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ABSTRACT

CircaDB (http://circadb.org) is a new database of
circadian transcriptional profiles from time course
expression experiments from mice and humans.
Each transcript’s expression was evaluated by
three separate algorithms, JTK_Cycle, Lomb
Scargle and DeLichtenberg. Users can query the
gene annotations using simple and powerful full
text search terms, restrict results to specific data
sets and provide probability thresholds for each al-
gorithm. Visualizations of the data are intuitive
charts that convey profile information more effect-
ively than a table of probabilities. The CircaDB web
application is open source and available at http://
github.com/itmat/circadb.

INTRODUCTION

Circadian rhythms are biological rhythms of �24 h in
many physiological and behavioral processes (1,2). These
rhythms are generated by a cell autonomous circadian
clock, present in most cells in mammals. This circadian
clock is composed of interlocked transcriptional, transla-
tional feedback loops, where transactivators activate
repressors that later feedback on the activators (3).
Components of the required E-box loop include Bmal1,
Bmal2, Clock and Npas2, bHLH-PAS transactivators,
Per1, Per2 and Per3, PAS domain containing repressors
and Cry1 and Cry2 (4), transcriptional repressors related
to cryptochromes from plants and insects. An important
secondary loop also exists, the ROR loop, which com-
prises Rev-erb-alpha, Rev-erb-beta, transcriptional repres-
sors, as well as Rora, Rorb and Rorg, transcriptional
activators (5–7). Factors in this loop regulate transcript
levels of several of the E-box components including
Bmal1, Cry1, Npas2 and Per2. The cAMP Responsive
Element Binding Protein (CREB) pathway (8,9) and
D-box binding factors, Dbp, Hlf, Tef, Nfil3, also regulate

clock function (10,11). Thus, transcription factors play a
major role in the functioning of the core clock.
In addition to regulating transcription of each other,

clock factors also impart circadian rhythms in expression
of many ‘output’ genes. First order clock control genes are
those directly regulated by clock factors (e.g.
Clock/Bmal1), while second order output genes could be
regulated by a first-order clock-control gene, but not clock
components (12–14). Because of this, the research commu-
nity has spent more than a decade cataloging genes under
clock control (12,13,15–17). Historically, these include
many disease genes, drug targets and important compo-
nents of various biological pathways (1,18–20). For
example, HMG-CoA reductase, the rate limiting enzyme
of cholesterol biosynthesis and target of statins, is under
clock control in liver (21). Several factors have catalysed a
more complete description of circadian rhythms, including
the advent of DNA arrays (16) and now RNA sequencing
(22), powerful statistical approaches to find rhythmic
genes (23) and appropriate experimental design.
The goal of CircaDB is to systematically collect, analyse

and visualize circadian expression profiles for bench
researchers in a simple and straightforward fashion.
Common queries are supported and include straightfor-
ward queries of expression profiles, as well as compound
queries searching keywords in the gene annotation, in
multiple tissues, with the ability to restrict results by prob-
ability of cycling.

MATERIALS AND METHODS

Various publicly available microarray time course studies
(23–26) were collected (Table 1). References and links to
download the expression data sets are outlined on the web-
site. Data from each study were re-analysed using three
circadian rhythm detection algorithms: JTK_CYCLE,
Lombe Scargle, de Lichtenberg (23,27,28). Table 2 lists
the runtime parameters of the algorithms on each data
set. The reported expression values from each study
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were not filtered, as each algorithm accounts for
technical replicates. The significance calls and other
results reported by each algorithm were entered into a
MySQL database.
Gene annotation data were downloaded from the

Affymetrix NetAffx resource (http://www.affymetrix.
com/analysis/index.affx). Annotations were then entered
into the database alongside the unfiltered experimental
values and the results of the circadian rhythm detection
algorithms. Transcript information was supplemented
with links to the GeneWiki project (29,30) and
Homologene (http://www.ncbi.nlm.nih.gov/homologene).
The data model for the database is described in Figure 1.
The transcript annotation and the statistical results were

indexed with the Sphinx full text search system (http://
sphinxsearch.com/). Visualization of data is accomplished
by created using pre-formatted URI requests to
the Google Charts API (https://developers.google.com/
chart/). The web application was coded using the Ruby
on Rails framework (http://rubyonrails.org/).
All source code for data loading and the web applica-

tion is licensed under the GNU General Public License
(GPL-2.0) license and available at http://github.com/
itmat/circadb.

