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ABSTRACT ARTICLE HISTORY
Human milk oligosaccharides (HMOs) are the third most important solid component in human milk Received 30 September 2022
and act in tandem with other bioactive components. Individual HMO levels and distribution vary ~ Revised 1 December 2022
greatly between mothers by multiple variables, such as secretor status, race, geographic region, Accepted 22 February 2023
environmental conditions, season, maternal diet, and weight, gestational age and mode of KEYWORDS

delivery. HMOs improve the gastrointestinal barrier and also promote a bifidobacterium-rich gut Human milk oligosaccharide;
microbiome, which protects against infection, strengthens the epithelial barrier, and creates HMO; human milk;
immunomodulatory metabolites. HMOs fulfil a variety of physiologic functions including potential breastfeeding; microbiota
support to the immune system, brain development, and cognitive function. Supplementing infant

formula with HMOs is safe and promotes a healthy development of the infant revealing benefits for

microbiota composition and infection prevention. Because of limited data comparing the effect of

non-human oligosaccharides to HMOs, it is not known if HMOs offer an additional clinical benefit

over non-human oligosaccharides. Better knowledge of the factors influencing HMO composition

and their functions will help to understand their short- and long-term benefits.
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Introduction

The World Health Organization (WHO) and
pediatric societies recommend breastfeeding
within the first hour of life and to breastfeed exclu-
sively for the first six months, continuing for up to
two years'>. Human milk is the only recom-
mended source of nutrition for newborns because
of its unique composition and the fact that it is
naturally occurring and ideally suited to support
crucial developmental processes in infancy. In
addition, to providing essential nutrients, human
milk also contains a plethora of bioactive compo-
nents that promote healthy growth and develop-
ment and help to preserve a healthy microbiota and
the infant’s immune system.*°. There are numer-
ous health benefits associated with breastfeeding
and human milk, both for mothers (lower risks of
breast and ovarian cancer, hypertension, and type 2
diabetes) and their newborns (short- and long
term). Short-term benefits include fewer cases of
diarrhea, pneumonia, otitis media, atopic dermati-
tis, and sudden infant death syndrome; long-term
benefits include fewer cases of type 2 diabetes,
leukemia, autistic spectrum disorders, and obesity;
and beneficial effects on IQ and social
behavior™’ ',

The difference between non-breastfed and
breastfed infants in morbidity and mortality was
hypothesized to be related to the composition of
human milk. The relationship between breastfeed-
ing and infant’s health is based on its nutritional and
bioactive components including human milk oligo-
saccharides (HMOs)*'*'*. In the early 1900s, Moro
and Tissier independently found a predominance of
bifidobacteria in the stools of breastfed compared to
non-breastfed infants'®. It was discovered that the
oligosaccharides present in human milk did stimu-
late the growth of bifidobacteria, and in the 1950s
the first clear description of the structure of the most
abundant HMOs were unraveled'”™"”.

HMOs provide a variety of physiologic func-
tions, including the establishment of a balanced
infant’s gut microbiota, the strengthening of the
gastrointestinal barrier, prevention of infections,
and potential support to the immune system,
brain, and cognitive development®* ®'*'°, This
review aims to summarize up-to-date information
about the functional effects of HMOs, such as

supporting the development of a healthy gastro-
intestinal microbiome, inhibiting the adhesion of
pathogens, promoting the development of
a balanced the immune system, and their contribu-
tion to brain development and cognitive function.

Method

We searched for relevant studies published in the
English language in PubMed, EmBase, Scopus
between 2000 and August 2022. We used search
terms: “human milk oligosaccharide” AND “breast
feeding”, OR “breastfed”, OR “human milk”, OR
“formula”, OR “infant formula” and OR “nutrition”.
We researched the relevant literature and summar-
ized the most up-to-date information about the func-
tional effects of HMOs, as well as, evaluated
preclinical, observational, and randomized controlled
clinical trials with HMO-containing infant formulas.

Human Milk Oligosaccharides (HMOs): composition
and related factors

Human milk contains numerous structurally dif-
ferent oligosaccharides, indigestible carbohydrates
for humans. Human milk contains much more
oligosaccharides than the milk of any animal.
Human milk oligosaccharides (HMOs) are the
third most important solid component in human
milk after lactose and lipids, while having
a minimal nutritional value for the infant* ***?',
Over 200 structurally different HMOs have cur-
rently been identified*>*>. HMOs withstand both
heat and cold, and remain therefore unaffected by
pasteurization and freeze-drying”. HMOs are
resistant to pancreatic and brush border enzymes,
as well as to the low stomach pH. The majority of
HMOs are either metabolized by the infant’s gut
microbiota or excreted intact. Approximately, 1 to
2% of the ingested HMOs are absorbed, get into the
systemic circulation, and are eliminated via urine'*.

HMOs are multifunctional, unconjugated, and
non-digestible glycans. HMOs are build out of five
monosaccharide components: galactose, glucose,
fucose, N-acetylglucosamine, and the sialic acid
derivative  N-acetyl-neuraminic  acid'®'>**,
Abbreviations of common HMOs were shown in
Table 1.
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Table 1. Abbreviation of HMOs.

2" -FL 2" fucosyllactose 2
3" -SL 3" sialyllactose

6’ -SL 6' sialyllactose

DFL 2,3-di-O-fucosyllactose
DFLac difucosyllactose

DFLNH difucosyllacto-N-hexaose
DFLNT difucosyllacto-N-tetrose
DSLNH disialyllacto-N-hexaose
DSLNT Disialyllacto-N-tetraose
FDSLNH fucodisialyllacto-N-hexaose
FLNH fucosyllacto-N-hexaose
LNDFH-I lacto-N-difucohexaose:
LNFP | lacto-N-fucopentaose |
LNFP 11 lacto-N-fucopentaose Il
LNFP-IlI lacto-N-fucopentaose Il
LNH lacto-N-hexaose

LNnT Lacto-N-neotetraose
LNT Lacto-N-tetraose

LSTb sialyl-lacto-N-tetraose b
LSTc sialyl-lacto-N-tetraose ¢

Three major HMO categories are present in
human milk of secretor mothers®'*!>2>2

(1) Neutral fucosylated HMOs (35-50%; e.g., 2'-
FL and DFL)

(2) Acidic sialylated HMOs (12-14%) e.g., 3'-SL
and 6'-SL

(3) Neutral non-fucosylated HMOs (42-55%,
e.g., LNnT, LNT).

