truth ys and nominal ground truth ys0

, the loss
contribution is then given by

L(ŷs, ys, ys0
) = Lspat(ŷs, ys) + 𝛼LDVH(ŷs, ys0

), (4)

weighting the DVH loss by a factor 𝛼.
For both the nominal and scenario models, we pro-

pose to use an architecture based on the 3D U-net,25

with dimensions adapted for the present dose predic-
tion purpose. The architecture used in our experiments
is illustrated in Figure 3. This architecture consists of
a contracting path, consisting of a series of convo-
lution, activation, batch normalization, and max pool-
ing operations, serving as a form of feature extrac-
tion, and a symmetric expanding path that instead
uses deconvolution operations, with skip connections
between the two paths. Similar architectures have pre-
viously been used successfully for the task of dose
prediction.7–12
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F IGURE 2 An illustration of training the proposed pipeline. For each scenario s, the ground truth dose ys is calculated using an accurate
dose calculation algorithm from the corresponding scenario geometry xs. The scenario model is trained using a loss function consisting of a
spatial loss that depends on the predicted scenario dose ŷs and ys, as well as a DVH loss that depends on ŷs and ys0

16
03

8 16

80
3

16 32

40
3

32 64

20
3 64 128

192 64

96 32

48 16 16 1N

Convolution + ReLU + BN

Deconvolution

Convolution (1x1x1)

Concatenation

Max pooling

F IGURE 3 The proposed 3D U-net architecture. The size of each row is denoted at the far left and the number of channels in each layer is
denoted above the layer

2.3 Robust dose mimicking

Having trained the nominal and scenario models to
obtain for a new patient a set {ŷs}s∈ of predictions, we
may use the same predictions as scenario-specific refer-
ence doses in a dose mimicking to create a robust deliv-
erable plan. Let 𝜂 ∈  denote the machine parameters,
the physical limitations of which are articulated by con-
straining 𝜂 to lie in the feasible set  ,and let {ys(𝜂)}s∈ be
the scenario doses resulting from the plan defined by 𝜂.
Partitioning  = nonrobust ∪robust into non-robust and
robust ROIs,we can write a general robust dose mimick-
ing problem as

minimize
𝜂∈

∑
R∈nonrobust

𝜓mimic,R(ys0
(𝜂), ŷs0

) (5)

+C
⎛⎜⎜⎝
( ∑

R∈robust

𝜓mimic,R(ys(𝜂), ŷs)

)
s∈

⎞⎟⎟⎠, (5)

where C : ℝ|| → ℝ is a cost functional expressing the
conservativeness of the robust optimization and each
𝜓mimic,R : 2 → ℝ is on the form

𝜓mimic,R(y, ŷ) = wspat,R𝜓spat(yR, ŷR) (6)

+wDVH,R𝜓DVH(yR, ŷR). (6)

Here, the cost functional is commonly chosen
as a weighted-power-mean function C((𝜉s)s∈ ) =

(
∑

s∈S𝜉
a)

1∕a
with exponent a ≥ 1, where a = 1 cor-

responds to stochastic programming and a = ∞ to
minimax optimization.21 As for 𝜓spat and 𝜓DVH, common
choices are one-sided quadratic functions penalizing
deviations in spatial dose and DVH, respectively.

2.4 Computational study

We applied our framework to a cohort of 52 retro-
spective treatment plans for prostate cancer patients,
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divided into a training set of 37 patients, a test set of
10 patients, and a validation set of 5 patients. The
patients originally received volumetric modulated arc
therapy, so we utilized the framework proposed by
Kierkels et al22 to convert them to proton pencil beam
scanning (PBS) plans. We used two beams with isocen-
ters in the middle of the CTV, that is, the prostate, aimed
at 90◦ and 270◦, going through the left and right femurs,
respectively.The organs at risk (OARs) considered were
the rectum,bladder,anal canal,and left and right femurs.
The dose prescribed to all the patients was a median
dose of 7700 cGy (RBE = 1.1) to the CTV, delivered
over 35 fractions.

