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ABSTRACT

This article reviews the Bayesian inference with the Monte Carlo Markov Chain (MCMC) and 
the Hamiltonian Monte Carlo (HMC) samplers as a competitor of the classical likelihood 
statistical inference for pharmacometricians. The MCMC and the HMC samplers have 
greatly contributed to realization of the Bayesian methods with minimal requirement of 
mathematical theory. They do not require any closed form of the posterior density nor linear 
approximation of complex nonlinear models in high dimension even with non-conjugate 
priors. The HMC even weakens the dependency of the chain and improves computational 
efficiency. Pharmacometrics is one of great beneficiaries since they use complex multivariate 
multilevel nonlinear mixed effects models based on the restricted maximum likelihood 
estimation. Comprehension of the Bayesian approach will help pharmacometricians to 
access the data analysis more conveniently.

Keywords: Likelihood Estimates; Bayesian Inference; Monte Carlo Markov Chain; 
Hamiltonian Monte Carlo

INTRODUCTION

The main objective of this article is to provide a review of Bayesian methods to 
pharmacometricians. Statistical inference on the clinical trial data collected from subjects 
among vast populations is a routine task in pharmacometrics. Even a simple ‘PK analysis’ 
with only one compartment involves a complicated nonlinear mixed effects model with 
multiple parameters expressing the human body in probability [1-3]. To fit the non-linear 
mixed effects models, the classical statistical inference linearizes the non-linear models 
based on the first-order or second-order Taylor approximations and looks for the estimators 
based on the restricted likelihood estimation (REML) which involves complicated high 
dimensional integration [2-5]. The traditional Bayesian inference needs calculation of 
the posterior density, which requires high dimensional integration. Meanwhile, Bayesian 
sampling methods like the Monte Carlo Markov Chain (MCMC) and the Hamiltonian Monte 
Carlo (HMC) do not seek for an analytical solution, do not linearize non-linear models, do 
avoid high dimensional and analytical integrations, and thus have quickly evolved with their 
computational efficiency [3,6-10]. As a target function, they require only the likelihood 
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function and prior densities instead of an explicit posterior density. They have become 
daily necessities in Pharmacometrics as an appealing alternative of the classical likelihood 
statistics and the traditional Bayesian methods. This article will review principles of the 
classical inference as well to provide an outline of Bayesian data analysis.

The major difference between frequentists and Bayesians lies in whether the target 
parameter θ is an unknown fixed constant or a random variable following a prior distribution 
carrying its information. [11-14] There have been already innumerable literatures on the 
Bayesian approach. A recent article by Lee [3] provides an excellent mathematical review 
on the Bayesian approach on the nonlinear mixed effects models commonly used in 
Pharmacometrics. This article starts with the traditional statistical inference to position the 
Bayesian approach within its outline. The best way not to get lost in the overflow of statistical 
techniques is to keep the map in mind and keep referring back to global and local goals.

Section 2 will review classical likelihood statistics with the goodness-of-fit criteria including 
the Akaike information criterion (AIC). Section 3 will review basic Bayesian inference with 
the Bayesian information criterion (BIC) and the posterior odds (PO) and the Bayes factor 
(BF) [15-18]. Section 4 will review the Monte Carlo Method and the Markov Chain to be 
combined as the Bayesian samplers like the MCMC and the HMC.

CLASSICAL LIKELIHOOD INFERENCE

Estimation and test
For a set of data (x1,y1),(x2,y2),…,(xn,yn), we assume a linear model such as

𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝛽𝛽𝛽𝛽 + 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖 ,  (1)

where xi in Rp and the errors εi are independent and identically distributed with a probability 
density or mass function f which is often a normal distribution with the mean 0 and variance 
σ2. If xi=1, then the model includes only the intercept which is the grand mean μ. The overall 
goal of the data analysis is to estimate the unknown parameter θ={β,σ2} and test hypotheses 
in order to select a good model [11-14,17,18]. Let θ̂ be a point estimator of θ. The bias is 
defined as the difference between the expected value of the estimator and the true parameter,

 Bias(θ̂)=E[θ̂]−θ.

The estimator is said to be unbiased if the bias is zero. The unbiasedness is called 
consistency for large samples and ergodicity for stochastic processes with dependency. At the 
significance level α, a two-sided hypothesis is

 H0: θ=θ0 H1: θ≠θ0.

For p-value less than α, H0 is rejected. The 100(1−α)% confidence interval (CI) satisfies

 P(θ∈CI)=1−α.

If the 95% CI does not include θ0, then H0 is rejected at the significance level 0.05. A common 
goodness-of-fit criterion of the point estimator θ̂ is the mean squared error (MSE) which is [17]

 MSE=E[(θ− θ̂)2]=(Bias(θ̂))2+Var(θ̂).

The estimator with smaller MSE is better. There is a bias-variance tradeoff as the bias gets big 
when the variance gets small.
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The most popular point estimator has been the maximum likelihood estimator (MLE) which 
maximizes the likelihood function L(θ) and the log-likelihood function ℓ(θ) [11-14,17,18]

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = �𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖; 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖𝜃𝜃𝜃𝜃),
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 ℓ(𝜃𝜃𝜃𝜃) = log 𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃). 

The MLE θ̂MLE is defined as

𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = argmax
𝜃𝜃𝜃𝜃

𝐿𝐿𝐿𝐿(𝜃𝜃𝜃𝜃) = argmax
𝜃𝜃𝜃𝜃

ℓ(𝜃𝜃𝜃𝜃) 

and it is obtained by solving the equation 𝜕𝜕𝜕𝜕ℓ
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= 0 . At θ̂MLE, ℓ(θ) takes its maximum, its derivative 
is zero, and θ̂MLE is the most likely value of the parameter θ for given data. For a large n, the 
MLE follows an asymptotic normal distribution,

𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  ≈  𝑁𝑁𝑁𝑁 �𝜃𝜃𝜃𝜃 ,
1
𝑛𝑛𝑛𝑛
𝐼𝐼𝐼𝐼−1�𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��. 