The levels and distribution of HMOs vary widely
from woman to woman but also for a single woman
according to the duration of lactation and many other
variables (such as regional, seasonal etc.)>*”*®. Conze
et al*’ performed a weighted analysis of 2'-FL, 3'- FL,
LNT, 3'-SL, and 6'-SL concentrations in human milk
from previously published reports and reported the
following median (+ standard deviation) levels: for 2’-
FL: 2.56+0.054 (IQR 1.14-3.89g/L), for 3’-FL
a median of 0.32+0.045 (IQR 0.057-1.1 g/L), for
LNT 0.82+0.0057 (IQR 0.35-1.5g/L), for 3’-SL
0.23 £0.0018 (IQR 0.10-0.42g/L) and for 6-SL
0.33%0.003 (IQR 0.09-0.54 g/L)>".

HMOs range in concentration from 20 to 25 g/L
(average 9-22g/L) in colostrum to 10-15g/L
(average 8-19 g/L) in mature milk, and 4-6 g/L
after 6 months'>****7*_ About 10 grams of
HMOs are consumed daily by a term infant ingest-
ing 800 milliliters of human milk®.

Individual HMO concentrations vary by secretor
status and Lewis blood-type status, race, geo-

graphic  region, ethnicity, environmental

conditions, season, maternal diet, physiological sta-
tus, parity, gestational age, and mode of
delivery®>! 4132832333541 " 1n gecretor women
(account for 70-80% of all women), 2'-FL is the
most prevalent HMO, and persists at around 1 g/L
after one year’>>°. Most HMO concentrations
decrease over the course of lactation. However,
some HMOs, including 3’-SL, 3’-FL, and DSLNT
increase in concentration throughout the first
months of breastfeeding and even beyond
one year of lactation®*>*>*’. Recent research by
Plows and colleagues® examined HMO levels
over two-years and confirmed that the majority of
HMO concentrations decrease significantly over
the course of lactation among Hispanic mothers
in the United States, with the exception of 2’-FL,
LSTb, and DSLNT, which showed no change, as
well as a 10-fold increase of 3’-FL, and a 2-fold
increase of 3’-SL from the first month to the 24™
month of lactation. Although it is not known if
these variations in HMO-levels have a clinical
impact, the stability or growth of certain HMOs
during lactation suggests that they may have crucial
biological activities™.

Maternal secretor and Lewis blood-type status
affect HMO fucosylation. Le gene encodes Lewis
blood group antigens (FUT3 gene) and generates
fucosylated HMOs in mammary glands. Se is
another HMOs-related gene™**. Se and Le genes
encode mammary gland enzymes FUT2 and FUT3
involved in fucosylated HMO production. Se and
Le genes encode FUT2 and FUT3, which classify
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lactating mothers into four types'*. Lactating
mothers who express active FUT2 are called “secre-
tors,” and their milk is rich in 2'-FL and LNFP
I. Non-secretors are lactating mothers who do not
express active FUT?2. Their milk contains few or no
1-2 fucosylated HMOs, including 2'-FL'%
Variations in FUT2 negative genotypes contribute
to geographic variances in HMO profiles*’.
Secretor mothers have greater mean total HMO
concentrations than non-secretor mothers, and
most HMOs differ by secretor status, but not
DSLNT?. Lactating mothers that express FUT3
are Lewis-positive, and their milk contains 3’-FL
and LNFP II. Lewis-negative mothers don’t pro-
duce FUT3. Non-secretor mothers” milk has more
neutral, non-fucosylated HMOs due to a lack of
FUT2*. Cheema et al.*® found that human milk
samples were dominated by five HMOs: 2'-FL, 3’-
FL, LNT, DFLNT, and LNFP II. The secretor
mothers exhibited larger amounts of 2'-FL,
DFLac, LNnT, LNFP I, DFLNT, and LSTc, whereas
non-secretors had higher concentrations of 3FL,
LNFPII, LNT, LSTb, DFLNH, and FDSLNH?. Se
and Le gene mutations alter FUT2 and FUT3
enzyme production, modifying the HMO
structure'”,

The most important variations within HMO
distribution are the amount of fucosylated HMOs,
which are prominent in secretor individuals**.
Although the genetic profile of the mother was
found to have a significant effect on the HMO
composition in the mother’s breast milk, particu-
larly fucosylated HMOs, the stage of lactation is
a major determinant of the HMO quantity, and
epigenetics may also have a significant effect on
the HMOs’ expression®*>*°,

HMO concentrations and profiles vary geographi-
cally. Among healthy breastfeeding women of 11
different nationalities, McGuire et al.* found that
the concentration of 3’-FL was at least four times
higher in milk collected in Sweden than in milk
collected in rural Gambia, while the concentration
of DSLNT was about four times lower in Sweden
than in rural Gambia. Furthermore, in Gambia, lac-
tating mothers produce considerably less HMOs
(LNnT) during the wet than during the dry season®.

Additional maternal and environmental vari-
ables contribute to HMO variability, although
their impact may be modest'®. It was reported

that after a cesarean section, human milk had
lower levels of 3'-SL, 2'-FL, and 6'-GL than after
vaginal delivery’>. Parity affects as well the concen-
tration of HMOs”®. While parity was found to be
negatively associated with LNFP III in non-secretor
mothers, it was found to be positively associated
with LNFP II and FDSLNH in both secretor and
non-secretor mothers®®. It is likely that parity
affects HMO content due to the correlation
between maternal body mass index (BMI) and
human milk fatty acid composition as well as fat
and protein concentration, which increases with
each additional delivery*®. Regarding the effects of
prematurity on HMOs, higher levels of 3'-SL, 6'-SL,
LNT, and LNDFH-I were detected in maternal
milk after preterm than after term delivery. At the
same time, the proportions of 3’-SL and 6'-SL also
differed considerably according to the milk
maturation stage*®™*®, FUT2-dependent HMOs
like 2’-FL and LNFP I are slightly lower in early
milk of mothers who delivered preterm®®. But
again, as stated before, it is not known if these
variations in HMO concentration do have
a major clinical impact.

Maternal adiposity has been reported to be posi-
tively, negatively or not related to the amount of
individual and/or total HMO concentrations.
Maternal body composition was shown to be related
to human milk microbiota, HMO composition, and
newborn body composition®®. Maternal obesity was
associated with lower concentrations of several
fucosylated and sialylated HMOs. Infants born to
obese mothers had reduced intakes of numerous
fucosylated and sialylated HMOs, and obesity in
mothers was associated with lower concentrations
of these HMOs*. Milk from mothers who were
overweight before pregnancy had higher concentra-
tions of LNT and LNnT than milk from mothers
who had a normal weight™’. Only among secretor
mothers has pre-pregnancy BMI been found to have
a positive correlation with both 2'-FL and DFLac”".
Depending on maternal secretor status, correlations
between maternal weight, BMI, and body composi-
tion measurements and 2'-FL and LNH concentra-
tions varied®®. Adiposity measurements were
positively associated with 2'-FL and FLNH concen-
trations in secretor and non-secretor mothers, and
with 3'-SL concentrations in non-secretors’®.
McGuire et al.** also showed a positive correlation



between maternal weight and 2’-FL and BMI, but
not LNH, FLNH, and FLNH. They also discovered
a positive correlation between weight and LNFP III
and DFLNT, and a negative correlation between
weight and BMI and LNnT and DSLNT. Selma-
Royo et al.”* found no connection between maternal
BMI and either individual HMO profiles or clusters
of HMOs. Secretor mothers have a greater dietary
effect on HMO profiles than non-secretor mothers.
Dietary fibers, polyphenols, and several insoluble
polysaccharides, pectin, and MUFA are associated
with the secretor HMO profiles. However, Plows
et al” found that increases in HMOs over the
course of 24 months of lactation were unaffected
by maternal age, BMI or socioeconomic level. In
Norwegian mothers, no difference in HMO compo-
sition was reported between vegan, vegetarian, and

non-vegetarian mothers™.