RESULTS AND DISCUSSION

In creating CircaDB, we have provided the research com-
munity a clear, concise and powerful interface for
querying genes within the context of circadian expression
profile data. Another circadian expression database,

Diurnal 2.0 (31), provides a similar resource to CircaDB
but focuses on plant data. It also restricts its initial search
to transcript accessions, whereas CircaDB allows full
query capabilities on gene annotation. CircaDB provides
advanced keyword search capabilities of gene annotation.
This includes the ability to search by phrases, boolean
conditions and combinations thereof. Queries can also
be restricted by a given experiment’s data set, phase of
expression and significance of a particular algorithm
(Figure 2).

The Database of Circadian Gene Expression (24),
part of the Gene Atlas Project (32), contains a subset of
the same data sets in CircaDB, but uses a single circadian
expression algorithm. CircaDB contains all of these
data and re-analysed them with newer and more robust
set of algorithms (23,27,28). Three algorithms were used
to allow for the inspection of the differences between each
algorithm’s results (Figure 3). CircaDB is actively
maintained and will continue to add new features and
data sets as time they become available. Requests for
integration of data sets are handled via submitting a
request via the project site at Github. CiraDB also
provides integration expression profiles for use within
BioGPS (33).

Finally, to facilitate use of this database framework
by other researcher groups, we have made the source
code for the application freely available under the
GPL 2.0 open source license. The project has been
recently used to visualize circadian experiments for
Anopheles gambiae (34). All of these together make
CircaDB a unique and valuable resource for the circadian
research community.

Table 2. Runtime parameters for each data set and algorithm

Data set JTK_CYCLE Lomb Scargle De Lichtenberg

Panda 2002 Periods: 16–32 h minFrequency=1/32, maxFrequncy=1/18;
(periods=18–32 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Hughes 2009 (mouse) Periods: 6–42 h minFrequency=1/6, maxFrequncy=1/42;
(periods=6–42 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Hughes 2009 (human) Periods: 6–42 h minFrequency=1/6, maxFrequncy=1/42;
(periods=6–42 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Miller 2007 Periods: 16–32 h minFrequency=1/32, maxFrequncy=1/18;
(periods=18–32 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Andrews 2010 Periods: 20–28 h minFrequency=1/6, maxFrequncy=1/42;
(periods=6–42 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Rudic 2004 Periods: 16–32 h minFrequency=1/32, maxFrequncy=1/18;
(periods=18–32 h; #test frequencies: 4*N

Period=24h
#Permutations=10 000

Data sets are located in Table 1.
N=number of time points in the series.

Table 1. Expresssion data sets in CircaDB

Name Time points Species/tissue

Panda 2002 12 Mouse suprachiasmatic nuclei (SCN) of the hypothalamus, and liver
Hughes 2009 48 Mouse liver, NIH3T3 cells, pituitary gland and human U2OS cells
Miller 2007 and Andrews 2010 12 (WT) Wild type mouse liver, SCN and skeletal muscle

7 (KO) Clock mutant mouse liver, SCN and skeletal muscle
Rudic 2004 12 Mouse aorta, kidney
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Figure 2. (a) The query interface for CircaDB. The interface consists of a simple and powerful full-text search capability, with possible restrictions
on the data sets, phase information and a significance threshold for a given algorithm. (b) The set of available threshold categories for the circadian
classification algorithms.

Figure 1. The database schema. Boxes represent table, and edges represent foreign key relationships. Further documentation is available at http://
github.com/itmat/circadb.
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