  
𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  ≈  𝑁𝑁𝑁𝑁 �𝜃𝜃𝜃𝜃 ,

1
𝑛𝑛𝑛𝑛
𝐼𝐼𝐼𝐼−1�𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��. 

The Fisher Information I(θ) is said to be

𝐼𝐼𝐼𝐼(𝜃𝜃𝜃𝜃) = −𝐸𝐸𝐸𝐸𝜃𝜃𝜃𝜃 ��
𝜕𝜕𝜕𝜕2ℓ(𝜃𝜃𝜃𝜃)
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃 𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃𝑇𝑇𝑇𝑇

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

�. 

The MLE is consistent, which means it is asymptotically unbiased for a large sample 
or E[θ̂MLE]≈θ [14-17]. Under the normality condition, the MLEs and the maximum log-
likelihood (MLL) are

�̂�𝛽𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = (𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋)−1𝑋𝑋𝑋𝑋𝑇𝑇𝑇𝑇𝑋𝑋𝑋𝑋,  𝜎𝜎𝜎𝜎�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 =
1
𝑛𝑛𝑛𝑛
� (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2 (2)

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
 

 

 

ℓ�𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀� = −
𝑛𝑛𝑛𝑛
2

log(2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2 ) −
𝑛𝑛𝑛𝑛
2

. 

 
In pharmacometrics, multilevel non-linear mixed effects models are of the form [3,5,19,20]

 y=f(t,θ)+ε

 θ=F(β,x,η)

 ε~N(0,σ2,I), η~N(0,ω2I).

In the individual-level model, f is a differentiable real-valued function to describe the non-linear 
model, t is time, the parameter θ is subject-specific, and ε is the within-subject error with a 
variance σ2I. In the population model, F is often a linear model, β is a population-level fixed 
effect, and x is a covariate, and η is the random effect. The simplest population model is θ=xTβ+η.

The REML estimation method is often used and its likelihood function [3] is complicated as

 L(β,σ2,Ω|y)=∫fY(y|β,η,σ2)fη(η|Ω)dη.

Compared to ordinary linear models, it has an additional random effect η with its variance 
Ω as a kind of penalty. Often, the non-linear f(t,θ) is linearized based on a first-order 
or second-order Taylor approximations and then the Newton-Raphson method or the 
expectation-maximization (EM) algorithm are applied to iteratively compute the MLE [5,21]. 
The EM-algorithm alternates two steps, calculates the expected log-likelihood function in 
the expectation step, and estimates and updates the parameter in the maximization step. The 
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algorithm repeats the two steps until the estimate converges. The software NONMEM [17] 
fits the pharmacokinetics/pharmacodynamics (PK/PD) models in pharmacometrics. See Kim 
et al. [20] for details.

Model selection criteria
The Wilks’ test can be used as a model selection criterion [5,17,18,22] when the MLE is used. 
For a large sample, the MLL follows an approximate chi-square distribution with degrees of 
freedom d which is the dimension of the parameter space or the number of parameters to be 
estimated in the model,

 −2MLL=−2 ℓ(θ̂MLE)→χ2(d).

The greater MLL provides the better evidence for the model. Suppose we compare the two 
nested models, a reduced model versus a general model. Then the hypotheses are

 H0: reduced model

 H1: general model,

where H0⊆H1. Let θ̂r be the MLE under H0 and θ̂g be the MLE under H1. The test statistic Δ is 
defined and its asymptotic distribution is as follows:

 Δ=2 (ℓ(θ̂g)−ℓ(θ̂r))→χ2(dg−dr).

The degrees of freedom (dg−dr) is the dimension difference between the two parameter 
spaces. At the significance level 0.05, the decision is to reject H0 if Δ > 𝜒𝜒𝜒𝜒0.05

2 (𝑑𝑑𝑑𝑑𝑔𝑔𝑔𝑔 − 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟) [5,17]. 
The AIC [15,16] assesses goodness-of-fit,

 AIC=−2 ℓ(θ̂MLE)+2 d.

The AIC also includes penalty on the dimension d of the parameter space to prevent including 
too many explanatory variables in the model. We select a model with the smallest AIC. If the 
Fisher information matrix I(θ) is not positive definite for all θ, the generalized Watanabe-
AIC (WAIC) can be used [23]. As a general criterion of goodness-of-fit of the model, the 
prediction error is assessed by the empirical MSE

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
� (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1
. 

The model with smaller MSE is preferred. As mentioned in section 2.1, there is the bias-
variance tradeoff and note that it has the same form as eq. (2).

BAYESIAN INFERENCE

As computing power is no longer a barrier, the Bayesian method is more competitive than 
ever, replacing the classical likelihood statistics [11-18]. For a target parameter θ in eq. (1), let 
us first define the prior density function (pdf ) p(θ) such as

�𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃)𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 = 1.  1.

The joint pdf of Y and θ is defined as product of the conditional density function fY|Θ(y|θ) and 
the prior density function

 fY,Θ(y,θ)=fY|Θ(y|θ)p(θ).
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Note that fY,Θ(y,θ) is the likelihood function L(θ). The marginal pdf of Y is obtained by 
integrating the joint pdf with respect to θ,

 fY(y)=∫fY,Θ(y,θ)dθ=∫fY,Θ(y|θ)p(θ)dθ

The posterior pdf p(θ|x,y) is then obtained as

𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃|𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) =
𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌,Θ(𝑦𝑦𝑦𝑦,𝜃𝜃𝜃𝜃)
𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑦𝑦𝑦𝑦) =

𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌| Θ(𝑦𝑦𝑦𝑦|𝜃𝜃𝜃𝜃)𝑝𝑝𝑝𝑝(θ)
𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑦𝑦𝑦𝑦)  ∝ 𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌| Θ(𝑦𝑦𝑦𝑦|𝜃𝜃𝜃𝜃)𝑝𝑝𝑝𝑝(θ). 