For the uncertainties, similar to Fredriksson et al,6 we
used a density uncertainty of ±3%,and a slightly smaller
setup uncertainty of 0.5 cm. For the setup uncertainty,
the isocenter was shifted in the unit directions as well as
diagonally. The identity shift was also included for both
the density and setup uncertainties, resulting in a total
of || = 45 scenarios with corresponding geometries
{xs}s∈ for each patient. For both the nominal and sce-
nario models, we used the architecture in Figure 3, with
sizes and channels adjusted for our purposes.The voxel
size used was 0.25 × 0.25 × 0.25 cm3,and the input and
output resolution of the models were 160 × 160 × 160
voxels. For the nominal model, the input channels con-
sisted of xs0

, that is, the binary masks for the CTV and
each OAR as well as a CT image of the patient. Recall
that the purpose of the scenario model is to deform the
nominal dose in accordance with a specific scenario s—
therefore, the scenario model had input channels con-
sisting of both the nominal geometry xs0

and a scenario
geometry xs, as well as the nominal dose ys0

.
Both models were trained using the total loss

described in Section 2.2. For the scenario model, we
used the training data set of size N|| = 37 ⋅ 45 = 1665
resulting from including all scenarios for each patient. In
both the nominal and scenario models, data augmen-
tation was applied in the form of rotations around the
transversal axis, drawn uniformly at random between
−10◦ and 10◦ at each forward pass through the net-
work.The DVH loss weighting factor 𝛼 was chosen using
grid search over the values in {0, 0.1, 0.2, 0.3, 0.4, 0.5}.
The models were trained until the loss on the validation
set converged, which was around 500 epochs for the
nominal model and 50 epochs for the scenario model.
To select the weighting factor 𝛼, we inspected the dose
washes and DVH curves.For both models,depending on
the value of 𝛼, we saw a trade-off between the ability to
predict a dose that gives a good DVH for the CTV, and a
realistic dose outside of the CTV.For the nominal and the
scenario model, we used 𝛼 = 0.1 and 𝛼 = 0.3, respec-
tively. We observed that these weighting factors gave a
satisfactory CTV coverage, while still giving a realistic
dose outside of the CTV.The spatial loss Lspat in (1) cho-
sen for our experiments is a voxel-level mean squared
error loss. As voxels closer to the CTV are generally

more important, we weighted the contribution of each
voxel depending on its distance from the CTV using the
weighting 𝜔i ∝ max{e−𝛽DTCTV(i),𝜔min}, where DTCTV(i) is
the Euclidean distance from the voxel i to the CTV,𝛽 > 0
is a constant and 𝜔min is a minimum weight threshold.
For our experiments, we used 𝛽 = 0.05 and 𝜔min = 0.01.

The robust dose mimicking was performed using
a research version of the treatment planning sys-
tem RayStation 11A (RaySearch Laboratories) with
sequential quadratic programming–based optimization,
creating deliverable proton PBS plans. The in-house
dose mimicking algorithm was used, with one-sided
quadratic loss functions 𝜓spat and 𝜓DVH, voxel-level
weights determined partly depending on the corre-
sponding isodose level on the nominal predicted dose,
and a weighted-power-mean cost functional with expo-
nent 8 approximating minimax optimization. The ROIs
 considered in the dose mimicking problem were the
CTV, bladder, rectum, and ring ROIs with distances 0–1
and 1–2 cm from the CTV, all included in the robust
subset robust. The mimicking optimization was divided
into three runs of 60, 60, and 8 iterations, respectively. In
particular, approximate doses during optimization were
computed using a Monte Carlo algorithm using 104 ions
per spot, and final doses using the same algorithm with
a statistical uncertainty of 0.5%.

Finally, the plans produced by the proposed auto-
mated algorithms were benchmarked to manually
generated robust treatment plans for the same patients.
The in-house inverse planning algorithm in RayStation
11A was employed to create the comparison plans
using the optimization functions displayed in Table 1, of
which all were robust and those on the CTV were formu-
lated as constraints. In particular, the optimization was
run using the same weighted-power-mean exponent,
number of iterations, and dose computation settings as
for the automatically generated plans. While additional
fine-tuning of the manual plans are likely to be needed
before reaching fully clinical quality, they serve the pur-
pose of a comprehensive and transparent benchmark
for the proposed automated planning algorithm.

3 RESULTS

To verify the feasibility of the proposed pipeline, we
perform a qualitative analysis for one test patient and
a quantitative analysis based on the entire test data
set. In Figure 4, two scenarios for a test patient are
visualized. The non-robust ground truth dose fails to
give a sufficient target coverage—in particular, in the
transversal view, one can see that large parts of the
CTV receive less than 95% of the prescribed dose.
However, the scenario dose prediction model has been
trained to predict doses with a better target coverage,
and we see indeed that the predicted dose successfully
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TABLE 1 The optimization formulation used for creating the manual comparison plans

