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1  | INTRODUC TION

How trees will respond to altered temperatures and precipitation 
patterns under projected changes to future climate depends largely 
on the genetic architecture of traits that are responsible for medi‐
ating local adaptation to current climate conditions. Earlier studies 

have highlighted the importance of phenology in mediating adapta‐
tion to climate (Aitken, Yeaman, Holliday, Wang, & Curtis‐McLane, 
2008; Alberto et al., 2013; Savolainen, Pyhajarvi, & Knurr, 2007). 
Spring phenology is usually thought to have a relatively complex ge‐
netic basis, relying on temperature cues, requiring both chilling tem‐
peratures to release endodormancy and accumulated temperature 
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Abstract
Future climate change has been predicted to disrupt local adaptation in many peren‐
nial plants, such as forest trees, but the magnitude and location of these effects are 
thus far poorly understood. Here, we assess local adaptation to current climate in 
European aspen (Populus tremula) by using environmental association analyses to 
identify genetic variants associated with two representative climate variables de‐
scribing current day variation in temperature and precipitation. We also analysed 
patterns of genetic differentiation between southern and northern populations and 
observe that regions of high genetic differentiation are enriched for SNPs that are 
significantly associated with climate. Using variants associated with climate, we ex‐
amined patterns of isolation by distance and environment and used spatial modelling 
to predict the geographic distribution of genomic variation in response to two sce‐
narios of future climate change. We show that climate conditions at a northern refer‐
ence site will correspond to climate conditions experienced by current day populations 
located 4–8 latitude degrees further south. By assessing the relationship between 
phenotypic traits and vegetative fitness, we also demonstrate that southern popula‐
tions harbour genetic variation that likely would be adaptive further north under 
both climate change scenarios. Current day populations at the lagging edge of the 
distribution in Sweden can therefore serve as sources for introducing adaptive alleles 
onto northern populations, but the likelihood of this largely depends on naturally oc‐
curring levels of gene flow.
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sums to initiate bud break (Rohde & Bhalerao, 2007; Singh et al., 
2018). Spring phenology has thus far been tracking shifts due to 
warmer temperatures (Menzel et al., 2006), but recent studies sug‐
gest that warmer winters and the concomitant reductions in chilling 
requirements may reduce the advance of spring phenology (Fu et al., 
2015). Autumn phenology, on the other hand, largely relies on light 
cues in boreal environments (Singh, Svystun, AlDahmash, Jönsson, & 
Bhalerao, 2017) although interactions with temperature have been 
suggested for some species (Hänninen & Tanino, 2011). Since light 
conditions will remain constant under a changing climate, autumn 
phenology has been predicted to be less responsive to warmer 
temperatures. Studies on the effect of temperature on bud set and 
growth cessation in aspen are equivocal, with some studies showing 
that warmer temperature can delay bud set (Sivadasan et al., 2017) 
while other suggest that warmer temperatures may accelerate bud 
set, inducing even further mismatch between the annual growth 
cycle and length of the growing season (Kalcsits, Silim, & Tanino, 
2009). The reason for these differing results can at least partly be 
explained by warmer temperatures having very different effects de‐
pending on when during the growth cycle they occur (Way, 2011). 
Compared to spring phenology, the genetic basis of bud set and 
growth cessation is relatively well understood and involves at least 
some loci with relatively large effects (Böhlenius et al., 2006; Ding 
& Nilsson, 2016; Wang et al., 2018), suggesting that autumn phenol‐
ogy traits could show more rapid adaptation in the face of climate 
change.

Local adaptation to large‐scale variation in climate is expected to 
induce phenotypic correlations with important environmental vari‐
ables, such as day lengths, temperatures or precipitation (Savolainen 
et al., 2007). Recent studies have shown that correlations between 
phenotypes can also be mirrored by correlations between environ‐
ment and genetic variants, where allele frequencies at loci important 
for local adaptation usually show large differences among popula‐
tions and correlations with environment (Coop, Witonsky, Rienzo, & 
Pritchard, 2010). If divergent selection due to climate is strong, rel‐
ative to gene flow, stable allelic clines can be established that track 

changes in climate variables (Lenormand, 2002; Yeaman & Otto, 
2011). By correlating environmental variables with genomic data, it 
is thus possible to identify both environmental factors that are re‐
sponsible for driving local adaptation and the genomic loci that are 
involved in mediating adaptation (Rellstab, Gugerli, Eckert, Hancock, 
& Holderegger, 2015). Once environmentally associated variants 
have been identified, the data can also be used to predict the fate 
of natural populations under a changing climate to both identify 
areas at risk of climate maladaptation and to predict genetic change 
needed to track climate change (Fitzpatrick & Keller, 2015; Supple 
et al., 2018).