In summary: HMO composition is influenced by
many variables, including genetic background,
environment, dietary intake, and many other fac-
tors. However, except for secretor versus non-
secretor mothers, there is little evidence that these
changes are of clinical impact.

HMOs and anthropometry

There is limited information about how HMOs
affect infant body composition. Total HMO intake
is not related with growth and adiposity, although
some specific HMOs are related with infant growth
in the first six months. The difference in weight
between breastfed newborns of secretor and non-
secretor women may be explained in part by
the fact that several HMOs are both positively
and adversely linked with baby food
responsiveness>>***>*, A narrative review reported
that several observational studies have investigated
if a link could be found between HMOs and infant
growth in term-born breastfed infants*. Only few
relationships were consistently reported across
studies®. FLNH, LNnT, and LNFP III were nega-
tively associated with infant anthropometric mea-
surements and body composition, while DFLNH
was positively associated®.

Cheema et al*® demonstrated that anthropo-
metrics, fat-free mass, and adiposity are all strongly
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linked with HMO intake, with correlations modu-
lated by secretor status. Certain HMOs, such
DFLNH and LNnT, appear to serve a protective
role by controlling fat formation, perhaps protect-
ing newborns from later-life obesity*®. Regardless
of maternal secretor status, child body composition
was positively associated with 2'-FL, 3-FL, DFLac,
DFLNH, DFLNT, and LSTb intakes®®.

In infants of non-secretor mothers, DFLNT con-
centrations were positively- and FLNH, 6'-SL, and
FDSLNH were negatively associated with infant
anthropometric  measurements and body
compositionzs.

In infants born from secretor mothers, 3'-SL
intake was linked to weight, length, fat-free mass,
and weight for age®®. 3‘SL was the only HMO
linked with greater weight for length increases in
the first four months of lactation in a recent
European multicenter study of 370 mother-infant
dyads™. Still in secretor mothers, HMO composi-
tion at three months after birth was linked to
weight and height during the first five years of
life®"*°. An inverse relationship between HMO
diversity and LNnT concentration and a direct
relationship between 2'-FL concentration and
z-scores was reported for children’s height and
weight z-scores’'. However, other studies reported
different: a negative correlation between LNnT and
food responsiveness in the first month of life, but
DFLNT and DSLNT showed this correlation solely
among secretors’". Positive associations were seen
between DSLNH, FLNH, LNH, LST¢, and food
responsiveness at 6 months in both the overall
population and in secretors exclusively™*.

In a Gambian study, researchers found that dif-
ferent HMOs, and 3’-SL in particular, affected
infants’ weight-for-age z scores, whereas relative
sialylation of HMOs did not*. Infants receiving
higher total HMO concentrations had higher per-
centages of fat-free mass and a lower fat-to-fat-free
mass ratio and fat-free mass-to-fat-mass ratios”’.
Alderete et al.”® showed that lower infant weight at
one and six months, as well as reduced lean and fat
mass at six months, were associated with higher
levels of LNFP1 and a positive correlation was
observed with greater fat mass and LNFP-II and
DSLNT.

In 2016, two cohorts of mothers in Malawi,
one in healthy 6-month-old, and another in
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severely stunted infants, HMO compositions
were studied””. Breast milk of undernourished
infants has lower levels of HMOs than the milk
that healthy babies received®”. Among secreting
mothers, there was no difference in HMO con-
centrations between those infants who were
healthy or stunted. But milk from non-secretor
mothers of stunted infants had lower levels of
fucosylated and sialylated HMOs than infants
with normal growth®’. These results suggest
that milk of non-secretor mothers would be less
conducive to child growth due to an inefficient
compensation for a lack of fucosylated
HMOs"*°

According to data from Bangladesh, there is an
increased likelihood of severe acute malnutrition
for every unit increase in the relative abundance of
sialylated HMOs®'. Fifty-four percent of the
infants with severe acute malnutrition and 58%
of the infants who were not malnourished were
born to women who were secretors. Fucosylated
or undecorated HMOs were not shown to be sig-
nificantly linked to severe acute malnutrition.
This suggests that human milk with a higher rela-
tive abundance of sialylated HMOs might have
a detrimental effect on the nutritional health of
children under the age of®'.

Two hypotheses may be related to the plausibil-
ity of HMOs on anthropometric measurements: i)
certain HMO-microbiota pairs may affect infant
anthropometry, and ii) HMOs affect food-
responsiveness and appetite via a microbiome-
driven process that affects the entero-endocrine
system or the central nervous system®. The devel-
oping gut microbiome is regarded as a crucial
determinant determining infant growth, along
with the environment, genes, epigenetics, and
metabolism®”. Sprenger et al.* hypothesize that dif-
ferences in maternal nutritional status and in the
composition of the mother’s gut microbiota
(including epigenetic and genetic changes) may
be significant confounding variables. Randomized
controlled trials (RCTs) and mechanistic studies
are needed to show if the inclusion of specific
HMOs could aid to promote growth in specific
circumstances of faltering growth or in preterm-
born infants.