ROI Optimization function Robust Constraint Weight

CTV At least 7400 cGy at 98% volume Yes Yes –

CTV At most 7900 cGy at 2% volume Yes Yes –

Bladder At most 6500 cGy at 10% volume Yes No 1

Rectum At most 6500 cGy at 10% volume Yes No 1

Ring 0–1 cm At most 7000 cGy mean dose Yes No 1

Ring 0–1 cm At most 4000 cGy mean dose Yes No 1

F IGURE 4 Two different scenarios with the non-robust (first
row), the predicted (second row), the robust (third row), and the
manual (fourth row) doses. The left column shows a coronal slice of
scenario A where the patient has been translated down 0.5 cm with
respect to the image. The right column shows a transversal slice of
scenario B where the patient has been translated down 0.5 cm with
respect to the image and a density shift of +3% has been applied

covers the CTV in these scenarios. Finally, the automat-
ically generated robust deliverable dose is generated
by performing a robust dose mimicking using all the
predicted scenario doses as reference doses and is
expected to ensure coverage of the CTV in most or
all of the scenarios. For the two scenarios displayed,
the CTVs are well-covered, whereas the dose decays
slower beyond the CTV outline than the corresponding
predicted scenario doses—this is due to the robust plan
needing to account for the outcome in all scenarios.
The manually generated benchmark has similar target
coverage and decay around the CTV compared to the
automatically generated dose, but slightly more dose
spillage in the area beyond 2 cm from the CTV.

Furthermore, the DVHs corresponding to the scenar-
ios in Figure 4 are displayed in Figure 5. The DVHs
of the predicted scenario doses are relatively similar to
those of the non-robust dose in all ROIs except for the
CTV, where the target coverage is instead more similar
to that of the prescribed dose. This is what we wanted
to achieve with our scenario dose prediction since the
spatial component of the loss function used to train the
scenario model is expected to make the predicted doses
similar to the ground truth scenario doses,while the DVH
component is aimed at maintaining the target coverage
of the nominal dose. We can also see that the automat-
ically generated robust dose has a similar target cov-
erage as the predicted dose in both scenarios, meaning
that the target coverage of the predicted doses success-
fully propagates to the robust dose—however, naturally,
this comes with the cost of a slight increase in dosage
to the rectum, bladder, and the target surroundings. The
automatically generated robust dose has similar DVHs
compared to those of the manual benchmark.

Moreover, in Figure 6 and Table 2, a number of dose
statistics aggregated across all test patients and sce-
narios are presented. For CTV D98% and D2%, we see
that the predicted and automatically generated robust
doses have a lower spread and are more focused
around the prescribed dose than the non-robust dose,
whereas they have a slightly higher spread compared to
the manual plans. This indicates that the automatically
generated dose is in fact robust with respect to the
CTV given the specified uncertainty parameters. For
bladder and rectum D10%, we see that the automatically
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F IGURE 5 The DVHs for scenario A (left) and scenario B (right)

F IGURE 6 Boxplot of dose statistics for the different dose types evaluated across the 45 scenarios for each test patient

generated dose gives a higher dosage in general to the
OARs than the non-robust and predicted doses, which
is an expected effect of delivering more dose to the
area around the CTV due to the overlap between these
OARs and the CTV in the different scenarios—however,
the dosage is similar to that of the manual plans. Finally,
we include two ring ROIs, 0–1 cm representing a border
of 1 cm around the CTV and 1–2 cm representing a bor-
der of 1 cm around the aforementioned ring ROI, with
the purpose of illustrating the decay of dose beyond
the target. We can see here, as well as in Figures 4
and 5, that the decrease is slower for the automatically
generated dose than for the non-robust and predicted
doses, which is an expected effect of delivering more
of the prescribed dose. However, the decrease is very
similar to that of the manually generated dose. In sum-
mary, the proposed pipeline is able to generate doses
that are robust with respect to the scenarios, while we

see certain expected effects from delivering more dose
than in the non-robust case.

4 DISCUSSION

In this work, we have presented a data-driven approach
to robust automated radiation therapy treatment plan-
ning. Using a data set of non-robust proton plans
and a two-step scenario dose prediction model with a
DVH-based loss function term, we were able to predict
relatively realistic scenario doses with target coverage
comparable to that of the nominal ground truth dose.
By using them as scenario-specific reference doses
in a robust dose mimicking problem, we were able to
create robust deliverable plans consistently delivering
sufficient target coverage at the cost of an expectedly
higher dosage to surrounding tissue than the predicted
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TABLE 2 The minimum, maximum, mean, and standard deviation of the dose statistics for the different dose types evaluated across the 45
scenarios for each test patient

Goal Type Min (cGy) Max (cGy) Mean (cGy) Std (cGy)