In this study, we study how local climate is mediating adapta‐
tion in a widespread keystone species in boreal forests, European 
aspen (Populus tremula) (Bernhardsson et al., 2013; De Carvalho et 
al., 2010). We combine population genomic analyses with environ‐
mental associations to identify genomic regions involved in medi‐
ating local adaptation to climate in P. tremula populations sampled 
across Sweden. Genetic variants in the regions associated with cli‐
mate are then to predict genomic responses to future climate change 
and highlight geographic regions that can be expected to suffer mal‐
adaptation. Finally, we employ published data from common garden 
experiments to evaluate how trees are expected to respond to al‐
tered climate conditions by assessing the relationship between key 
phenology traits and growth, an important fitness component in 
perennial plants.

2  | MATERIAL S AND METHODS

2.1 | Sampling and genotyping

The individuals used in this study are derived from the SwAsp 
collection that consists of 116 unrelated P. tremula individuals 
that were from 12 sites spanning a 10° latitude degree gradient 
(~56–66°N) in Sweden (Figure 1, Luquez et al., 2008). In this study, 
we use data on 94 of these individuals that were previously gen‐
otyped by Wang et al. (2018). Briefly, DNA was extracted from 

F I G U R E  1   Map of variation in climate 
across Sweden for the two climate 
variables used in the analyses (a) degree 
days (CONT) and (b) climatic moisture 
index (CMI). The location of the two 
common garden sites is indicated with 
grey dots in (a), and the location of the 
original sample locations of the SwAsp 
populations (Luquez et al., 2008) is 
indicated with numbers in (b)
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all available individuals in the Swedish Aspen (SwAsp) collection 
(Luquez et al., 2008) and used to create paired‐end sequencing 
libraries with an average insert size of 650 bp. All libraries were se‐
quenced on an Illumina HiSeq 2000 platform to a mean, per‐sam‐
ple depth, of approximately 30× at the Science for Life Laboratory, 
Stockholm, Sweden. Raw reads were processed with Trimmomatic 
v0.30 (Bolger, Lohse, & Usadel, 2014) to identify reads with 
adapter contamination and to trim reads by removing adapter 
sequences and bases with quality scores lower than 20. Finally, 
reads shorter than 36 bases after trimming were completely dis‐
carded. All remaining reads were mapped to v1.1 of the P. tremula 
genome (Lin et al., 2018) using the BWA‐MEM algorithm with 
default parameters using bwa‐0.7.10 (Li, 2013). MarkDuplicates 
from the Picard v1.20 package (http://picard.sourceforge.net) 
was used to remove PCR duplicates, keeping only the read or read 
pair with the highest summed base quality from all pairs that had 
identical external coordinates. Sequencing reads in the vicinity 
of insertions and deletions (indels) were globally realigned using 
the RealignerTargetCreator and IndelRealigner in the Genome 
Analysis Toolkit (GATK v3.2.2) (DePristo et al., 2011). Further fil‐
tering was done to remove sites with low (less than an average of 
4 × per sample) or high coverage (twice the mean depth at vari‐
ant sites), sites covered by more than two reads with a mapping 
score of zero per sample, sites located within known repetitive 
sequences as identified using RepeatMasker (Tarailo‐Graovac & 
Chen, 2009) and sites from genomic scaffolds shorter than 2 kbp.

After filtering, genomic VCF files (g.vcf) were created for each 
sample using GATK HaplotypeCaller and were subsequently used to 
perform multi‐sample variant calling across all samples using GATK 
GenotypeGVCFs. SNP filtering was used to retain only high‐quality 
SNPs by removing SNPs at sites that did not pass previous filtering 
criteria and by retaining only bi‐allelic SNPs at least 5 bp away from 
any indels. Sites with > 30% missing data, where genotypes with 
quality score (GQ) lower than 10, were treated as missing, and sites 
showing strong deviation from Hardy–Weinberg equilibrium (p‐value 
<1e−8) were also removed. Missing SNP data were imputed, and all 
SNPs were phased using BEAGLE v4.1 (Browning & Browning, 2009) 
as described in Wang et al. (2018). Finally, SNPs were annotated 
using snpEff v4.3T (Cingolani et al., 2012) with a custom database 
based on the reference sequence and gene annotation from the v1.1 
P. tremula draft genome (Lin et al., 2018).