Ignoring the normalizing marginal function fY(y), the posterior pdf is proportional to product 
of the likelihood function and the prior density,

 posterior ∝ likelihood×prior.

The most popular loss function is the squared error loss function

 L(θ, θ̂B)=(θ−θ̂B)2

and its expectation is called the risk function R(θ,θ̂B). The Bayesian estimator θ̂B is defined to 
minimize the risk function and minimize the conditional risk function for given Y,

𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵(𝑌𝑌𝑌𝑌) = argmin
𝜃𝜃𝜃𝜃

𝐸𝐸𝐸𝐸�𝐿𝐿𝐿𝐿�𝜃𝜃𝜃𝜃,𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵�� =  argmin
𝜃𝜃𝜃𝜃

𝐸𝐸𝐸𝐸 �𝐸𝐸𝐸𝐸 �𝐿𝐿𝐿𝐿 �𝜃𝜃𝜃𝜃,𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵(𝑌𝑌𝑌𝑌)� |𝑌𝑌𝑌𝑌�� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎min
𝜃𝜃𝜃𝜃
𝐸𝐸𝐸𝐸 �𝐿𝐿𝐿𝐿 �𝜃𝜃𝜃𝜃,𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵(𝑌𝑌𝑌𝑌)� |𝑌𝑌𝑌𝑌�. 

The Bayesian estimator θ̂B(Y) is obtained at its minimum value where its derivative is zero,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵

 𝐸𝐸𝐸𝐸�𝐿𝐿𝐿𝐿�𝜃𝜃𝜃𝜃,𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵�|𝑌𝑌𝑌𝑌� =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵

��𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵�
2
𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃|𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 = −2��𝜃𝜃𝜃𝜃 − 𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵� 𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃|𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝜃𝜃𝜃𝜃 = 0. 

Solving the last equality, we can get the Bayesian estimator θ̂B(Y) such as

 θ̂B(Y)=E[θ|Y]=∫θpΘ|Y(θ|y)dθ.

The Bayes estimator for the squared error loss function is the posterior mean.

There are some issues on practical use of the Bayesian method because calculating the 
posterior density and posterior mean requires intricate mathematics when models are 
complex in high dimension. In addition, selecting a prior is an important issue to avoid 
subjectivity argument. When there is no prior information, we can try a noninformative 
symmetric pdf such as the uniform or normal or Cauchy distributions. The transformation 
invariant Jeffrey’s prior is another choice, which is proportional to the square root of the 
determinant of the Fisher information �|𝐼𝐼𝐼𝐼(𝜃𝜃𝜃𝜃)|  [24]. If the prior and the posterior densities 
belong to the same distribution family, then the prior is called the conjugate prior. Well-
known conjugate priors are Normal-Normal, Normal-Inverse Gamma, Poisson-Gamma, 
Geometric-Gamma, Multinomial-Dirichlet, Uniform-Pareto, Exponential-Gamma, and so on.

For large samples, the Bayesian estimator is very close to the MLE [14]. Under appropriate 
regularity conditions, the asymptotic distribution of the Bayesian estimator θ̂B for large n is

𝜃𝜃𝜃𝜃�𝐵𝐵𝐵𝐵 ≈ 𝑁𝑁𝑁𝑁 �𝜃𝜃𝜃𝜃�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 ,   
1
𝑛𝑛𝑛𝑛

 𝐼𝐼𝐼𝐼−1�𝜃𝜃𝜃𝜃 �𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��, 

where θ̂MLE is the MLE and I(θ) is the Fisher Information. The Bayesian estimator is consistent 
like the MLE. The 100(1−α)% Bayesian credible interval is defined as
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𝑃𝑃𝑃𝑃(𝜃𝜃𝜃𝜃𝐿𝐿𝐿𝐿∗(𝑌𝑌𝑌𝑌) < 𝜃𝜃𝜃𝜃 < 𝜃𝜃𝜃𝜃𝑈𝑈𝑈𝑈∗ (𝑌𝑌𝑌𝑌)|𝑌𝑌𝑌𝑌) = 1 − 𝛼𝛼𝛼𝛼. 

The 𝜃𝜃𝜃𝜃𝐿𝐿𝐿𝐿∗(𝑌𝑌𝑌𝑌)  and 𝜃𝜃𝜃𝜃𝑈𝑈𝑈𝑈∗ (𝑌𝑌𝑌𝑌)  are α/2 and (1−α/2) posterior quantiles, respectively. A smart 
numerical method using the Laplace integration method [25] was applied to earn the 
Bayesian estimators. Nevertheless, its practical calculation, for example an approximate 
posterior mean E[θ|Y], can be still an agony if it has to be done with complex models in high 
dimension.

The BIC is defined as

 BIC=−2ℓ(θ̂MLE)+d ln n.

The BIC also include penalty on the dimension d of the parameter space to prevent including 
too many explanatory variables in the model. If the Fisher Information is not positive 
definite, the Watanabe-BIC can be used [23]. Let us call the general data set as Z=X or Z=Y or 
Z=(X,Y) in eq. (1). For models M1, M2, and M, the PO is defined as

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀1|𝑍𝑍𝑍𝑍)
𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀2|𝑍𝑍𝑍𝑍) =

𝑝𝑝𝑝𝑝(𝑍𝑍𝑍𝑍|𝑀𝑀𝑀𝑀1)
𝑝𝑝𝑝𝑝(𝑍𝑍𝑍𝑍|𝑀𝑀𝑀𝑀2) 

𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀1)
𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀2). 