Non-robust 4697 7523 6488 542

CTV, D98% Predicted 7119 7512 7401 73

Robust 6975 7574 7386 111

Manual 7342 7511 7429 31

Non-robust 7836 8688 8117 159

CTV, D2% Predicted 7887 8000 7939 25

Robust 7819 7987 7894 31

Manual 7884 8044 7948 28

Non-robust 404 7555 3885 1793

Bladder, D10% Predicted 70 7375 3500 1869

Robust 1093 7622 5481 1648

Manual 868 7620 5495 1726

Non-robust 651 7029 3338 1586

Rectum, D10% Predicted 371 6675 2947 1524

Robust 1620 7662 5362 1462

Manual 1974 7557 5349 1316

Non-robust 4795 6440 5742 369

Ring 0–1 cm, Dmean Predicted 5216 5862 5565 136

Robust 6321 7181 6867 157

Manual 6515 7202 6892 136

Non-robust 1606 3101 2297 350

Ring 1–2 cm, Dmean Predicted 1902 2315 2104 104

Robust 2952 4294 3755 306

Manual 3154 4102 3746 244

and non-robust doses. Compared to manually gener-
ated benchmark plans, the produced plans were similar
in terms of DVH, dose statistic spread, and spatial dose.
While additional postprocessing of the automatically
generated plans may be needed in order to be consid-
ered clinical, as is the case with automated planning
algorithms in general, the results serve to showcase
the feasibility of our type of workflow—that is, the
combination of scenario dose prediction and robust
dose mimicking.

Among the advantages of our method are the non-
requirement of a robustly planned data set for training,
the generality and flexibility associated with separating
the task of scenario dose prediction into a nominal
and scenario model, and the more rigorous handling
of setup and range uncertainties through robust opti-
mization rather than through, for example, margins.
Although experiments were performed on proton plans,
for photons, especially, one may want to have the
choice of whether or not to use robust planning. In
such cases, access to a completely robust training
data set may be too high a requirement. By separating
the dose prediction pipeline into the image-to-nominal
and nominal-to-scenario parts, we may use instead

use data obtained from robust evaluation to learn the
physical deformations associated with each scenario.
Along with the DVH loss aimed at controlling target
coverage of the scenario model outputs, the result is
a highly general framework for handling robustness in
automated treatment planning.

However, one disadvantage of the method is that
there is a lack of theoretical rigor for predicting realistic
scenario doses with better target coverage.With our loss
functions, the optimal output of the scenario model is a
dose that is identical to the non-robust ground truth out-
side the CTV and identical to the nominal dose within
the CTV, which is a discontinuous dose. In practice,
smoothness is introduced by the convolutional design
of the neural network, but this notion is hard to control
exactly. Insofar as the predicted scenario doses are sim-
ilar to the non-robust scenario ground truth far from the
target, similar to the nominal ground truth in the target
and some smoothened mixture in between, they can be
understood to represent a theoretically ideal scenario
dose given a fixed nominal dose. They should, however,
be strictly more realistic than the nominal dose in each
nonnominal scenario—indeed, using the nominal dose
as reference dose in all scenarios is guaranteed not
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to be achievable. Hence, even though the predicted
scenario doses may not always be physically realizable,
the introduction of an additional scenario-specific dose
prediction shrinks the gap between reference dose and
physically realizable dose in the dose mimicking phase.

Apart from addressing the smoothness issue, future
research may include evaluating the proposed method-
ology on data sets with different treatment modalities,
delivery techniques, and robustness parameters. For
protons and heavy ions, one may also generalize the
current scenario dose prediction to a version in which
beam doses are predicted separately, with the addi-
tion of beam-specific objective functions in the dose
mimicking optimization problem. The scenario dose
prediction may also be used in other contexts than
automated planning, for example, for quality assur-
ance purposes. Moreover, one may try to combine the
current framework with a semiautomatic multicriteria
optimization methodology such as in Zhang et al.24

All in all, the incorporation of robustness into machine
learning–automated treatment planning enables ample
new opportunities to be explored.

5 CONCLUSIONS

We have presented a new data-driven approach to
robust automated treatment planning, combining pre-
diction of spatial scenario doses with robust dose
mimicking. By dividing the former part into a nominal
and a scenario dose prediction model, and using a DVH
loss during training, we are able to predict for each new
patient scenario doses with a robustly covered target
using a non-robust training data set. Subsequently,
through robust dose mimicking, we obtain plans robust
against the same scenario set. The numerical results
serve to demonstrate the feasibility of the proposed
methodology, which has the potential of facilitating the
incorporation of robustness into automated planning.
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