HMOs and microbiota

Gut microbiota composition is established in early
life and is influenced by many variables, such as
delivery mode, gestational age, maternal, and
infant/toddler nutrition, antibiotic use, presence of
siblings, local environment, geographic location,
and host genetics has short- and long-lasting effects
on health®. The content of HMOs in mother’s milk
is one of the variables determining the composition
of the gut microbiota in the infant®. Infant micro-
biota is characterized primarily by low diversity and
high variability, even more than in adults®*.
Breastfed infants have a significantly different
microbiota and metabolome compared to formula-
fed ones®. Bifidobacteria are among the first colo-
nizers of the infant gut and sustaining this abun-
dance of Bifidobacteria is crucial to preserving the
gut microbiota composition. Several studies have
shown that HMOs influence the gut microbiota
composition via bifidogenic and anti-pathogenic
effects and by potentially interacting with the gut
epithelium to alter the physical interactions between
microbes and their hosts®®. Breastfeeding, due to the
supply of HMOs into the gut, promotes the growth
of specific HMO-utilizing Bifidobacterium species
which are nearly accounting for 50-90% of the
total bacterial population found in the feces of
breastfed newborns®’. In the first 1000 days of life,
the gut microbiota of healthy breastfed infants is
typically dominated by ‘infant-type” bifidobacteria,
including Bifidobacterium longum subsp. Infantis,
B. bifidum, B. breve, and B. longum subsp.
longum®®. Some members of the Bifidobacterium
genus can metabolize HMOs, but not all of them
can, and not all HMOs cause the same changes in
the composition and/or activity of the gut micro-
biota and have the same effects on host well-being
and health. B. longum subsp. Infantis is the most
effective consumer of HMOs, and B. bifidum and
B. breve can also partially consume HMOs™.
Bifidobacterium bifidum and B. longum subsp. infan-
tis, two avid HMO consumers, dominate through
inhibitory effects in which the early arriving species
apparently depletes resources for later arriving
species®. Bifidobacterium longum would be
a moderate competitor, as it cannot consume



LNnT, but can consume LNT and specific fucosy-
lated sugars such as 2'-FL, 3-FL, LDFT, and LNFP
I. Bifidobacterium breve, a species with limited
HMO-utilization ability, limited to LNT and
LNnT, can benefit from facilitative priority effects
and dominates by utilizing fucose, an HMO degra-
dant not utilized by the other bifidobacterial species
like B. bifidum and B. infantis®. Several Bacteroides
species are known to utilize HMOs as well.
Bacteroides have been reported to dominate in the
absence of bifidobacteria, and mutual exclusion may
be occurring through the depletion of HMOs®®.
Bacteroides thetaiotamicron, found in a healthy
mature gut, provides metabolic and immune sup-
port and is an effective HMO degrader’’.

The diversity of bifidobacteria in is closely cor-
related with whether or not the mother is a secretor
for the enzyme FUT2”'. Observational studies
showed that secretor milk status (due to its high
levels of 2'-FL and other Fucosyl-HMOs) are asso-
ciated with bifidobacteria dominated early gut
microbiota in breastfed infants*>’>”>, Stool from
infants with a microbiome harboring this 2°FL uti-
lizing capacity has been shown to have a lower pH
and provides better protection against specific diar-
rheal diseases””. Bifidobacteria isolated from the
stool of secretor breast milk-fed infants were able
to utilize 2'-FL as the sole carbon source, indicating
a more pronounced bifidobacterial metabolic activ-
ity targeting fucosylated HMOs™”*. Conversely, the
gut microbiota of infants born to non-secretor
mothers is depleted of bifidobacteria because to
the absence of 2’-FL in human milk, which may
result in a diminished level of biological defense
against infections®*. In contrast, bifidobacteria
colonization is slowed by non-secretor human
milk, while Clostridium and Enterobacteriaceae
are encouraged””.

When HMOs are fermented by bacteria, SCFAs
are produced, creating a low-pH environment in
the colon that encourages the growth of beneficial
bacteria and inhibits pathogens®”’>. These SCFAs
have multiple beneficial physiological effects, such
as acting as anti-inflammatory agents, serving as
energy substrates for intestinal epithelial cells, and
promoting gastrointestinal motility®”®. Cross-
feeding (when one kind of bacterium’s metabolic
byproducts are used as a food source by another
type of bacterium in the environment) is
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encouraged by the presence of HMOs’””®, The
bifidobacterial population in the infant’s gut is
composed of a co-group of multiple
Bifidobacterium strains, rather than one strain
dominating, and competing to the exclusion of all
others. On the one hand, the cross-feeding effect
among bifidobacterial species/strains is associated
with the ability to thrive in HMOs of multiple
Bifidobacterium members in the infant’s gut.
Fermentation products of HMO-degrading infant-
type Bifidobacterium species may suppress other
gut microbes and opportunistic pathogens that do
not use HMOs. This competitive advantage in the
HMO use of the developing gastrointestinal tract
greatly affects the survival and persistence of ben-
eficial Bifidobacterium species and lessens the bur-
den of potentially harmful or pathogenic
bacteria®®®. On the other hand, certain bifidobac-
terial taxa cooperate with non-bifidobacterial taxa
(including HMO consumers and non-HMO con-
sumers) to maximize the nutrient consumption of
HMOs, thus contributing to increased bifidobac-
terial diversity and dominance-gaining®®. Schwab
et al.”’ showed that Eubacterium hallii consumes
the fermentation products of HMO by bifidobac-
teria and generates butyrate and propionate. The
cooperation of the bacterial community in the neo-
natal intestine to maximize the utilization of
HMOs, so as to maintain the intestinal immune
balance of newborns. Overall, infant-type
Bifidobacterium species are well adapted to the
infant gut and efficiently consume HMOs, and
their presence influences both immediate and long-
term health outcomes®®*°. Since HMO composi-
tion differs between mothers, it’s reasonable to
assume that each mother’s milk has a unique effect
on her infant’s gut microbiota.

In addition to the widespread indirect effects
resulting from microbial fermentation of HMOs,
recent research has described the direct benefits of
HMOs on gut health®. 3'-FL stimulated production
of mucin and antimicrobial peptides in goblet cells,
and 2'-FL may have a similar effect on goblet cell
function when inflammatory stressors are also
present®'. Natividad et al.** used in vitro models
that replicate the microbial ecology and the intest-
inal epithelium to evaluate the impact of lactose, 2’-
FL, 2’-FL + LNnT, and a mixture of six HMOs (2’-
FL, LNnT, DFLac, LNT, 3’-SL, and 6’-SL) on
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newborn gut microbiota and intestinal barrier
integrity. Although the SCFA levels were higher
and bifidogenic potential was present in all the
products examined, only the fermented medium
from the HMOs provided protection against
inflammatory gut barrier disruption. The most
butyrate-producing bacteria were enriched by the
six HMOs formulation, whereas 2’-FL/LNnT and
six HMOs promoted the greatest diversity within
the Bifidobactericeae family®.

Since the intestinal epithelial glycocalyx is cru-
cial for microbial colonization, Kong et al.*> con-
ducted the first study to examine the development
of this barrier in relation to HMOs. They found
that 2'-FL and 3-FL stimulate glycocalyx formation
and have a direct effect on the growth of epithelial
cell lines. HMOs have been proven to directly
modulate goblet cells, causing them to produce
more mucus, another important component of
the intestinal barrier system®'.