Here, p(Z|M) corresponds to the likelihood, p(M|Z) to the posterior density, and p(M) to the 
prior, and the first term on the righthand side is called the BF. If PO >1, then the model M1 
is selected. In terms of the BIC, the posterior probability of the model Mi among m models 
approximates to

𝑝𝑝𝑝𝑝(𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖|𝑍𝑍𝑍𝑍) ≈
exp �−1

2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖)�

exp �− 1
2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀1)� + exp �− 1

2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀2)� + ⋯+ exp �− 1
2𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚)�

. 

The model with the minimum BIC can be selected with the largest posterior probability [17].

SAMPLING METHODS FOR BAYESIAN INFERENCE

Monte Carlo method
From this section, let us generalize the notation as Z=X or Z=Y or Z=(X,Y). If Z=(X,Y), Y is a 
random variable for fixed X in eq. (1). The Monte Carlo is a widespread numerical integration 
method which was originally developed by John von Neumann and Stanislaw Ulam in the 
mid-1940s [26,27]. Adopting the Monte Carlo method, let us simulate {θ(1),θ(2),…,θ(n)} from 
p(θ|Z) and take the average as an estimate of the posterior mean of θ. By the law of large 
numbers, the sample mean converges to the posterior mean of θ

𝐸𝐸𝐸𝐸[𝜃𝜃𝜃𝜃|𝑍𝑍𝑍𝑍] ≈
1
𝑛𝑛𝑛𝑛
�𝜃𝜃𝜃𝜃(𝑖𝑖𝑖𝑖)
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

as n→∞. For the 95% credible interval (𝜃𝜃𝜃𝜃𝐿𝐿𝐿𝐿∗(𝑧𝑧𝑧𝑧),𝜃𝜃𝜃𝜃𝑈𝑈𝑈𝑈∗ (𝑧𝑧𝑧𝑧)) , the 0.025 quantile and the 0.975 
quantile of the sample can be used for 𝜃𝜃𝜃𝜃𝐿𝐿𝐿𝐿∗(𝑧𝑧𝑧𝑧)  and 𝜃𝜃𝜃𝜃𝑈𝑈𝑈𝑈∗ (𝑧𝑧𝑧𝑧) . As an example, we generate a sample 
of size 1000 from the posterior density p(θ|z). With their order statistics θ(1)≤θ(2)≤θ(3)≤…≤θ(1000), 
the equal-tailed 95% Bayesian credible interval can be calculated as (θ(25),θ(975)), where the 
0.025 quantile is 𝜃𝜃𝜃𝜃𝐿𝐿𝐿𝐿∗(𝑧𝑧𝑧𝑧) = 𝜃𝜃𝜃𝜃(25)  and the 0.975 quantile is 𝜃𝜃𝜃𝜃𝑈𝑈𝑈𝑈∗ (𝑧𝑧𝑧𝑧) = 𝜃𝜃𝜃𝜃(975) .
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Sampling methods
For the Monte Carlo method to efficiently work for the Bayesian approach, sampling from the 
posterior density should be affordable. Sampling methods have started with the very basic 
inversion method [12] and evolved to rejection sampling methods [13,28,29], the importance 
sampling method [17], and the Gibbs sampling method which simulates iteratively 
p(x|y,z),p(y|x,z),p(z|x,y) for random variables X, Y, and Z in turn [17].

As an integrating concept of all these various sampling methods, in 1953 the Metropolis 
algorithm was first published [6] and in 1970, Hastings extended it to more general cases 
[7]. In the 1990s, the name “Metropolis-Hastings Algorithm” was mentioned by Chib and 
Greenberg [8]. The HMC sampler employed the very classical Newton’s law in the stochastic 
process and efficiency has dramatically improved [3,6-10]. Both the MCMC and the HMC 
samplers have introduced a different paradigm from both classical likelihood statistics and 
traditional Bayesian statistics. Above all, the Bayesian methods with the two samplers do 
require only the shape of the posterior density as product of the likelihood and the prior 
[7,28-32]. Since then, the MCMC and HMC have played the major role among Bayesian 
methods. The Gibbs sampling method is applied as a part of the MCMC algorithm [17]. 
The HMC sampling method adopting differentials turned out to work better with high 
computational efficiency. Since Markov chain is not independent, we need stationarity for its 
convergence and ergodicity for its consistency.

Markov chain
As computing power is no longer worry, the Markov chain [33] was adopted to the Bayesian 
method. There are states which communicate one another with transition probabilities. A 
Markov chain describes a memoryless process of transition events, where any future state 
depends only on the present state and does not remember the past states [34,35]. The 
stochastic process {Z1,Z2,…,Zn,…} is a Markov chain if it satisfies

 P(Zn+1|Z0,Z1,Z2,…Zn)=P(Zn+1|Zn).

A process moves from state to state according to the transition probability.

For example, let us consider a Markov chain with two states S1 and S2 as in Fig. 1. For 
transition probabilities P11=P(Zn+1=1|Zn=1)=0.3, P12=P(Zn+1=2|Zn=1)=0.7, P21=P(Zn+1=1|Zn=2)=0.4, 
P22=P(Zn+1=2|Zn=2)=0.6, the corresponding transition probability matrix is given by

P = �0.3 0.7
0.4 0.6�. 
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0.3 0.6S1 S2

0.4

0.7

Figure 1. A Markov Chain with two states.



The rows represent the current state and the columns represent the future state. Let us start 
at an initial state π0=(1,0) which means that the chain is located at S1 with probability 1. Then, 
when n=1, it will be found at S1 with probability 0.3 and at S2 with probability 0.7, which can be 
calculated by multiplying π0 and P as

 π1=π0P=(0.3,0.7)

 π2=π1P=(π0P)P=π0P2=(0.37,0.63)

Let transition of the chain continue. Then, the probability πn of being in states S1 and S2 at 
step n converges to the equilibrium distribution π as n→∞.

 πn=π0Pn→π=(0.3636364,0.6363636)

It means that eventually the probability of chain being found at S1 is 0.3636364 and the 
probability of chain being found at S2 is 0.6363636. Regardless of the starting states, after an 
adequate number of transitions, the limiting probability of the Markov chain being found at 
any of the two states is π. Then, the general balance equation is as follows:

 πP=π.

