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Abstract

the analysis of nuclear factor kappa B (NFkB) activation.

inactivation in chondrocytes.

OA pathology.

Background: Osteoarthritis (OA) is one of the most common joint diseases in elderly people, however, the
underlying mechanism of OA pathogenesis is not completely clear. Periostin, the extracellular protein, has been
shown by cDNA array analysis to be highly expressed in OA, but its function is not fully understood. The purpose of
this study was to examine the expression and function of periostin in human OA.

Methods: Human cartilage and synovia samples were used for the analysis of periostin expression and function.
The human cartilage samples were obtained from the knees of patients undergoing total knee arthroplasty as OA
samples and from the femoral bone head of patients with femoral neck fracture as control samples. Quantitative
RT-PCR, ELISA, and immunohistochemistry were used for analysis of periostin expression in cartilage and synovia.
Human primary chondrocytes isolated from control cartilage were stimulated by periostin, and the alteration of OA
related gene expression was examined using quantitative RT-PCR. Immunocytochemistry of p65 was performed for

Results: The periostin mRNA was significantly higher in OA cartilage than in control cartilage. Immunohistochemical
analysis of periostin showed that the main positive signal was localized in chondrocytes and their periphery
matrix near the erosive area, with less immunoreactivity in deeper zones. There was positive correlation
between Mankin score and periostin immunoreactivity. The periostin expression was also detected in the
fibrotic cartilage and tissue of subchondral bone. In cultured human chondrocytes, periostin induced the
expression of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and nitric oxide
synthase-2 (NOS2) in a dose- and time-dependent manner. The activation of NFkB signaling was recognized by
the nuclear translocation of p65. Periostin-induced upregulation of these genes was suppressed by NFkB

Conclusion: Periostin was upregulated in OA cartilage, and it may amplify inflammatory events and accelerate

Background

Osteoarthritis is a leading cause of disability in the elderly
and causes pain, stiffness, and loss of function in articulat-
ing joints. It is characterized by progressive cartilage ero-
sion, osteophyte formation, subchondral bone formation,
and synovial inflammation, which follow alteration in the
biomechanical and biochemical properties of the joints [1].
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The details of OA pathogenesis are not fully understood,
and there are currently no disease-modifying OA drugs
available; thus, treatment is limited to symptomatic relief
or surgical replacement of the affected joints. To discover
novel molecules for therapeutic targets and/or diagnostic
markers, many microarray analyses using RNA isolated
from OA cartilage [2, 3], subchondral bone [4], and syno-
via [5] have been reported.

Some array reports have shown that periostin was
upregulated in OA tissues. Loeser et al. reported high
transcriptional levels and deposition of periostin on the
surface and in the matrix of denatured cartilage in a
mouse OA model [6]. Zhang et al. reported that
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periostin mRNA was upregulated in rat OA subchondral
bone at an early stage in a surgical OA model [7]. Geyer
et al. reported that periostin was upregulated in damaged
cartilage relative to intact cartilage within the same joint
of patients with OA of the knee, but further analysis was
not reported [8].

Periostin was first identified in a mouse osteoblast cell
line as a matricellular protein belonging to the fasciclin
family. Expression of periostin has been recognized during
embryogenesis [9] and in adult connective tissues sub-
jected to mechanical stress [10]. Periostin can crosslink to
other extracellular matrix (ECM) proteins, such as colla-
gen I, fibronectin, and tenascin-C; therefore, periostin is
expressed in fibrous to solid connective tissues, such as
periosteum [11], tendon, periodontal ligaments [12], blood
vessels, and heart valves [13]. In fact, periostin-null mice
showed defective collagen cross-links and decreased re-
sistance to mechanical stress [14]. In addition, periostin is
re-expressed in fibrous tissues formed after injury and re-
cruits mesenchymal cells by interacting with integrin,
which is followed by tissue repair [15]. Actually, periostin-
deficient mice exhibit delays in repairing and remodeling
of injured tissues, such as skin [16], bone fractures [17],
and heart tissues, after myocardial infarction [18].