There is a limited information on the compli-
cated relationships between the human milk
microbiome and different types of HMOs™>?®,
Although the potential biological influence on the
newborn is still unclear, there is an association
between maternal secretor status and HMOs with
human milk microbiota’’. Maternal factors includ-
ing body composition are related to human milk
microbiota and HMO composition. Individual
HMO concentrations may influence human milk
bacterial profiles during the exclusive breastfeeding
period. Total HMOs and 2'-FL were positively
associated with the relative amount of
Staphylococcus, whereas 3'-SL was negatively cor-
related with the proportions of Ralstonia and
Novosphingobium in 16 human milk samples®*.
Staphylococcus epidermidis, Streptococcus salivar-
ius, Cutibacterium acnes, Gemella haemolysans,
and Veillonella nakazawae all had correlations
(positive  and  negative)  with ~ HMO
concentrations®®. In colostrum, a higher total
HMO concentration is associated with higher
counts of Bifidobacteria. Sialylated HMOs were
positively correlated with B. breve, and non-
fucosylated/non-sialylated HMOs were positively
correlated with B. longum. There were also favor-
able associations found between fucosylated HMOs
and Akkermansia muciniphila and between fucosy-
lated/sialylated HMOs and  Staphylococcus

aureus®®. Only in non-secretor mothers, several
HMOs were correlated negatively with
Streptococcus parasanguis, Gemella haemolysans,
and Cutibacterium acnes. Among the secretor
mothers, 3'-SL was negatively associated with
Staphylococcus epidermidis. Moossavi et al.>
found that 3'-SL, 6'-SL, LSTb, LSTc, DSLNT, and
DSLNH all have positive relationships with
Staphylococcus spp.

HMOs are the third most important component
of human milk and are crucial for the development
of a healthy early life gut microbiome. As a result, it
is evident that HMOs encourage the growth of
a bifidobacteria-rich gut microbiome.

HMOs and necrotizing enterocolitis (NEC)

In preterm newborns, breastfeeding has been
linked to a lower incidence of NEC compared to
formula feeding™®”*. In a murine model of NEC,
HMOs raise mucin levels and lower bacterial
attachment®”. FUT-2 non-secretor and low secre-
tor status in premature newborns is associated with
a higher risk for NEC, gram-negative sepsis, and
death®™. HMO diversity and specifically DSLNT
were shown in observational studies to be asso-
ciated with NEC**?'"%*_ Although explanations
for the association between DSLNT and NEC
remain elusive, an age-appropriate microbiome
progression was suggested’’. DSLNT was shown
to increase survival rate and reduce pathology
scores in a rat model of NEC*. More studies are
needed to understand the link between DSLNT and
NEC risk.

Protective effects against (severity of) NEC were
observed for 6°'-SL and 2’-FL in experimental
models®”?*~%°. Both 2’~FL and 6’-SL suppress toll
like receptor-4 activation, which is linked to the
onset of NEC, and hence decrease inflammation in
mouse and piglet models of NEC*>. However, clin-
ical observations could not confirm a relation
between 2'-FL or 6'-SL with NEC risk.

HMO and infections

In, the amount of HMOs is associated with
a decreased prevalence of diarrhea, overall infec-
tions, and morbidity””'*. FUT2 alleles are asso-
ciated with a higher risk of infant gastrointestinal



and respiratory illnesses'’’. At the age of 2 years,
diarrhea due to stable toxin-Escherichia coli infec-
tion and of unknown etiology were both reduced in
breastfed infants with high levels of alpha
1,2-linked fucosylated-HMOs'*. Higher levels of
LNFP-II in colostrum were associated with
reduced respiratory and gastrointestinal infections
by 6 and 12 weeks”®. Torres-Roldan et al.'"® inves-
tigated the HMOs’ composition and infection rates
in very-low-birth-weight infants, FDSLNH was
found to protect for late-onset neonatal sepsis'®’.

In breastfed newborns in Mexico, the incidence
of Campylobacter diarrhea was decreased in
infants whose mothers’ milk had a high percentage
of 2'-FL””. The protection offered by HMOs was
limited to the duration of breastfeeding'®.
Furthermore, high levels of LNDFH-I, another
2-linked fucosyloligaosaccharide, protect against
calicivirus ~ diarrhea including norovirus®™.
Population studies show significantly higher levels
of LNnT, 2’-FL and 6’-SL in milk of mothers of
rotavirus-positive neonates with gastrointestinal
symptoms'**, However, it is unknown whether
high levels of these HMOs are a natural reaction
to the rotavirus infection or whether they provide
poorer protection against a rotavirus infection than
lower levels'**. Secretor-positive human milk inhi-
bits norovirus particles, while secretor-negative
milk does not, suggesting that alpha 1,2 linked
fucosylated-HMOs may be implicated'*”. Both
3-FL and 2’-FL have been found to bind
norovirus™.

Higher concentrations of LNF-II in human
milk at two weeks postpartum were associated
with fewer respiratory problems in infants by 6
and 12 weeks of age'®®. Mother’s milk of sick
infants contains more of certain HMOs (LNT)
than healthy infants, while other HMOs
(LNFP1) are less frequent in sick infants®.
However, the levels of HMOs could not be
related to physician reported data on infections
(otitis media, upper and lower respiratory tract
infections)'?’.

HIV-infected women have larger relative abun-
dances of 3’-SL in their milk than HIV-negative
mothers'*®. HIV-infected women with total HMOs
above the median (1.87 g/L) are less likely to trans-
mit HIV via breastfeeding, although there was no

difference related to secretor or Lewis status'®.
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A higher LNnT concentration correlated with
reduced transmission. Independent of other
known risk factors, higher concentrations of non-
3’-SL HMOs were associated with decreased like-
lihood of postnatal HIV transmission. In Zambian
children, breastfeeding was protective against mor-
tality only in uninfected children with high con-
centrations of fucosylated HMOs''®. Higher
amounts of 2’-FL and LNFP I, as well as 3-FL and
LNFP II/III, were substantially associated with
a decreased mortality in children who were not
HIV-infected''?. Breastfeeding was found to
reduce mortality risk for HIV-infected children,
but no consistent relationships were found between
HMOs and mortality''°.