Samples from the Markov chains are not independent, which violates the well-known 
independence assumption of the classical likelihood statistics and traditional Bayesian 
methods. The Markov chain is said to be stationary if its statistical properties do not change 
according to time. Stationarity assures existence of the limiting distribution π, mean, 
and variance. A Markov chain is said to be ergodic if its time average approximates to the 
statistical mean, which implies its asymptotic unbiasedness. If a Markov chain is irreducible, 
aperiodic, and recurrent, it is ergodic. Stationarity and ergodicity of the Markov chain are 
required to assure existence of asymptotically unbiased estimator of the parameter [35].

Even though ignoring details does not hurt, let us mention brief definitions before moving 
to the next step. A Markov chain is irreducible if one state can be reached from every other 
state in finite time regardless of the initial sate, recurrent if all states are recurrent, aperiodic 
to ensure that the states of the whole chain are not partitioned into subsets with periodic 
recurrent states [36].

The MCMC algorithm
The major issue of the MCMC is stationarity and ergodicity so that the time average converges 
to a Bayes estimator which is a consistent estimator of θ [6,7,35,36]. The MCMC solves local 
or detailed balance equations instead of the big simultaneous general balance equation. For 
a pair of states Si and Sj in the Markov chain and the target distribution π, let us consider the 
proposal probability of moving from the Si to Sj as P(Si→Sj). The Markov chain is said to be 
time reversible if The Markov chain satisfies detailed balance

 π(Si)P(Si→Sj)=π(Sj)P(Sj→Si),  (3)

where both forward and the backward processes are the same. If detailed balance holds for 
every pair of states, then the Markov chain is known to be generally balanced and a stationary 
distribution θ exists.

Let us construct a stochastic process {x(0),x(1),…,x(n),…} from the target function θ. Keeping 
the detailed balance eq. (3), the MCMC first proposes a candidate and accept only as much as 
the acceptance probability to keep the detailed balance of the chain. At step n, the algorithm 
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proposes the chain to move from the current state x(n) to a new state y with the proposal 
probability q(y|x(n)). For implementation, we first sample y from a proposal distribution 
q(y|x(n)) as a candidate of a new chain x(n+1). Secondly, at the current state x(n) the Hasting’s 
acceptance probability of y

𝛼𝛼𝛼𝛼�𝑥𝑥𝑥𝑥(𝑛𝑛𝑛𝑛),𝑦𝑦𝑦𝑦� = min �1,
𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦)𝑞𝑞𝑞𝑞�𝑥𝑥𝑥𝑥(𝑛𝑛𝑛𝑛)�𝑦𝑦𝑦𝑦�
𝜋𝜋𝜋𝜋(𝑥𝑥𝑥𝑥(𝑛𝑛𝑛𝑛))𝑞𝑞𝑞𝑞�𝑦𝑦𝑦𝑦�𝑥𝑥𝑥𝑥(𝑛𝑛𝑛𝑛)�

�  (4) 

is calculated. For symmetric proposal distributions like the uniform distribution, the normal 
distribution, t or Cauchy distribution, the proposal rate is q(x(n)|y)/q(y|x(n))=1. Finally, sample 
u from U(0,1) and accept y as x(n+1) if u<α(x(n),y). The acceptance probability is maintained 
because P(U<α)=α.

The detailed balance holds for the Hasting’s α as mentioned in the lecture note “MCMC and 
Bayesian Modeling” of Haugh in 2017
 α(x,y)π(x)q(y|x)

 = min �1,
𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦)𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥|𝑦𝑦𝑦𝑦)
𝜋𝜋𝜋𝜋(𝑥𝑥𝑥𝑥)𝑞𝑞𝑞𝑞(𝑦𝑦𝑦𝑦|𝑥𝑥𝑥𝑥)� 𝜋𝜋𝜋𝜋

(𝑥𝑥𝑥𝑥) 𝑞𝑞𝑞𝑞(𝑦𝑦𝑦𝑦|𝑥𝑥𝑥𝑥) = min �1,
𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦)𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥|𝑦𝑦𝑦𝑦)
𝜋𝜋𝜋𝜋(𝑥𝑥𝑥𝑥)𝑞𝑞𝑞𝑞(𝑦𝑦𝑦𝑦|𝑥𝑥𝑥𝑥)� 𝜋𝜋𝜋𝜋

(𝑥𝑥𝑥𝑥) 𝑞𝑞𝑞𝑞(𝑦𝑦𝑦𝑦|𝑥𝑥𝑥𝑥) 

 = min{π(x)q(y|x), π(y)q(x|y)}
 

= min �1,
𝜋𝜋𝜋𝜋(𝑥𝑥𝑥𝑥)𝑞𝑞𝑞𝑞(𝑦𝑦𝑦𝑦|𝑥𝑥𝑥𝑥)
𝜋𝜋𝜋𝜋(𝑦𝑦𝑦𝑦)𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥|𝑦𝑦𝑦𝑦)� 𝜋𝜋𝜋𝜋

(𝑦𝑦𝑦𝑦)𝑞𝑞𝑞𝑞(𝑥𝑥𝑥𝑥|𝑦𝑦𝑦𝑦) 

 = α(y,x)π(y)q(x|y)

The MCMC uses the product of likelihood and prior as a sampling target function avoiding 
the exact posterior density. For Z=X or Z=Y or Z=(X,Y), let us apply the MCMC to the Bayesian 
methods to the posterior density p(θ|z) as a target function π(θ). Then, the Hasting’s 
acceptance probability is as follows.