These reports indicate that periostin has crucial roles
in tissue repair. However, in some cases, periostin can
accelerate pathogenesis of tumors [19, 20], bronchial
asthma [21, 22], atopic dermatitis [23, 24], polycystic
kidney disease, and other fibrotic diseases [25]. As
recently reported, periostin deposition promotes chronic
allergic inflammation by activating nuclear factor kappa
B (NFkB) signaling [16, 23, 26].

In this study, we examined periostin mRNA/protein
expression in human OA tissues and performed in vitro
experiments using human chondrocytes to investigate
the effects of periostin in OA pathology.

Methods

Clinical samples

This study was approved by the Osaka University Re-
search Ethics Committee and Suita Municipal Hospital
Research Ethics Committee, and specimens were taken
after patients gave informed consent. Human OA cartilage
(n=26; mean+ SD 73.6 + 8.3 years) (Fig. 1la) and syn-
ovial samples (7 =10; mean+ SD 72.6+7.5 years) were
obtained from patients undergoing total knee replacement
surgery for the treatment of clinically diagnosed OA.
Control cartilage samples without macroscopic
changes were obtained from the femoral bone heads of
patients with femoral neck fractures (n =20; mean + SD
80.1 £ 8.3 years). Control synovia samples were obtained
from the knee joints of non-OA, non-rheumatoid arthritis
(RA) patients (n = 8; age, 28.5 + 10.1 years) during arthro-
scopic surgeries.
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Histology and Histochemistry

The OA cartilage tissue samples (n =16) were sagitally
cut into 2—4 pieces by bone saw. The specimens were
fixed with 10 % formaldehyde solution and decalcified
with 10 % ethylenediaminetetraacetic acid (EDTA)
(pH 7.4) following delipidation with ethanol. They were
embedded in paraffin followed by dehydration with serial
ethanol and clearance with xylene. Sagittal 5-um thick
sections were made and stained with toluidine blue for
histological grading described by Mankin [27] and used
for immunohistochemistry.

Deparaffinized sections were treated with proteinase K
(DAKO, California, USA) for 5 min. Endogenous peroxi-
dases were quenched with 3 % hydrogen peroxidase in
phosphate-buffered saline (PBS) for 5 min. The sections
were blocked with normal rabbit serum (Nichirei, Tokyo,
Japan) for 30 min, then incubated in goat anti-human
periostin antibody (1:100, Cat. sc-49480; Santa Cruz
Biotechnology, Texas, USA) or goat normal IgG (1:100,
Cat. sc-2028; Santa Cruz Biotechnology) for 1 h. After the
reaction with peroxidase-conjugated anti-goat IgG second-
ary antibody (Nichirei) for 30 min, positive signal color
developed with diaminobenzidine solution (Nichirei) for
several minutes. The slides were counterstained with
hematoxylin, dehydrated, and enclosed with Entellan New
(Merck, Darmstadt, Germany). All procedures were
performed at room temperature. During each step, the
slides were washed with 0.1 % tween-20 including PBS for
three times.

Immunohistochemical (IHC) Scoring

For evaluation of the periostin expression in OA cartilage,
the stained sections were graded on positive cell rate and
intensity of immunostaining by two authors concurrently
(Fig. 2g) [28, 29]. The percentage of periostin positive cells
was estimated and assigned to 8 categories: 0 % (0), 1-5 %
(0.5), 5-10 % (1), 10-20 % (2), 20-40 % (3), 40-60 % (4),
60-80 % (5), and > 80 % (6). The intensity of immuno-
staining was scored as the following: weak (0), weak—mod-
erate (0.5), moderate (1), and strong (2). Three to five
snapshots of the specimens (about 3-mm square) were
randomly taken per one specimen.