Some potential modes of action for HMOs
include weakening, preventing, and deviating
pathogens from adhering to their cognate cell sur-
face ligands®. Several viruses and bacteria have
been found to bind to HMOs". Many infectious
agents, including viruses (including influenza
virus, respiratory syncytial virus, coronaviruses,
rotavirus, HIV, and norovirus), bacteria (including
Streptococcus pneumoniae, Haemophilus influenza,
Group B streptococci (GBS)), and protozoan para-
sites, require adhesion to the surface of epithelial
cells in order to replicate and, in some cases, infil-
trate and cause disease®™''". HMOs act as soluble
decoy receptors that block the attachment of spe-
cific viral, bacterial, or protozoan parasite patho-
gens to the epithelial cell surface''”. Pathogens that
are not bound to the cell surface are washed away
harmlessly. Animal models have indicated that
increasing acetate, in combination with other
metabolites, increases protection from gastrointest-
inal and respiratory infections''*'">,

Regarding to anti-infective properties of HMOs,
studies showed*>*>!'*!1>

e 2-FL: C. jejuni, Enteropathogenic E. coli,
Salmonella enterica, rotavirus,
respiratory syncytial virus

e 3’-FL: Enteropathogenic E. coli, Salmonella
enterica, norovirus,

e LNT: Vibrio cholerae toxin,

B streptococcus, Entamoeba histolytica

e 3’-SL: Enteropathogenic E. coli, Vibrio cholerae
toxin, Helicobacter pylori, Pseudomonas aeru-
ginosa, rotavirus, influenza

norovirus,

Group
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e 6’-SL: Enteropathogenic E. coli, Helicobacter
pylori, Pseudomonas aeruginosa, influenza
A HINI, rotavirus

e LNnT: pneumococci, influenza

Some HMOs are bacteriostatic against GBS, causing
neonatal sepsis, pneumonia, and meningitisS7. Non-
sialylated HMOs, LNT and LNDFH-I (1-2 mg/L
daily), delay the growth of GBS with 96-98%"".
HMOs also showed antibacterial action against,
Acinetobacter baumannii, and Staphylococcus
aureus*'. In neonates, HMOs alter the growth and
morphogenesis of C. albicans, which then makes it
more difficult for the pathogen to attach, invade,
and cause disease' .

According to basic and animal research, HMOs
appear to have a role in the treatment and prevention
of bacterial, viral, protozoal, and fungal diseases. It is
important to note that the majority of the evidence
presented in support of the anti-adhesive effects of
HMOs originates from experimental studies. It will
need well-designed and powered mother-infant dyad
observation studies and, more crucially, intervention
studies to demonstrate that a single HMO or
a mixture of several HMOs reduces the incidence
and/or severity of a diversity of infectious diseases.

HMO and immune development

The immune system develops over the course of
gestation and continues to be postnatal in relation
to exposure of microorganisms. HMOs can modify
host epithelial and immune cell responses and con-
tribute to the development of the gastrointestinal
immune system* *?%**!7 It has been hypothe-
sized that HMOs influence the responses of epithe-
lial cells and immune cells by modifying cell
proliferation, differentiation, and apoptosis, as
well as cell signaling pathways and cell surface
glycosylation, so modulating immunological func-
tions. Intestinal epithelial barrier cells can be
directly affected by HMOs of varying structures.
Direct interactions between HMOs and infant
intestinal epithelial cells affect their gene expres-
sion, cell cycle, and cell surface glycosylation and
regulate their growth, differentiation and
apoptosis’’. The establishment of the infant gut
microbiota and its metabolic activity is thought to

be an important mechanism through which HMOs
affect immune system development®,

In addition, when HMOs reach the colon and
are then absorbed intact into the circulation, they
may play a systemic immunomodulatory role by
mediating cell-cell interactions in the immune sys-
tem. Intestinal health and intestinal barrier func-
tion constitute the first defense line in innate
immunity* **%>**1'$11% A5 shown in vitro, HMOs
inhibit cell proliferation, promote cell differentia-
tion, death, and maturation, and strengthen the
barrier function”?"?*'*°, Modulations in gene
expression caused by HMOs have an immediate
effect on intestinal epithelial cells, altering their
surface glycans and eliciting different cellular
responses. The generation of cytokines by lympho-
cytes is altered by HMOs, which may result in
a more balanced TH1/TH2 response. Growing evi-
dence from in vitro research suggests that HMOs
directly control immunological responses by alter-
ing immune cell populations and cytokine release
in infants, in addition to their indirect effects on
the immune system via changes in gut
microbiota”.

HMOs may also affect immune system receptors.
Galectins, glycan-binding proteins, regulate intracel-
lular signaling, cell — cell communication, prolifera-
tion, and survival'*'. Galectins may be HMO
receptors for the immune system development’.
HMOs can act locally or systemically on mucosa-
associated lymphoid cells".

HMOs contain tolerogenic factors influencing
human monocyte-derived dendritic cells and elevated
Interleukin (IL)-10, IL-27, and IL-6 levels but not IL-
12p70 and tumor necrosis factor-alpha'*?. 2'-FL
increases Thl-type interferon-gamma and regulates
IL-10 production, suggesting a Thl response'®.
CD11(+) mesenteric lymph node dendritic cells
exposed to 3’-SL can produce cytokines that boost
Th1 and Th17 immune cells'**. Three weeks of 2’-FL
administration to Caco-2Bbe cells, reduced the per-
meability and upregulated tight junction proteins'>”.
2"-FL can boost innate and adaptive immunity in
influenza-specific mouse models and reduce respira-
tory viral infections'*®. In a mouse influenza vaccina-
tion model, dietary 2’-FL improved humoral and
cellular immune responses, boosting vaccine-specific
delayed-type hypersensitivity and immunoglobulin
proliferation.'*’,



HMO and allergy

The prebiotic effects and the immunological pro-
gramming provided by HMOs also affect individual
susceptibility to allergies. A balanced microbiota and
microbiome provide immunological benefits by low-
ering the risk of allergic disorders through the synth-
esis of SCFAs, such as butyrate and propionate, which
have anti-inflammatory and anti-allergic qualities. It
is known since more than 20 years that the gastroin-
testinal microbiota differs in allergic and non-allergic
infants before symptoms of allergy develop'**'*>'>’,
A significant reduction in the probability of acquiring
immunoglobulin E (IgE) mediated eczema at the age
of two years was observed in C-section-born, allergy-
prone breastfed infants whose mothers expressed
FUT2, resulting in 2-FL synthesis in human milk™.
C-section infants who were administered human milk
containing FUT2-dependent oligosaccharides were
shown to have a lower incidence for IgE-associated
eczema at the age of 2 years>. It was only in infants
born via C-section that these associations between
IgE-associated eczema and consumption of FUT2-
dependent milk oligosaccharides were observed™.
The authors did not find an association with HMOs
and allergic disorders at 5 years of age®”. When com-
pared to milk with high LNFP III concentrations,
infants who received human milk with low LNFP III
concentrations were more likely to develop cow’s milk
protein allergy (CMPA)*®, The mothers’ FUT2 status
was associated with a delayed onset of CMPA, and
CMPA infants born to non-secretor moms (FUT2
negative) were more likely to develop IgE-mediated
CMPA. Lower levels of DSLNT and 6’-SL were asso-
ciated with atopic dermatitis®®. Concentrations of
nine neutral HMOs were not associated with the
chance of having an allergic disease up to the age of
18 months, according to a case-control study in 20
mother-infant pairs from a larger birth cohort™.
Regarding to relationship between food sensiti-
zation, a large clinical observation study (421
mother - infant dyads) demonstrates that HMO
composition is associated with the development of
food sensitization'**. The HMO profiles associated
with lower risk of food sensitization were charac-
terized by higher concentrations of FDSLNH,
LNFP II, LNnT, LNFP I, LSTc and FLNH, and
lower concentrations of LNH, LNT, 2'-FL, and
DSLNH'. In an ovalbumin sensitized mouse
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model, 2’-FL and 6-FL stabilize mast cells by indu-
cing expression of T regulatory cells and activate
the IL-10(+) regulatory cells to reduced symptoms
of food allergy"".