2.2 | Population genetic analyses

We used a genetic principal component analysis (PCA) to summarize 
variation in population structure in the SwAsp collection, using a set 
of putative independent SNPs that were obtained from the full data 
set by LD pruning using Plink v1.9. SNPs were LD pruned in windows 
of 20,000 SNPs with a step size of 2,000. At each step, SNPs with r2 
value >0.5 were pruned so that only one SNP in each pair was kept. 
We calculated genome‐wide levels of nucleotide diversity as well as 
average nucleotide diversity per population using vcftools v0.1.15 
(Danecek et al., 2011).

For analyses of population structure, we divided the SwAsp indi‐
viduals into three populations based on earlier results (Bernhardsson 
et al., 2013; De Carvalho et al., 2010; Wang et al., 2018). Individuals 
from populations 1 to 6 correspond to a “South” population and in‐
dividuals from populations 9 to 12 to a “North.” Population 7 and 8 
form a “Mid” population consisting of putatively admixed individu‐
als (Bernhardsson et al., 2013; De Carvalho et al., 2010; Wang et 
al., 2018), and these were not included in the analyses of genetic 
differentiation. We calculated genetic differentiation between the 
southern and northern population using the program hapflk v1.4 
(Fariello, Boitard, Naya, SanCristobal, & Servin, 2013) (downloaded 
from: https://forge-dga.jouy.inra.fr/projects/hapflk in September 
2018). The genome‐wide hapFLK analysis was run on each chromo‐
some separately using the following parameter values: eight clusters 
(−K 8), 15 EM runs to fit the LD model (−nfit=15). p‐Values were cal‐
culated by fitting a standard normal distribution to the genome‐wide 
distribution of the test statistic using R as suggested in Fariello et 
al. (2013).

2.3 | Climate data

We obtained environmental data for 16 bioclimatic variables for 
historical (mid‐Holocene, c. 6 kya) and current (1960–1990) cli‐
mate from the ENVIREM data set (Title & Bemmels, 2018) ob‐
tained at http://envirem.github.io. All analyses use ENVIREM 
data with a spatial resolution of 2.5 arcminute (~5 km). We also 
downloaded future climatic variables based on the CCSM4.0 
model (http://www.cesm.ucar.edu/models/ccsm4.0/ccsm/) from 
Worldclim v1.4 at 2.5 arcminute resolution (Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005, http://worldclim.org/current). Data 
for future climate were obtained for the year 2070 and for two 
representative concentration pathways (RCP4.5 and RCP8.5), 
representing two future greenhouse gas concentration trajec‐
tories (Moss, Nakicenovic, & O'Neill, 2008). The Worldclim data 
were then used to calculate ENVIREM variables for both RCP 
scenarios using instructions available at http://envirem.github.io/
ENVIREM_tutorial.html.

2.4 | Environmental associations

The climate variables in the ENVIREM data set showed strong to 
moderate correlations within groups of variables related to tempera‐
ture or rainfall. We selected two representative climate variables for 
use in the analyses described in this study. The first variable is the 
climatic moisture index (CLI), a metric of relative wetness and aridity. 
The second variable used is continentality (CONT) which measures 
the difference between the average temperature of warmest month 
and the average temperature of the coldest month. These variables 
were selected to represent climate variation related to precipitation 
(CLI) and temperature (CONT). We obtained data for these variables 
from the original sampling location of all SwAsp individuals for all 
time points and climate scenarios using the envirem package in R. 
CMI and CONT were only weakly correlated (r = −0.0822) across 
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sampling locations, with CMI varying mainly along an east to west 
gradient, whereas variation in CONT was largely arranged along a 
south to north gradient (Figure 1).

The two climate variables were subsequently analysed using 
latent factor mixed models (LFMMs) to test for associations with 
genetic variants, as implemented in the R package lfmm (Frichot, 
Schoville, Bouchard, & François, 2013). LFMMs are a computation‐
ally efficient statistical regression models that can be used to test for 
associations between a multidimensional set of response variables 
and a set of variables of interest. The response variable in this case 
is individual genotypes, and the explanatory variables are environ‐
mental variables at the site of origin. LFMMs include so‐called “la‐
tent factors” which are unobserved variables that correct the model 
for confounding effects due to hidden factors, such as population 
structure. The number of latent factors to include in the model (K) 
was varied from K = 2 to K = 6, and the results were compared to 
assess how well the latent factors were able to control for effects 
of population structure and other hidden causes. All SNPs showing 
significant association with either of the two climate variables at 
a nominal p‐value of 1 × 10‐6 were extracted and used for general 
dissimilarity modelling analyses (see below). We also estimated the 
overlap between the location of significant SNPs from the LFMM 
analyses and outliers identified in the hapFLK analysis described in 
the preceding section, to determine whether genomic regions show‐
ing strong genetic differentiation between populations also are en‐
riched for SNPs associated with environmental variation.