Cell culture and stimulation with periostin

For the in vitro assay, we used human chondrocytes derived
from femoral bone head. Cartilage samples were minced
with a scalpel and digested with 0.3 U/mL collagenase
NB4 (SERVA Electrophoresis, Land Baden-Wiirttemberg,
Germany)—Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10 % fetal bovine serum (FBS) and
incubated overnight at 37 °C. The suspension was passed
through 40-pm pore filters, and then the cells were washed
three times with PBS and fed in culture dishes with DMEM
supplemented with 10 % FBS, 1 % antibiotic antimycotic
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Fig. 1 Periostin and MMP-13 gene expression analysis in osteoarthritis (OA). Quantitative RT-PCR analysis was performed using OA and control cartilage
or synovial samples. OA cartilage obtained from tibial cartilage of patients who underwent total knee arthroplasty was divided into three parts: M, medial
tibial plateau; LM, medial area of the lateral tibial plateau (non-covered area by meniscus); and LL, lateral area of the lateral tibial plateau (covered area by
meniscus) (a). Control cartilages (Ctr) were obtained from the femoral bone head. Periostin and MIMP-13 mRNA expression were significantly high in
medial OA cartilage (b). However, in synovia, only MMP-13 was significantly upregulated in OA (c). Relative expression to GAPDH is shown, and

horizontal bars indicate mean values. *; P <0.05. **; P<0.01

(Sigma—Aldrich, Saint Louis, USA) and incubated at 37 °C
with 5 % humidified CO,. Within 3 days, only the adhered
cells were collected by trypsin/EDTA, and replated at
3 x 10E4 cells/well in 96-well plates, and incubated
overnight. The cells were treated with human recombin-
ant periostin (0, 3, 10, and 30 pg/mL) (R&D Systems,
Minnesota, USA) and/or BAY11-7082 (0, 1, and 5 puM)

(Sigma—Aldrich) in DMEM supplemented with 10 % FBS
for an appropriate time (1, 3, 6, 12, 24, and 72 h). All
in vitro experiments were treated with the same volume
vehicle; PBS for periostin and dimethylsulfoxide (DMSO)
for BAY11-7082. Cells were used for RNA extraction and
the culture supernatants of chondrocytes were preserved
at —20 °C until use in ELISA assay.
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Fig. 2 Periostin localization in human OA cartilage. Toluidine blue staining (a, ¢, e) and periostin immunostaining (b, d, f, b, d, f) of human
osteoarthritis (OA) cartilage. Right panels (b, d, f) are high magnification images of the middle panels (b, d, f), respectively. The inset in the right
panels shows the isotype control. The different OA grade samples are shown; near the intact cartilage (a, b, b) (Mankin score, 1; Positive cell rate,
0; Intensity, 0), moderate OA cartilage (c, d, d) (Mankin score, 8; Positive cell rate, 4; Intensity 1), and severe OA cartilage (e, f, /) (Mankin score, 11;
Positive cell rate, 6; Intensity 2). In denatured cartilage, periostin was localized in chondrocytes and their periphery matrix particularly near the
erosive surface. Bars = 100 um. Positive correlation between IHC score (g) and Mankin score was observed (h). (r=0.649, P < 0.001)
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RNA extraction, cDNA synthesis, quantitative reverse
transcription polymerase chain reaction (RT-PCR)

OA cartilage tissue from the joint surface of the tibia was
first divided into three parts: the medial plateau, meniscus
covering area of the lateral plateau, and meniscus-
uncovered lateral plateau (Fig. 1a). Prior to total RNA ex-
traction, divided cartilage tissues were minced and digested
with 0.3 U/mL collagenase NB4 in 10 % FBS-DMEM and
incubated overnight at 37 °C. After washing with PBS three
times, collected cells were used for total RNA extraction.

Synovial tissues were thoroughly minced and preserved
at —-80 °C, after which extraction of total RNA from the
clinical sample was performed using an RNeasy fibrous kit
(QIAGEN, Hilden, Netherland) according to the manufac-
turer’s protocol.

The extraction of total RNA from human cultured
chondrocytes was performed using NucleoSpin XS (Takara,
Shiga, Japan) according to the manufacturer’s protocol.

For quantitative RT-PCR, total RNA was reverse tran-
scribed into first-strand complementary DNA (cDNA)
using Super Script VILO (Life Technologies, Maryland,
USA) and random primers. The PCR amplification was
performed using Fast SYBR green master mix (Life
Technologies) and StepOne Plus (Life Technologies).
Target transcriptional levels were normalized to the level
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression. The primers are listed in Additional file 1.