By influencing the colonization of the gut
microbiota and producing butyrate, microbiota
composition of human milk helps the prevention
of development of food allergies®’. The develop-
ment of a microbiome dominated by bifidobac-
teria was significantly delayed in infants fed
secretor-negative human milk compared to
those fed secretor-positive breastmilk at three
months of age'’®. In particular, B. breve has
been linked to a decreased incidence of
eczema'”. Among infants with a family history
of atopy, reduced Bifidobacteriaceae abundance
in infancy is related with a higher risk of
eczema'”’. However, another study found no sig-
nificant association between the intake of parti-
cular HMOs (measured at 6 weeks and 6 months)
and the risk of atopic dermatitis'**.

Breastfeeding has been shown to reduce the like-
lihood of developing food allergy, eczema, and
asthma, at least during early life, although there is
a lack of consistency in reporting of breastfeeding
duration, diagnostic criteria for atopic dermatitis,

1
and assessment age'>”.

HMO and brain/cognitive development

Sialic acid is considered a key conditioned nutrient
during early development. Although the mechan-
isms are not completely understood, the high levels
of sialic acid in human milk, especially in the form
of sialylated milk oligosaccharides, are considered
an important bioactive component linked to infant
brain and cognitive development™®'*°, Both 3’-SL
and 6’-SL have been shown to enhance learning
and memory and play a role in the gut microbiota-
brain axis">’ "%’

Cho et al.'"*” showed that the association
between human milk 3’-SL concentration and cog-
nition, particularly language functions, in typically
children who received human milk containing
alpha tetrasaccharide (an HMO, which only be
detected in the mothers with blood type A. High
levels of 6'-SL have been linked to better cognitive
and motor development at 18 months of age, as
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well as better language development at 12 months
of age" 414!,

In the brain, fucosylated proteins are found
along the neuronal synapses, particularly in the
hippocampus, where they play a crucial role in
the development of memory and learning'**.
There is experimental evidence that 2’-FL inter-
feres with cognitive processes, including
enhanced cognitive ability, learning, and
memory'*’. Early exposure to 2’-FL and 6'-SL
represents a critical time window for the positive
influence on the cognitive development at 2
years*® 414! " Although human data are scant,
one study found that breastfed infants with
greater 2’-FL intake at one month of birth had
better cognitive development at 24 months of age
and improved motor skills'**'**>. A higher con-
centration of fucosylated HMOs was linked to
better linguistic development between the ages
of 12 and 18 months'*’.

In summary, studies suggest a role of HMOs in
brain and cognitive development, but more data
are needed. The mechanisms of action need to be
further unraveled.

HMO and diabetes

2’-FL, 3’-SL, 6-SL, and LNnT may have protective
effects on the development of type-1 diabetes. In an
animal model, early life intake of HMOs delayed
and suppressed type-1 diabetes development in
non-obese diabetic mice and reduced the develop-

.. eie . .~ 126
ment of severe pancreatic insulitis in later life’ .

HMO and infant formula

Effects of HMOs containing infant formula on
anthropometry

Although the WHO recommends exclusive breast-
teeding since birth to 6 months of age, some infants
will not receive human milk. The energy and nutri-
tion need of a growing infant can be met by infant
formula, which typically is cow’s milk based.
However, cows and human milk differ substantially
in the composition of macro- and micro-nutrients,
and in the content of bioactive components®. In
fact, HMOs are virtually absent in cow’s milk (or
any animal milk), and their variety is much lower

than in human milk'*®. Observational studies
revealed that many disorders such as NEC, irritable
bowel syndrome, obesity, allergies, and eczema, are
more common in formula-fed compared to
breastfed infants®’. The early microbiota develop-
ment and effect on immune system development in
cow’s milk formula fed infants might be affected by
the lack of HMOs'"’. Nowadays, it is possible to
supplement infant formula with mixtures of
HMOs. The effects of HMOs in infant formula
have been evaluated in several randomized clinical
trials (Table 2).

HMO production technologies involve novel pro-
cesses, which are approved by the regulatory autho-
rities, such as the European Food Safety Agency
(EFSA) or the Federal Drug Administration (FDA)
in the United States. Both the EFSA in 2015 and the
FDA in 2016 approved 2’-FL and LNnT to be added
to infant formula, and the first formulas containing
HMOs were commercialized in Spain and the USA in
2016. The EFSA indicated that the addition of 2'-FL
and LNnT at a ratio of 2:1 to infant formula is safe
below 1 -year-old, with a maximum dosage for 2'-FL
of 1.2¢g/L and for LNnT of 0.6 g/L*’. In 2019, the
FDA stipulated that the maximum dosage of 2"-FL in
infant formula is 2.4 g/L, and for LNnT 0.6 g/L*.
HMOs have obtained the Generally Recognized as
Safe (GRAS) status. The number of HMOs that can
be synthesized on an industrial scale has steadily
increased, and nowadays formulas containing seven
HMOs (2’-FL, 3’-FL, LDFT, LNnT, LNT, 3’-SL,
6—SL) are studied. Some oligosaccharides, identical
to those in human milk, can be produced by fermen-
tation or other techniques. To be clear, the oligosac-
charides added to infant formula do not originate
from human milk, even if they have an identical
structure. Therefore, HMOs that do not originate
from human milk should preferably be called
“human identical milk oligosaccharides” (HiMOs)*.

Already in 2005, LNnT was shown to be safe in
228 infants aged 6-24 months during a 16-week
follow-up period, with a slight non-significant
trend for higher weight and height'*®, Marriage et
al'* conducted a prospective, randomized, con-
trolled growth and tolerance study, with
a formula containing 2'-FL and GOS in healthy
full-term infants and showed similar weight,
length, and head circumference to breastfed babies
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from enrollment (0-5days) to four months'*’.