2.5 | General dissimilarity modelling

We assessed the importance of the two environmental variables in 
explaining genetic differentiation between populations across the 
latitudinal gradient using generalized dissimilarity modelling (GDM; 
Fitzpatrick & Keller, 2015), which employ matrix regression to es‐
timate nonlinear relationships between genetic and environmental 
distances (Ferrier, Manion, Elith, & Richardson, 2007).

Geographic distance between populations was calculated from 
GPS coordinates of the original sampling locations using the func‐
tion earth.dist from the R package fossil v0.3.7 (Vavrek, 2011). 
Pairwise genetic differentiation was calculated based on 100,000 
SNPs randomly selected from the LD pruned set of SNPs and are 
hereafter referred to as “reference SNPs.” We also calculated pair‐
wise genetic differentiation from SNPs significantly associated with 
either of the two climate variables from the LFMM analyses. Since 
many of the associated SNPs showed evidence for high levels of 
linkage disequilibrium (LD), we pruned a set of 1,080 climate‐associ‐
ated SNPs using LD clumping with Plink v1.9. LD clumping was run 
based on the p‐values obtained from the LFMM analyses, using a 
p‐value of 10−6 for selecting index SNPs, a p‐value of 10−3 for sec‐
ondary SNPs, an r2 value of 0.5 and a maximum distance of 50 kb 
as thresholds for clumping SNPs. After LD clumping, 111 putatively 
independent genomic regions associated with climate variation re‐
main and will hereafter be referred to as “associated SNPs.” Genetic 
and geographic distances were compared for both “reference” and 

“associated” SNPs using Mantel tests calculated with the vegan R 
package (v2.4–2).

We estimated separate GDMs for the reference SNP set and as‐
sociated SNPs, respectively. Genetic distances between populations, 
from the pairwise FST matrix, were scaled to lie between 0 and 1 by 
subtracting the minimum value and then dividing by the maximum 
value (Fitzpatrick & Keller, 2015). Scaling was performed to enable 
comparisons between reference and associated SNPs that displayed 
different ranges of observed FST values (−0.0024 to 0.0053 for ref‐
erence SNPs and −0.034 to 0.195 for associated SNPs). We gener‐
ated GDM models using the gdm function from the gdm package 
in R (v1.3.11, Manion et al., 2018) using genetic distance matrices, 
geographic distances between sampling sites and environmental 
distances calculated from the two bioclimatic variables (CMI and 
CONT). The results from the GDM analyses were used to predict 
the genetic change (genetic offset sensu Fitzpatrick & Keller, 2015) 
needed to track a changing climate relative to future climate condi‐
tions under the RCP4.5 and RCP8.5 scenarios (Moss et al., 2008). 
We also evaluated the similarity of climate conditions at the north‐
ern common garden site under the two RCP scenarios to current day 
climate. To compare future and current day climate, we calculated 
the Mahalanobis distance (DM) between future climate at the north‐
ern common garden site and current climate across Sweden. Climate 
similarity was calculated by subtracting the maximum DM value and 
scaling the resulting values to between 0 and 1.

2.6 | Estimates of phenotypic selection and 
fitness landscapes

We obtained data on growth, bud flush and bud set from two com‐
mon garden collections of the SwAsp individuals located at Ekebo 
(55.9°N) and Sävar (63.4°N) (Hall et al., 2007; Luquez et al., 2008; 
Michelson et al., 2018). Measuring fitness in long‐lived perennial 
trees is extremely hard, and we have resorted to using growth rates 
as a proxy for fitness. We collected data on height and diameter 
from both common gardens in 2008 and calculated relative growth 
rates (RGR) using data on initial sizes at the time of planting in 2004. 
RGR data were then used to calculate relative fitness of all individu‐
als separately for the two common garden sites at Ekebo and Sävar 
by scaling RGR values to between 0 and 1. We also obtained data on 
bud flush and bud set, two phenology traits that are important for 
climate adaptation in aspen (Hall et al., 2007; Luquez et al., 2008; 
Michelson et al., 2018). Breeding values for bud flush and bud set, 
calculated from clonally replicated individuals in the two common 
gardens, were obtained from earlier publications (Hall et al., 2007; 
Luquez et al., 2008; Michelson et al., 2018).