 α(θ(n),θnew)

 = min �1,
𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛|𝑧𝑧𝑧𝑧) 𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)|𝑧𝑧𝑧𝑧)𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)�

� 

  
= min

⎩
⎨

⎧
1,

𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
𝑓𝑓𝑓𝑓𝑍𝑍𝑍𝑍(𝑧𝑧𝑧𝑧) 𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�

𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛))𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛))
𝑓𝑓𝑓𝑓𝑍𝑍𝑍𝑍(𝑧𝑧𝑧𝑧)  𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)� ⎭

⎬

⎫
 

 = min �1,
𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�
𝑝𝑝𝑝𝑝(𝑧𝑧𝑧𝑧|𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛))𝑝𝑝𝑝𝑝(𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)) 𝑞𝑞𝑞𝑞�𝜃𝜃𝜃𝜃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)�

� 
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Metropolis-Hastings Algorithm
STEP 1. Choose an initial x(0).
STEP 2. Sample a proposal y~q(y|x(n)).
STEP 3. Calculate α(x(n),y).
STEP 4. Sample u~U[0,1].
STEP 5. If u<α(x(n),y),

then accept the proposal x(n+1)=y.
Otherwise reject the proposal y.
Repeat STEP 2-5.



The target function changes from the posterior density to the product of likelihood and the prior,

 Target Function π=Likelihood×Prior=p(z|θ)p(θ).  (5)

Therefore, the Bayesian methods with the MCMC are free from analytical or numerical 
integrations to get posterior density. After a burn-in process, the MCMC can produce an 
ergodic Markov chain and the Bayesian estimator θ̂B is obtained as the simple average of its 
simulated process.

HMC and No-U-Turn samplers (NUTSs)
The MCMC still has limitations in its computation. First, its efficiency is low since 
acceptance rate is sometimes as less as about 25% [37]. Secondly, the dependency between 
successive states in the MCMC has been a barrier towards improvement of its approximation 
accuracy. The HMC sampler weakens the chain dependency between successive states by 
employing the very classical Newton’s law and efficiency has dramatically improved [10,29-
31]. The HMC is known to be the most efficient because of speedy mixing error and small 
discretization error [3]. The Stan [38,39] and the Tensorflow [40] use the HMC as the default 
sampler. The HMC works well with the data in high dimension. The HMC uses differentials 
instead of direct integrals.

In a vector field of the Newton’s force, the Hamiltonian H is the total energy of the system as 
sum of the potential energy and the kinetic energy. By the law of energy conservation, the 
H is fixed while the particles move around the system over time. Assume that the position 
coordinate of the particles is θ=(θ1,θ2,…,θd) and an auxiliary variable p=(p1,p2,…,pd)~N(0,M) 
is their momentum coordinates satisfying pi=mivi or vi=pi/mi for mass mi and velocity vi. The 
kinetic energy is 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖2/(2𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖) . For the target distribution π(θ), the joint density f(p,θ) defines a 
Hamiltonian system as follows.

 A Total Energy H(p,θ)=−logf(p,θ)=−log(π(θ)f(p|θ))=−logπ(θ)−logf(p|θ)

The potential energy U(θ) and the kinetic energy K(p) are given by

 U(θ)=−logπ(θ).

 𝐾𝐾𝐾𝐾(𝑝𝑝𝑝𝑝) = − log 𝑓𝑓𝑓𝑓(𝑝𝑝𝑝𝑝|𝜃𝜃𝜃𝜃) = �
𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖2

2𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑

𝑖𝑖𝑖𝑖=1

=
1
2
𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀−1𝑝𝑝𝑝𝑝 

Thus, the total energy is

 
𝐻𝐻𝐻𝐻(𝑝𝑝𝑝𝑝,𝜃𝜃𝜃𝜃) = 𝑈𝑈𝑈𝑈(𝜃𝜃𝜃𝜃) + 𝐾𝐾𝐾𝐾(𝑝𝑝𝑝𝑝) = − log𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃) +

1
2
𝑝𝑝𝑝𝑝𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀−1𝑝𝑝𝑝𝑝.  (6) 

There are two differential equations, one for velocity and the other for force. In the 
Hamiltonian dynamics, the velocity v is the derivative of the position, velocity is momentum 
divided by mass vi=pi/mi, and the velocity is the derivative of the kinetic energy K(p). So, the 
first differential equation holds

 
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑣𝑣𝑣𝑣 =

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝑉𝑉𝑉𝑉

= 𝑀𝑀𝑀𝑀−1𝑝𝑝𝑝𝑝 

 
where M=diag(m1,m2,…,md). The force F is also the derivative of the momentum. The potential 
energy is defined as the negative integral of the force F along the path. In other words, the force 
F is the negative gradient of the potential energy. Thus, the second differential equation holds
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𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹 =

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

= ∇ log𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃) . 

 Simultaneously solving the two differential equations for θ, instead of seeking an analytic 
solution, the leapfrog integrator is adopted to implement Hamiltonian system. The path 
of the particle is discretized and the two derivatives are approximated according to a small 
step movement ∂t≈ε>0. From the two differential equations of v and F, we can get the small 
updates of θ and p,

 ∂θ≈(∂t) M-1p, ∂p≈(∂t) ∇logπ(θ).

For the Bayesian methods, the target function π(θ) is the posterior density and then

 ∇logπ(θ)=∇(logf(y|θ)+logp(θ)−logfY(y))=∇(logf(y|θ)+logp(θ))

which only needs the likelihood f(y|θ) and the prior p(θ). In the HMC, a particle changes half 
momentum, full position, and then another half momentum as a routine. Before and after 
the full-step update of θ, the momentum p updates twice only by half-steps ε/2 at each time. 
Then, for the current state (p(n), θ(n)) and the proposal state (p, θ), the acceptance rate is

 α(p(n),θ(n),p,θ)=min(1,exp{H(p(n),θ(n))−H(p,θ)}).  (7)

If the proposal is accepted, then the current parameter is replaced by the proposal. If the 
proposal is rejected, the current parameter is kept. At step 1, the auxiliary momentum is 
simulated and updated from the proposal normal distribution. For the size of L, the natural 
rule could be εL=1. The brief sketch of the HMC is as follows.