Enzyme-linked immunosorbent assay (ELISA)

Human matrix metalloproteinase (MMP)-13 and interleu-
kin (IL)-6 in culture supernatant were measured using
ELISA kits (RayBiotech, Georgia, USA). Protocols, range,
sensitivity, and interassay precisions were as described by
the manufacturer’s technical sheets.

Immunocytochemistry

For immunostaining, human primary chondrocytes
were seeded on chamber slides (Thermo Scientific,
Massachusetts, USA), and stimulated with 20 pg/mL
periostin for 3 h. The cells were fixed with 4 % parafor-
maldehyde for 10 min, permeabilized with 0.1 % Triton
X-100 in PBS for 15 min, and treated with 1 % bovine
serum albumin-PBS for 30 min. The cells were incu-
bated with rabbit anti-p65 antibody (1:100, Cat. sc109;
Santa Cruz Biotechnology) for 1 h and then with Alexa
Fluor 488-conjugated anti-rabbit secondary antibody
(1:300, Thermo Scientific) for 1 h. Nuclei were stained
with DAPI. All procedures were performed at room
temperature. Between steps, the cells were washed
three times with 0.1 % tween-20 including PBS.

Statistical analysis
The results of in vitro mRNA analysis are presented as
means + RQ Max/Min values and other results are
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presented as means + SD. All in vitro experiments were
performed using samples from at least three donors.
Student’s unpaired t-test was used to perform statistical
analysis of experimental data, with Bonferroni correction
as needed. Pearson correlation analysis was used for the
analysis of the relationships between parameters. P values
less than 0.05 were considered significant.

Results

Expression of periostin mRNA in OA cartilage and synovia
The relative mRNA expression levels of periostin and
MMP-13 (target/GAPDH ratio) in clinical samples was
measured by quantitative RT-PCR. Since OA tibial
cartilages (7 =10; mean+ SD 75.8+7.3 years) vary in
denaturing degree by a part, it was divided into three
parts: medial tibial plateau, medial area of the lateral
tibial plateau, and lateral area of the lateral tibial plateau.
The cartilage of femoral bone heads obtained from
patients with femoral neck fractures was used as control
(n=10; mean+SD 80.8+5.2 years). The expression
levels of periostin in cartilages were significantly higher
in medial tibial plateaus (mean +SD 0.226 + 0.22) than
in the lateral tibial plateaus (mean + SD 0.0631 + 0.069)
and in control cartilages (mean + SD 0.00948 + 0.01). In
addition, MMP-13 expression levels were significantly
higher in the medial tibial plateaus (mean + SD 0.0426 +
0.04) than those in control cartilages (mean + SD 0.0107 +
0.012) (Fig. 1b). On the other hand, in synovia, there were
no significant difference in periostin expression between
OA (n=10; mean + SD 72.6 + 7.5 years, 5.906 + 3.89) and
control (n=8; mean+SD 28.5+10.1 years, mean+ SD
7.215 + 6.06), although MMP-13 was significantly upregu-
lated in OA synovia (mean + SD 0.122 + 0.12) in compari-
son with control synovia (mean+ SD 0.00432 + 0.0044).
(Fig. 1c).

Immunohistochemical assay of periostin in OA cartilage
To histologically confirm periostin localization in OA
tissues, we attempted to detect periostin in OA carti-
lages (n =16; mean + SD 72.0 + 8.8 years) with a specific
antibody. In the intact area of cartilages indicated by
uniform toluidine blue staining, the positive staining of
periostin was scarcely detected (Fig. 2a, b, b). The mild-
to-moderate OA cartilage areas were characterized by
the wearing of surface and some cleft indicated by less
toluidine blue staining (Fig. 2c). Positive staining of peri-
ostin was detected in chondrocytes and lacuna located
near the erosive area (Fig. 2d, d). The severe OA cartil-
age areas lost majority of their matrix and had many
deep clefts (Fig. 2e). Periostin expression was also de-
tected in many chondrocytes and their peripheral matrix
in the erosive surface (Fig. 2f, f). However, in the deeper
zone of cartilage, the positive staining was rarely de-
tected in chondrocytes and matrices (Fig. 2d, f).
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To evaluate the correlation of periostin expression and
histological grading, we scored the OA pathophysiology
and periostin immunoreactivity with Mankin score and
IHC scoring (Fig. 2g), respectively. IHC score was settled in
consideration positive of cell rate and immunointensity. As
shown in Fig. 2h, periostin expression levels were positively
correlated with cartilage degeneration (r = 0.649, P < 0.001).