To estimate natural selection acting on phenology, we em‐
ployed the multiple regression approach of Lande and Arnold 
(1983) to obtain estimates of linear selection coefficients gradi‐
ents (β), measuring directional selection acting on the traits, or 
quadratic selection gradients (γ), measuring stabilizing, disruptive 
or correlational selection (see for a more extensive discussion, 
Brodie, Moore, & Janzen, 1995). Prior to analysis, phenotypic 
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traits were standardized by subtracting the mean and dividing 
by the standard deviation. For analyses of selection gradients, 
we employed the method developed by Morrissey and Sakrejda 
(2013) that explicitly model non‐normal distributions of fitness as 
implemented in the R package gsg (Morrissey & Sakrejda, 2014). 
To determine the significance of the selection gradients, we used 
1,000 bootstrap replicates. We also visualized the relationship be‐
tween trait values and fitness using methods outlined in Morrissey 
and Sakrejda (2013, 2014).

3  | RESULTS

We obtained sequencing data for 94 of the 116 original individu‐
als from the SwAsp collection. The number of individuals genotyped 
per population ranged from 4 (population 11) to 10 (population 10) 
with a median number of 6. After SNP calling and filtering, a total of 
8,007,303 SNPs remained for downstream analysis. For the LFMM 
analyses, we filtered the data set on minor allele frequency (MAF), 
keeping only SNPs where the MAF exceeded 0.05, resulting in a data 
set of 4,404,968 SNPs.

3.1 | Genetic diversity and population structure

Nucleotide diversity was similar across the 12 populations (mean π 
0.00325, range 0.00321–0.0034) and showed no relationship with 
geographic location. Population differentiation across the entire 
range of P. tremula in Sweden is very low (overall FST = 0.0021, 
Wang et al., 2018), and there is only a weak pattern of geographic 
structure in the PCA plot (Supporting Information Figure S1). 
Despite the low overall population differentiation seen in the 
SwAsp population, we do observe significant variation in genetic 
differentiation across the genome with several regions showing 
substantially elevated levels of genetic differentiation both when 

estimated using hapFLK (Figure 2) or when estimated using FST 
(Supporting Information Figure S2). In total, 11,055 SNPs were 
significant in the genome‐wide hapFLK scan, representing 35 in‐
dependent genomic regions (Figure 2).

3.2 | Environmental associations at individual 
loci and calculation of polygenic scores

Analyses with varying values of K indicated that K = 2 adequately 
controlled for potentially confounding effects of population struc‐
ture in the LFMM analyses (Supporting Information Figure S3). Using 
LFMM, we identified 19 and 1,061 SNPs that were significantly 
associated with climatic moisture index (CMI) and continentality 
(CONT), respectively (Figure 3). There was no overlap between SNPs 
associated with CMI and CONT. The large difference in number of 
associated SNPs between the two climate traits is largely explained 
by a region on chromosome 10 that harbour 1,024 out of the 1,061 
SNPs that are associated with CONT. This region, encompassing c. 
700 kb, has previously been shown to be the result of a recent selec‐
tive sweep centred on the PtFT2 gene (Wang et al., 2018). There is 
a significant enrichment of SNPs that are also outliers in the hapFLK 
analyses among the environmentally associated SNPs, as 967 of the 
1,080 environmentally associated SNPs are also among the 11,055 
SNPs that have significant hapFLK values (Figure 3c) and this en‐
richment remains even when the large region on chr 10 is excluded 
(Figure 3c). Even though the majority of climate‐associated SNPs 
identified are noncoding (946 out of 1,080), almost all associated 
SNPs (1,057) are located in the vicinity of genes (i.e., within 5 kb up‐
stream or downstream of a gene).

3.3 | Genetic changes in response to future climate

To study the genomic composition of P. tremula across Sweden and 
how this relates to variation in current and future climate, we used 