The HMC algorithm has the three essential tuning parameters, the covariance matrix M of 
z, the discretization step size ε, and the number of leap frog steps L. A poor choice of those 
would lead to a low efficiency of the HMC.
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Hamiltonian Monte Carlo Algorithm
Given θ(0), ε,L,M,logπ(θ)
STEP 1. Simulate a proposal momentum p(n)~N(0,M)
STEP 2. For i=1,…,L

𝑝𝑝𝑝𝑝 ← 𝑝𝑝𝑝𝑝 +
1
2

 𝜀𝜀𝜀𝜀 ∇ log 𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃) 

θ←θ+ε M-1p

𝑝𝑝𝑝𝑝 ← 𝑝𝑝𝑝𝑝 +
1
2

 𝜀𝜀𝜀𝜀 ∇ log 𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃) 

STEP 3. Calculate α(p(n),θ(n),p,θ).
STEP 4. Sample u~U[0,1].

if u<α(p(n),θ(n),p,θ)

then accept the proposal θ(n)=θ.

Otherwise reject θ.

Repeat STEP 1 to STEP 4.



As an extension of the HMC, the NUTS prevents trajectories from going back to the direction 
of the starting position [12]. During the burn-in period, the NUTS controls the discretization 
step size ε and the covariance matrix M of the momentum p. Once ε and M are adapted 
and then fixed, the NUTS controls the number of leapfrog steps L at each iteration. The 
NUTS moves in time back and forth to assure detailed balance of the chain for stationarity 
and ergodicity. For details, read the section of HMC of the stan Reference Manual in its 
homepage.

Software Stan
As a descendant of the BUGS (Bayesian inference Using Gibbs Sampling) released in 2007, 
the probabilistic program language Stan implemented the Bayesian HMC algorithms in C++ 
[38-42] including the MCMC with approximate numerical methods, the penalized maximum 
likelihood test. The Stan was named after Stanislaw Ulam (1909–1984) who invented the 
Monte Carlo Method. The Stan has a concrete structure of blocks such as data, transformed 
data, parameters, transformed parameters, model, and some generated quantities. See the 
official website https://mc-Stan.org/. The R package rstan is available and another R package 
brms has implemented the Stan in the syntax of lme4 [43,44]. In R [45], MCMCpack [46], 
hmclearn [31], and more packages are available. These Bayesian softwares fit real-world data 
to complex nonlinear mixed effects models using various non-conjugate priors even with 
high dimensional covariance matrices.

Bayesian regression with the MCMC and the HMC
Let us consider how the MCMC and the HMC can be applied to a simple linear regression 
model without the intercept and nonlinear mixed effects models. Thomas and Tu [31] 
presented an example of multiple regression, logistic regression, and Poisson regression with 
random subject effects with the HMC. We review the simple linear regression model without 
the intercept, which is for the given data (xi, yi),i=1,…,n,

 yi=β xi+εi, i=1,…,n

 εi~iid N(0,σ2).

Let us consider conjugate priors which 𝛽𝛽𝛽𝛽~𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2)  and σ2~IG(a,b),(σ2>0), where 𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2 , a,b are 
constant. The target parameter is θ=(β, σ2). The target function is proportional to product of 
the likelihood and the priors,
 𝑝𝑝𝑝𝑝(𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2|𝑦𝑦𝑦𝑦)  ∝  𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦|𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2)𝑝𝑝𝑝𝑝�𝛽𝛽𝛽𝛽�𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2�𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2|𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏), 

𝜋𝜋𝜋𝜋(𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2|𝑦𝑦𝑦𝑦) = 𝜎𝜎𝜎𝜎−𝑛𝑛𝑛𝑛 exp�−
1

2𝜎𝜎𝜎𝜎2
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

�  exp�−
𝛽𝛽𝛽𝛽2

2𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2
� (𝜎𝜎𝜎𝜎2)−𝑎𝑎𝑎𝑎−1 exp �−

𝑏𝑏𝑏𝑏
𝜎𝜎𝜎𝜎2
�. 

 We sample σ2 from IG(a,b), sample β from 𝑁𝑁𝑁𝑁(0,𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2) , calculate the target function π, and the 
acceptance ratio α in eq. (4) assuming the proposal distribution as U(0,1) or others. We repeat 
the iteration until enough (β,σ2) are accepted after a burn-in process.

For the HMC to be applied to the simple linear regression [31], π(θ) and ∇logπ(θ) are 
necessary. The target function π(θ) is the product of the likelihood and the prior. For σ2>0, we 
take a logarithmic transformation

 γ=logσ2, d(σ2)=eγdγ

to have γ ∈(−∞,∞). Then the log posterior density and the target function are
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https://mc-Stan.org/


 log𝑝𝑝𝑝𝑝(𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾|𝑦𝑦𝑦𝑦) = log 𝑓𝑓𝑓𝑓(𝑦𝑦𝑦𝑦|𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾) + log𝑝𝑝𝑝𝑝�𝛽𝛽𝛽𝛽�𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2� + log𝑝𝑝𝑝𝑝(𝛾𝛾𝛾𝛾|𝑎𝑎𝑎𝑎, 𝑏𝑏𝑏𝑏) + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑦𝑦) 

  log 𝜋𝜋𝜋𝜋(𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾|𝑦𝑦𝑦𝑦) = −� 
𝑛𝑛𝑛𝑛
2

+ 𝑎𝑎𝑎𝑎� 𝛾𝛾𝛾𝛾 −
𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾

2
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

− 𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝛾𝛾𝛾𝛾 −
𝛽𝛽𝛽𝛽2

2𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2
. 