Besides, positive staining of periostin was also detected
in fibrous tissue on the cartilage surface, which was
estimated to be derived from synovial tissue or fibrotic
denaturing cartilage (Fig. 3a, b, ). In the full-thickness
cartilage defect area, fibrosis of subchondral marrow was
observed, and periostin was expressed in these fibrotic
areas (Fig. 3¢, d, d).

The effects of periostin on OA-related gene expression in
human chondrocytes

To assess the effects of periostin on OA-related gene
expression, human primary chondrocytes isolated from the
control cartilage were stimulated by various concentrations
of periostin (0, 3, 10, 30 pg/mL) for 24 h. We repeated the
same experiment with chondrocytes derived from three
different donors. First, as showed in Fig. 4a, we investigated
the expression of catabolic enzymes related to OA, specific-
ally MMP-1, MMP-2, MMP-3, MMP-8, MMP-9, MMP-13,
a disintegrin and metalloproteinase with thrombospondin
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motifs (ADAMTS)-4, and ADAMTS-5. The expressions of
MMP-1, MMP-3, and MMP-13 were significantly upregu-
lated dose-dependently, but the expression of MMP-2 was
not affected by periostin stimulation. MMP-8 and MMP-9
were not detected in cultured chondrocytes (data not
shown). The results of ADAMTS-4 and ADAMTS-5
analysis were not consistent among all donors. Second, we
examined the alteration of inflammatory and other gene
mRNA levels, including IL-1, IL-6, IL-8, tumor necrosis
factor (TNF) a, cyclooxygenase-2 (COX-2), and nitric oxide
synthase-2 (NOS2) (Fig. 4b). Expressions of IL-1 and TNF
a were induced in the periostin high-dose group but near
the detection threshold (data not shown). The expressions
of IL-6, IL-8, and NOS2 were remarkably upregulated in a
dose-dependent manner, but the expression of COX-2 was
not altered by periostin stimulation. For protein level, the
same trend was observed for MMP-13 and IL-6 by per-
forming an ELISA assay in culture supernatants (Fig. 4c).
Finally, we confirmed the alteration of chondrocytic gene
expression, specifically Collagen type (COL) 1, 2, 10, Aggre-
can (ACAN), and SRY-related HMG box (SOX9). However,
these genes were not consistently affected by periostin
stimulation (Fig. 5).

The endogenous mRNA levels of these catabolic, in-
flammatory, anabolic genes were different among donors;
however, same trend of periostin effect was observed in all
donors. (see Additional file 2).

defect (c, d, d). Bars =100 um

~N

Fig. 3 Periostin localization in OA fibrotic tissues. Toluidine blue staining (a, ¢) and periostin immunostaining (b, d, b, d) of human osteoarthritis
cartilage and subchondral bone. Right panels (b, d) are high magnification images of the middle panels (b, d), respectively. The inset in the right
panels shows the isotype control. Periostin localized fibrotic area on cartilage surface (a, b, b) and in subchondral bone of full-thickness cartilage
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Fig. 4 The effect of Periostin for the expression of catabolic enzymes and inflammatory cytokines in human cultured chondrocytes. Human primary
chondrocytes were cultured in media supplemented with periostin (0, 3, 10, and 30 pg/mL) for 24 h. Alteration of osteoarthritis (OA)-related gene
expression was assessed by quantitative RT-PCR for cultured chondrocytes (a, b) and ELISA for the culture supernatant (c). The upregulation of
osteoarthritis (OA)-related catabolic enzymes MMP-1, =3, and —13 were confirmed by quantitative RT-PCR for cultured chondrocytes, but MMP-2,
ADAMTS-4, and —5 were not affected by periostin (a). Inflammatory cytokines, IL-6, —8, and NOS2 were also upregulated by periostin in chondrocytes,
but COX-2 was not affected by periostin stimulation (b). The target mRNA levels are shown relative to GAPDH. MMP-13 and IL-6 protein production
were also compatibly upregulated in culture supernatant of chondrocytes stimulated by periostin (c). Representative data from one of three donors
are shown. ¥, P< 005