F I G U R E  2   Manhattan plot of the results from the hapFLK analysis between the southern (pop 1–6) and northern (pop 9–12) populations 
in the SwAsp collection. Highlighted points (red) represent significant outliers (p < 0.001)
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general dissimilarity modelling (GDM) to model the relationship 
between genetic differentiation and geographic and environmen‐
tal distance. We used a set of 100,000 SNPs, randomly sampled 
from across the P. tremula genome, to use as a “reference” set of 
genetic variants that are not related to climate variation. We then 
compared results from the “reference” data set consisting of 111 
SNPs selected to be representative of the 1,080 SNPs that were 
climate‐associated in the LFMM analyses, as described above. 
Using a Mantel test, we observe significant isolation by distance 
for both “reference” and “associated” SNPs, but the relationship 
is substantially stronger for the “associated” SNPs (r = 0.608 
and r = 0.894, respectively, Supporting Information Figure S4). 
The GDM model for the “reference” SNP set explain 40.9% of 
the variation in genetic differentiation (pairwise FST) among the 
SwAsp populations, whereas the “associated” SNP set explain a 
substantially larger fraction, 84.3%, of the variation in pairwise 
FST (Supporting Information Figure S5). To project the final GDM 
model onto current and future environmental conditions, we de‐
lineated our model to the Swedish distribution range of P. tremula. 
The GDM model based on the “associated” SNPs was projected 
onto future climate conditions using two representative concen‐
tration pathway scenarios (RCP4.5 and RCP8.5, Moss et al., 2008), 
resulting in an estimate of genetic differentiation between cur‐
rent day populations and those adapted to the 2070 climate (i.e., 
“genetic offsets” sensu Fitzpatrick & Keller, 2015). This provides a 
way to quantify the amount of genomic change required to keep 
pace with a changing climate. These results (Figure 4) highlight the 
relatively large genetic change needed in the northern populations 
(populations 9–12) to track a changing climate. The southern pop‐
ulations (population 1–6) are predicted to require only comparably 
small genetic changes over the corresponding time period.

As a way to further visualize climate change, we evaluated the 
future climate at the northern common garden site under the two 
RCP scenarios (Figure 4c,d) with respect to current day clime. The 
expected climate at the northern common garden site in 2070 is 
most similar to that experienced by current day populations 2, 4 and 
6 (Figure 1).

3.4 | Phenotypic selection and fitness landscapes

To assess how variation in two putative adaptive phenology traits, 
bud flush and bud set, is related to vegetative fitness (growth rates), 
we estimated linear and quadratic selection gradients using data 
from both common gardens. The results from the selection analyses 
are summarized in Table 1, and corresponding fitness landscapes are 
visualized in Figure 5. There is strong selection favouring delayed 
bud set in both common gardens. For bud flush, selection favours 
trees that flush early in both Ekebo and Sävar although the magni‐
tude of selection is substantially weaker compared to bud set. None 
of the traits experience quadratic (stabilizing, disruptive or corre‐
lational) selection as all γ coefficients are small and nonsignificant 
(Table 1).

4  | DISCUSSION

The Swedish population of P. tremula displays overall low levels of 
population differentiation (FST = 0.0021), despite that fact that the 
population included in the study cover more than 10 latitude de‐
grees (Figure 1). The population differentiation estimated from the 
SNP data is substantially lower than what we have previously esti‐
mated using either SSRs (Hall et al., 2007) or SNPs (Ma, Hall, Onge, 

F I G U R E  3   Results from the LFMM analyses. SNPs associated with the two climate variables (a) climatic moisture index (CMI) and (b) 
continentality (CONT) at p < 1 × 10−6 are highlighted in red. Note the different scales on the y‐axis in a and b. (c) Empirical cumulative 
distributions of hapFLK values for all SNPs (light blue) and for the SNPs that are significantly associated with CMI (light red). For CONT, the 
two curves represent all significant SNPs (dark blue) or SNPs excluding the region on chr10 (dashed dark red). Both curves are significantly 
different from the genome‐wide curve (light blue) (Kolmogorov–Smirnov test, p < 2 × 10−16 for both comparisons)
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Jansson, & Ingvarsson, 2010). A number of reasons can help explain 
this. Genetic markers in the earlier studies were ascertained using 
very different criteria compared to the whole‐genome re‐sequenc‐
ing employed here, making it hard to directly compare results. Also, 
averaging FST values across loci is known to bias the mean FST value 
downwards when a large number of rare variants are included 
(Bhatia, Patterson, Sankararaman, & Price, 2013). With the 4.4 M 
SNPs we use in the current study, such bias can be appreciable 
and thus likely contribute to the overall very low estimates of FST 

we observe in the genome‐wide data. In fact, in both the PCA and 
the LFMM analyses, the first axis explains around 1.3% of the varia‐
tion in the SNP data (Supporting Information Figures S1 and S3) and 
this estimate is more in line with FST estimates from both Hall et al. 
(2007) and Ma et al. (2010), suggesting that our genome‐wide FST 
value might be downwardly biased and hence underestimate true 
population differentiation in P. tremula.