 
We need its gradient which is going to be done as a part of the algorithm
 𝜕𝜕𝜕𝜕 log 𝜋𝜋𝜋𝜋( 𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾|𝑦𝑦𝑦𝑦)

 𝜕𝜕𝜕𝜕𝛽𝛽𝛽𝛽
= 𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

−
𝛽𝛽𝛽𝛽
𝜎𝜎𝜎𝜎𝛽𝛽𝛽𝛽2

 

 𝜕𝜕𝜕𝜕 log𝜋𝜋𝜋𝜋( 𝛽𝛽𝛽𝛽, 𝛾𝛾𝛾𝛾|𝑦𝑦𝑦𝑦)
𝜕𝜕𝜕𝜕 𝛾𝛾𝛾𝛾

= −�
𝑛𝑛𝑛𝑛
2

+ 𝑎𝑎𝑎𝑎� +
𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾

2
�(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛽𝛽𝛽𝛽𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

+ 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒−𝛾𝛾𝛾𝛾. 

 
We get β and γ by solving the differential equations using the leapfrog integrator in the HMC. 
The HMC samples p from N(0,M). Calculate H in eq. (6) and α in eq. (7).

Let us consider a multilevel non-linear mixed effects model as before [3],

 y=f(t,θ)+ε

 θ=F(β,x)+η

 ε~N(0,σ2I), η~N(0,ω2I)

The posterior density p(θ,σ2,ω2|y) is proportional to product of conditional densities and 
priors which is the target function such as

𝑝𝑝𝑝𝑝(𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2,𝜔𝜔𝜔𝜔2|𝑦𝑦𝑦𝑦) =
𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌,Θ(𝑦𝑦𝑦𝑦,𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2,𝜔𝜔𝜔𝜔2)

𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑦𝑦𝑦𝑦)  ∝  𝜋𝜋𝜋𝜋(𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2,𝜔𝜔𝜔𝜔2|𝑦𝑦𝑦𝑦) = 𝑓𝑓𝑓𝑓𝑌𝑌𝑌𝑌(𝑦𝑦𝑦𝑦|𝛽𝛽𝛽𝛽,𝜎𝜎𝜎𝜎2,𝜔𝜔𝜔𝜔2) 𝑓𝑓𝑓𝑓Θ (𝜃𝜃𝜃𝜃| 𝜔𝜔𝜔𝜔2)𝑝𝑝𝑝𝑝(𝛽𝛽𝛽𝛽)𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2)𝑝𝑝𝑝𝑝(𝜔𝜔𝜔𝜔2). 

fY(y|θ, σ2) is N(f(t, θ),σ2I) and fΘ(θ|ω2) is N(F(β, x),ω2I). Using the Gibbs sampling method 
again, we simulate β from p(β), σ2 from p(σ2), ω2 from p(ω2) [3]. Then we calculate fY(y|θ,σ2), 
fΘ(θ|ω2), the target function π and the acceptance ratio α in eq. (4) assuming the proposal 
distribution as U(0,1) or others.

Now let us look at the HMC [3]. We take gradient of log-likelihood and logarithm of priors as 
pi from N(0,mi) for the given diagonal variance matrix M=diag(mi,…,md),

− log𝜋𝜋𝜋𝜋(𝜃𝜃𝜃𝜃|𝜎𝜎𝜎𝜎2,Ω,𝑦𝑦𝑦𝑦) =
1

2𝜎𝜎𝜎𝜎2
‖𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡,𝜃𝜃𝜃𝜃)‖2 +

1
2𝜔𝜔𝜔𝜔2 ‖𝜃𝜃𝜃𝜃 − 𝐹𝐹𝐹𝐹(𝛽𝛽𝛽𝛽, 𝑥𝑥𝑥𝑥)‖2 + log 𝑝𝑝𝑝𝑝(𝛽𝛽𝛽𝛽) + log 𝑝𝑝𝑝𝑝(𝜎𝜎𝜎𝜎2) + log 𝑝𝑝𝑝𝑝(𝜔𝜔𝜔𝜔2) 

 
The HMC gets its gradient ∇logπ, samples p from N(0,M), and solves the differential 
equations using the leapfrog integrator. It calculates H in eq. (6) and α in eq. (7). Lee [3] 
reviewed details of the HMC applied to Bayesian nonlinear models for repeated measure data 
including PK/PD models.

Once the point estimators are acquired, the fitted value can be evaluated with the point 
estimators substituted in the model. Then, the residuals are evaluated as the difference 
between the observed and fitted values. For further model selection, the goodness-of-fit 
criteria like the MSE, the likelihood function, the log-likelihood function, AIC, BIC, WAIC, 
WBIC, BF, PO, and so on can be consequently calculated.

Both the MCMC and the HMC algorithms sample from only shape of the posterior density 
without knowing the exact posterior density and without linearization of non-linear 
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models. Since the resulting chain is supposed to be stationary and ergodic, a time average 
is an estimate of the posterior mean. They do not calculate integrals analytically, which is 
beneficiary to complex models in high dimension. Lee [3] has given more thorough details of 
application of the Bayes approach to pharmacometrics.

DISCUSSION

The recent Bayesian samplers like the MCMC and the HMC have opened a new era of the data 
analysis which can fit the complex real-world models without worrying about closed-from 
of the posterior density in high dimension. In addition, various informative non-conjugate 
priors can be applied for complex multidimensional covariance. Especially when the priors 
are the Uniform distribution, the target function is the likelihood function and the Bayesian 
samplers can be applied intactly to classical likelihood statistics. Pharmacometricians are 
great beneficiaries since even the simplest one-compartment model is the form of nonlinear 
mixed effects model using the complex restricted maximum likelihood method. As much as 
advantage of the Bayesian method is outstanding, its theoretical background is widened to 
classical statistical inference, stochastic processes, and computational algorithms. Therefore, 
a review can always help pharmacometricians understand the Bayesian inference. This article 
has provided a preliminary outline of statistical inference and the Bayesian samplers like the 
MCMC and HMC in view of their stationarity and ergodicity.
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