Time course analysis of OA-related gene expression in
periostin-stimulated chondrocytes

The transcription levels of MMP-1, MMP-3, MMP-13,
IL-6, IL-8, and NOS2 genes were measured at different
time points after addition of 20 pg/mL periostin by
quantitative RT-PCR. The mRNA levels of IL-6, IL-8,

and NOS2 were significantly higher after 6 h and the
mRNA levels of MMP-1, MMP-3, and MMP-13 were
higher after 24 h in periostin-stimulated chondrocytes
than that in PBS treated chondrocytes. The IL-8 mRNA
level remained stable after 6 h but NOS2 mRNA level
gradually decreased after 6 h. However, the levels of other
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expressions of COLTA2, COL2A1, COL10AT, ACAN, and SOX9 gene were unaffected by periostin. The target mRNA levels are shown relative to
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genes continued to increase until the assay endpoint
(48 h) (Fig. 6).

Periostin act on chondrocytes via NFKB signaling

From the fact that inflammatory cytokines were upregu-
lated by periostin, we investigated the relationship between
NF«B signaling and periostin in chondrocytes. As shown in
Fig. 7a, p65 which is a component of NF«B signaling was

detected in chondrocyte by immunostaining. Although, the
nuclear location of p65 was recognized in chondrocytes of
vehicle control, periostin stimulated chondrocytes exhibited
more strong signal in their nucleus. Furthermore, BAY11-
7082, an inhibitor of NF«B signaling by suppressing IkB
phosphorylation, suppressed the periostin-induced expres-
sion of MMP-1, MMP-3, MMP-13, IL-6, IL-8, and NOS2
in a dose-dependent manner (Fig. 7b).
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Fig. 6 Periostin upregulated MMP-1, MMP-3, MMP-13, IL-6, IL-8, and NOS2 in a time-dependent manner. Human primary chondrocytes were
stimulated by 20 pg/mL periostin, and the mRNA levels were measured by quantitative RT-PCR at different time points. The solid lines and
broken lines represent the periostin treated group and control group respectively. The relative expression compared with at time zero is
shown. Representative data from one of three donors are shown*, P < 0.05
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Discussion

The main objective of our study was to elucidate the
expression and function of periostin in human OA tissue.
First, we verified the upregulation of periostin mRNA level
in OA tissues using isolated chondrocytes and synovia.
Because arthritic progression differs depending on the
cartilage area, OA tibial cartilage was separated into three
parts. In the medial OA, the cartilage of the medial tibial
plateau was the most denatured area by mechanical pres-
sure. The cartilage of the lateral tibial plateau showed less
damage than the medial side, particularly in the area
covered by the lateral meniscus [30]. To obtain control
cartilage, we used the cartilage of the femoral bone head

obtained from patients who underwent bipolar hip arthro-
plasty; this cartilage showed little degeneration regardless
of age and is used as control in many studies [31-33]. The
medial tibial plateau had the highest periostin mRNA level
compared with that in the femoral bone head and other
areas in OA cartilage. In the present study, we treated the
cartilages with collagenase prior to the extraction of total
RNA, because it is difficult to extract the total RNA from
hard and ECM-rich tissues such as bone and cartilage
[8, 34, 35]. Although isolation stress by the enzymatic treat-
ment of cartilage might have some effect on the mRNA
profile, the proportion of MMP-13 expression depended on
the degeneration of cartilage and was consistent with the
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expressions in previous reports [36]. Both control and OA
synovia showed the high expression of periostin, whereas
MMP-13 was significantly increased in OA synovia com-
pared with that in control synovia. Because many fibrous
tissues express periostin [10, 15], it is probable that synovia
also expresses periostin constantly.