The low levels of population differentiation seen in the Swedish 
populations of P. tremula suggest that gene flow among local popula‐
tions is sufficient to almost eliminate genetic differentiation despite 
large geographic distances separating populations (>1,000 km) for 
the most distant pair of populations (De Carvalho et al., 2010; Wang 
et al., 2018). Despite the overall low levels of genetic differentia‐
tion among Swedish P. tremula populations, we nevertheless identify 
several genomic regions that show very strong genetic differentia‐
tion between the southern (1–6) and northern (9–12) populations. 
We analysed genetic differentiation using the hapFLK statistic which 
rely on differences in haplotype frequencies between populations 
(Fariello et al., 2013) and using haplotype information has earlier 
been shown to improve the power to detect population differences 
driven by natural selection, compared to more traditional FST‐based 
analyses based on allele frequencies at individual genetic variants. 
We also detected a relatively large number of SNPs that were sig‐
nificantly associated with climate from the LFMM analyses, with the 
majority being associated with CONT. This is perhaps expected since 
climate variation across Sweden is largely arranged along latitude and 
which is correlated with CONT. The absolute majority of climate‐as‐
sociated SNPs are preferentially associated with genic regions (±5 kb 

F I G U R E  4   Mean genetic offset for two 
future climate scenarios (a) RCP4.5 and 
(b) RCP8.5 in 2070. Map units are in FST 
relative to current day populations. Darker 
red means greater genetic change needed 
to track a changing climate. Climate 
similarity between the northern common 
garden (location marked by a square) 
in 2070 and current day climate for (c) 
RCP4.5 and (d) RCP 8.5. Small circles mark 
the original SwAsp sampling locations 
depicted in Figure 1
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TA B L E  1   Estimated standardized selection gradients for bud set 
and bud flush from the Ekebo (south) and Sävar (north) common 
gardens

Site Coefficient Estimate SE p‐value

Ekebo βbud flush −0.127 0.036 0.002

  βbud set 0.395 0.036 0.000

  γbud flush 0.000 0.000 0.802

  γbud set −0.007 0.051 0.958

  γbud set × bud flush −0.060 0.034 0.070

Sävar βbud flush −0.116 0.050 0.040

  βbud set 0.345 0.045 0.000

  γbud flush −0.095 0.060 0.330

  γbud set −0.056 0.044 0.354

  γbud set × bud flush 0.028 0.042 0.566

Note. Standard errors and p‐values are calculated based on 500 boot‐
strapping replicates.
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from genes) implying that many of these SNPs likely have functional 
consequences. Finally, we observe that genomic regions showing 
enhanced genetic differentiation are also strongly enriched for SNPs 
that are significantly associated with CONT (Figure 3c), implying that 
many of these regions have diverged due to climate‐driven natural 
selection. It is worth noting that the enrichment remains regardless 
of whether the large block of SNPs located in the highly significant 
region on chr10 are included or not (Figure 3c). There is no overlap 
between regions showing strong genetic differentiation and associ‐
ations to CMI but this should come as no surprise, since CMI mainly 
vary along longitude (Figure 1) whereas the genetic differentiation 
analyses compare populations along latitude. The climate‐associated 
SNPs collectively also show substantially stronger isolation by dis‐
tance than the genome‐wide background, with pairwise FST values 
among populations that are up to 30 times higher than the genome‐
wide average.

Both the hapFLK scan and the LFMM analyses recover a very 
strong signal on chr 10 containing c. 95% of all climate‐associated 
SNPs. This region is centred on the PtFT2 locus, a gene we have ear‐
lier shown to be involved in mediating local adaptation in phenology 
and climate (Wang et al., 2018). While the region on chr 10 displays 
the strongest signal of climate adaptation, there are a number of 
other genome regions that also show evidence for local adaptation 
through significant associations with climate and strong genetic 
differentiation. Regions showing both high genetic differentiation 
and SNPs associated with climate variables can be found on chro‐
mosomes 3, 5, 8 and 9 and they harbour a number of potentially 
interesting candidate genes. Among the genes implicated in climate 
adaptation from the LFMM analyses are two senescence‐associated 

genes (Potra008949g26261 and Potra002821g20059). Leaf senes‐
cence also shows clinal variation in the SwAsp populations, although 
it does not seem to be directly triggered by photoperiod (Michelson 
et al., 2018). The LFMM analyses also identify several genes involved 
in growth and development of roots and leaves. The peak on chr8 for 
CONT houses a laccase gene putatively involved in root elongation in 
response to dehydration (Potra001886g15018). Similarly, P. tremula 
homologs of BG1 (Potra002139g16570), GFR9 (Potra000632g04828) 
and ARF8 (Potra001409g11957) are associated with CMI and are all 
involved in mediating growth and root or leaf development and are 
intriguing candidates for adaptation to variation in precipitation. 
More information on the putative candidate genes can be found in 
Supporting Information Table S1. All these genes are clearly worth 
further studies to evaluate whether and how they may be involved 
in mediating adaptation to climate in P. tremula.

The effects of projected climate change will not affect current 
day populations equally, with genetic offsets substantially larger in 
northern Sweden under both RCP scenarios (Figure 4). The effects 
of climate change predicted for the northern populations are also il‐
lustrated by a comparison of the future climate at the northern com‐
mon garden with current day conditions (Figure 4c,d). By 2070, the 
climate at the northern common garden is expected to be most sim‐
ilar to current day populations that are located 4–8 latitude degrees 
further to the south. Similar results have been observed in Populus 
balsamifera, where Keller, Chhatre, and Fitzpatrick (2017) suggested 
more severe effects of climate change in leading edge compared to 
lagging edge population.

Despite the large genetic change predicted in northern popu‐
lations, patterns of genetic variation in key phenology traits, such 

F I G U R E  5   Fitness functions for bud 
set at (a) Ekebo and (b) Sävar and for bud 
flush at (c) Ekebo and (d) Sävar. Individuals 
from the northern populations (pop 9–12) 
are coloured in light blue, and individual 
from the southern populations (pop 1–6) 
are coloured in light red. The x‐axis in all 
plots denotes standardized trait values, 
and the y‐axis denotes relative fitness
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as bud flush and bud set, in the common gardens suggest that nat‐
ural selection could allow populations to track a changing climate 
(Figure 5). Trees with extended growth seasons, that is, trees with 
early bud flush and late bud set, show higher growth rates, although 
the results are generally weaker for bud flush (Table 1, Figure 5). 
Trees from southern populations are showing superior growth in the 
northern common garden (Figure 5), suggesting that if gene flow can 
introduce sufficient genetic variation natural selection with popu‐
lations may, at least partly, be able to track a changing climate. To 
what extent this is possible depends on how effective gene flow is 
in introducing variation that will be adaptive under future climate 
conditions. If gene flow is as high as the low population differen‐
tiation we observe in P. tremula appears to indicate, it is possible 
that this could be achieved without the need for management in‐
terventions such as assisted migration (Aitken & Bemmels, 2016). 
However, these analyses critically rely on the assumptions that 
we can accurately judge rates of gene flow from current levels of 
population differentiation, as discussed above, and that growth is a 
good proxy for assessing fitness in P. tremula. Measuring fitness in 
perennial plants is fraught with difficulties, but a common rationale 
for using growth rate as a proxy for vegetative fitness is that early 
mortality, following seedling establishment, is high in most forest 
trees and individuals that grow rapidly will often tend to outcom‐
pete neighbours (Collet & Le Moguedec, 2007; Peet & Christensen, 
1987). Furthermore, tree crown volume of adult trees, and hence 
potential flower production, is highly correlated with basal area and 
therefore also growth rate (Bush, Smouse, & Ledig, 1987; Chisman 
& Schumacher, 1940).

Forest management has traditionally relied on extensive prove‐
nance trials to assess response to climate variation and to identify 
suitable seed sourcing locations. However, a number of recent stud‐
ies (Martins et al., 2018; Rellstab et al., 2016; Supple et al., 2018) 
have shown that combining genomic information with climate mod‐
elling provides a novel and potentially faster way forward for as‐
sessing the climate change‐induced risks. This approach allows for 
predictive modelling of the possible consequences of climate change 
and should help identify areas and/or populations where manage‐
ment interventions are needed to ensure persistence (Fitzpatrick & 
Keller, 2015; Supple et al., 2018). In this study, we have integrated in‐
formation on variation in key climate variables with phenotypic vari‐
ation measured at multiple common garden sites and information 
on whole‐genome variation in a keystone deciduous tree species, 
P. tremula (Bernhardsson et al., 2013; De Carvalho et al., 2010). We 
identify a number of genomic regions and putative candidate genes 
that are strongly associated with variation in climate and use this 
information to predict the ability of population to evolve responses 
to future climate change. Our results show that while the expected 
genetic changes are not overly large, they will affect populations 
across the latitudinal gradient differently. Leading edge populations 
are expected to experience greater genetic change in order to track 
a changing climate compared to lagging edge populations. Common 
garden data suggest that if appropriate genetic variation can be in‐
troduced into these populations, either through natural means or by 

assisted migration, natural selection could possibly allow the pop‐
ulations to track future environmental change. In conclusion, our 
study presents compelling evidence that significant portions of the 
distribution range of P. tremula in Scandinavia will experience drasti‐
cally changing climates in the not so distant future and that this will 
induce strong selection on local populations. Whether the species 
can adapt to a changing climate over these timescales will largely de‐
pend on the availability of sufficient adaptive variation within local 
populations which in turn depends on how rapidly gene flow can 
introduce such variation.
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