Although mRNA expression of periostin is known to
occur in OA chondrocytes [6, 8], the localization of perios-
tin remains unclear. In our results, the positive staining of
periostin was detected in chondrocytes and their periphery
matrix in the erosive surface layer, particularly near the
clefts of denaturing cartilage. It is believed that mechanical
stress is the major etiology in OA [37, 38]. The surface layer
of cartilage is exposed to higher pressure and shear stress
than the other layers, which cause scuffing and cracks. In
the deeper zone, periostin was rarely detected; nevertheless,
surface cartilage was strongly denatured. Perhaps, periostin
may possibly be upregulated in chondrocytes in response to
mechanical stress. In fact, periostin was detected in the
many connective tissues resistant to mechanical loading,
such as skin, tendons, and ligaments [10]. Moreover, some
cells expressed periostin highly in response to mechanical
stress and/or tension [39-41]. However, it is difficult to
imitate in vivo stress condition in ex vivo and/or in vitro
study; therefore, we could not elucidate what induces
periostin expression in OA.

To investigate the effect of periostin, we verified the
alteration of OA-related markers in cultured chondrocytes
by stimulation with periostin [19]. Our results showed that
periostin induced the expression of MMP-1, MMP-3, and
MMP-13 in chondrocytes, and they are known to be
related in OA pathogenesis [42, 43]. Some studies have
reported the relationship between periostin and MMPs in
several cell types. Periodontal ligament cells expressed
MMP-2 by periostin stimulation through the integrin/
ERK pathway [44]. Periostin also induces the secretion of
MMP-2 and MMP-13 from vascular endothelial cells,
MMP-2 from epithelial cells, and MMP-9 from bone mar-
row macrophages [45]. Different types of MMPs are
induced by periostin in various types of cells, which sug-
gest that there are different pathways depending on cell
type. These MMPs may have a role in remodeling/repair
of injured fibrotic tissues, however, in cartilage, MMP-1,
MMP-3, and MMP-13 are thought to be the crucial colla-
genases in OA and exhibit increased expressions in
human OA cartilage [46]. Moreover, in our study, perios-
tin did not upregulate collagen genes such as COL1 and
COL2; it is believed that periostin may accelerate ECM
destruction in OA without synthesizing new matrices.

In addition to MMPs, IL-6 and IL-8 were upregulated by
periostin stimulation in chondrocytes, which suggests that
there is a relationship between periostin and inflammatory
events in OA. Inflammatory cytokines, such as IL-1, IL-6,
IL-8, and TNFa have a role in cartilage degradation [47].
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Many events in OA pathological processes are thought to
be mediated by inflammatory cytokines. In fact, these
cytokines stimulate the expression of MMPs in chondro-
cytes and synoviocytes [48, 49]. In our time course analysis,
periostin induced inflammatory cytokines earlier, followed
by the upregulation of MMPs, which indicate that periostin
induced the expression of MMPs through inflammatory
cytokines in chondrocytes. Some studies have suggested
that periostin deposition causes chronic inflammation
[50, 22], and NF«B signaling has been proven to be down-
stream signaling induced by periostin [16, 23, 26]. Our
results showed that periostin precipitated the nuclei trans-
location of p65 in human cultured chondrocytes, and
NF«B inhibitor suppressed the periostin-induced upregu-
lation of not only inflammatory cytokines but also NOS2,
MMP-1, MMP-3, and MMP-13. NOS2 and MMPs are
already known to be induced by inflammatory cytokines
through NF«B signaling in human chondrocytes [48, 51].
It is suggested that in human chondrocytes, periostin
activates NFkB signaling, followed by the upregulation of
inflammatory cytokines and MMPs.

Some limitations exist in this study. First, because we
used chondrocytes derived from femoral bone head without
dedifferentiation in vitro, they may have different pheno-
types from OA chondrocytes. Second, because it is difficult
to estimate how much periostin is deposited in cartilage
matrix or how much periostin affects the chondrocytes
in vivo, our in vitro study may not imitate the in vivo
microenvironment. Accordingly, further experiments on
how periostin acts in in vivo conditions are required to
confirm the causal relationship to OA pathogenesis.

Conclusion

This report demonstrated periostin expression in human
OA and the effects of periostin in human primary chondro-
cytes. Periostin was detected in chondrocytes and their
peripheral matrices in degraded cartilage. In our in vitro
study, primary chondrocytes expressed the inflammatory
cytokines and MMPs in response to periostin. Periostin
may accelerate the pathogenesis of OA.
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