This formula was well-tolerated and comparable
for average stool consistency, number of stools
per day, and percent of feedings associated with
spitting up or vomit with the control group fed
GOS supplemented formula. The formula supple-
mented with 2"-FL resulted in a growth similar to
that of breast-fed infants'*’. In a multicenter, RCT
in Italy and Belgium, Puccio et al.''® reported the
first clinical trial with infant formula supplemented
with 2’-FL (1.0 g/L) and LNnT (0.5 g/L) up to the
age of 6 months''®. The 2'-FL and LNnT supple-
mented formula was well-tolerated and supported
age-appropriate growth; infant had softer
stools and fewer nighttime wake-ups at two
months, while cesarean-born babies had a lower
incidence of colic at four months''®. Infants receiv-
ing HMO-containing formula had significantly
fewer parent-reported lower respiratory tract infec-
tions, antipyretic, and antibiotic use up to the age
of 12 months (although the supplementation was
limited to the age of 6 months)''®, Parschat et al'®
conducted a multicenter, randomized, controlled,
parallel-group clinical study in Germany, Italy, and
Spain to evaluate the safety and tolerability of a five
HMO blend (5.75 g/L total, comprising 52% 2'-FL,
13% 3’-FL, 26% LNT, 4% 3'-SL, and 5% 6'-SL) and
its effect on growth when applied over a 16-week
period"°. The primary outcome was the mean
daily body weight increment over a 4-month per-
iod. The observed mean values for daily weight
increase of~28.7 g/day were similar to those
reported in studies comparing infant formula
with 2'-FL plus GOS, 2'-FL plus LNnT, or 2'-FL
plus 3'-GL and GOS/FOS''®'**"'°! Lasekan et
al'>* performed a randomized, double-blind, con-
trolled parallel feeding trial with five HMOs (2'-FL,
3-FL, LNT, 3'-SL, and 6'-SL) containing formula in
the United States, mostly during the COVID-19
pandemic, while stay-at-home orders were in
place’>>. The test formula was again found to be
safe and well tolerated and weight gain and length
did not differ between the groups. Compared to the
control group, infants given test formula had more
frequent and softer stools'>>. Vandenplas et al.'”!
studied growth, safety, and tolerance in healthy
infants consuming a partly fermented infant for-
mula with postbiotics and the HMOs 3'-GL) and
2'-FL, and a specific prebiotic mixture of short-
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chain GOS (scGOS) and long-chain fructo-
oligosaccharides (IcFOS). Equivalence in weight
gain (primary endpoint), length, and head circum-
ference gain of up to 17 weeks was also confirmed
with the test formula. There were no statistically
significant differences between the formula
groups for regurgitation, vomiting, watery, or
hard stools at any timepoint'>'. Ramirez-Farias
and colleagues'>> examined extensively hydrolyzed
formula (eHF) with 2'-FL (0.2 g/L) for growth,
tolerance, and compliance in a non-randomized,
single-group, multicenter study. Infants (0-60 days
old) with suspected food protein allergy, persistent
feeding intolerance, or presenting conditions
where an eHF was deemed appropriate were
enrolled in a 2-month feeding with an experimen-
tal formula. This study shows that eHF formula
with 2'-FL was well-tolerated and provided
a significant improvement of weight for age z--
scores'”. An eHF with two HMOs (2'-FL at 1.0 g/
L and LNnT at 0.5 g/L) confirmed a non-inferiority
of the test formula for weight gain per day at the
4-month visit, and there were no statistically sig-
nificant differences between the groups on any of
the anthropometric parameters measured during
the course of the trial. Gold et al.">* showed in an
open-label, non-randomized, multicenter study of
an amino acid-based formula supplemented with
two HMOs (2'-FL and LNnT) for 4 months, with
the option to continue feeding it for additional 8
months, and showed that the weight-for-age
Z score improved from —0.31 at the start of the
trial to+0.28 at the end of the study. Additionally,
linear and head growth followed the WHO child
growth reference and showed a similar, slight
upward trend.

HMO:s in infant formula and gastro-intestinal
tolerance

Infant formula supplemented with 2'FL alone, 2'FL
combined with LNnT, and a blend of five HMOs (2'-
FL, 3-FL, LNT, 3'-SL, 6’-SL) in formula with intact
and hydrolyzed protein have all been shown to be
well tolerated in clinical trials''®!**1°153155-157,
Stool consistency, flatulence, and the frequency of
spitting up/vomiting were similar in infants given
formula containing with or without HMOs"*'>"1%,
In an RCT testing, a mix of 5 HMOs in infant
formula, the stools in the HMO supplemented
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formula group were more soft, frequent, and yellow.
They were more similar to the breastfed infants’
stools than the stools of the non-supplemented for-
mula group"*'”?. A formula including 2'-FL and
LNnT showed softer stool consistency in another
investigation''®. Stool consistency in infants fed 2'-
FL and FOS-containing formula was found to be
comparable to that of breast-fed infants'>”'*,

The effect of HMOs in infant formula on microbiota
composition
There is a significant difference in intestinal micro-
biota composition between breast-fed infants and
formula, without supplementation of biotics, fed
infants'*®. Supplementation with HMOs may
therefore potentially increase bifidobacteria and
bring microbiota composition closer to that of
breastfed infants. In RCT, the microbiota composi-
tion in a 2’-FL formula (1 g/L) group was only just
significantly different at 2 months and just not at 3
months of age, bringing the microbiota composi-
tion somehow closer to that of breastfed infants'””.
The development of the microbiota composition
was tested via stool cultures during incubation with
2’-FL of three breast and three formula fed
infants'®’. The composition of the microbiome at
baseline was dependent on the mode of feeding and
on the ability to degrade 2’-FL. When looking at
the degradation of 2’-FL, the fecal cultures could be
divided into slow and fast degraders regardless of
mode of feeding. However, since there were only
six infants no conclusions can be drawn'®.
Another multicenter study examined fecal cultures
of infants receiving either a formula with a mix of
tive HMOs at a concentration of 1.5 g/L, a formula
with a mix of five HMOs at a concentration of 2.5
g/L, a non-supplemented formula, or breast milk®”.
The microbiota composition of infants receiving
formulas supplemented with HMOs was signifi-
cantly different to those in the non-supplemented
group and were closer to the composition of the
breastfed infants. The concentration of B. infantis
was statistically higher in the HMO supplemented
than in the non-supplemented group, approaching
the composition of breastfed infants. Significantly
less Clostridium difficile was seen in the HMO
supplemented group in comparison to the non-
supplemented group suggesting a lesser chance of

diarrheal illness. No significant differences were
seen between the lower and higher dose HMO
supplemented formulas®®. In a randomized, dou-
ble-blind, multicenter clinical experiment, after
a three-month intervention, infant formula con-
taining 2’-FL and LNnT enhanced the abundance
of Bifidobacterium and Streptococcus and changed
the microbiome of cesarean section infants’” group
to that observed in vaginal delivery infants'®'. This
study suggests that the association between for-
mula with 2’-FL and LNnT and lower parent-
reported morbidity and medication use may be
linked to gut microbiota community types'®'.
A bifidogenic effect in infants receiving formula
with two HMOs (2'-FL and LNnT) which was
more pronounced in the cesarean-born infants,
however, found no effect on B. infantis'®"'®. An
amino acid-based formula supplemented with 1 g/L
2’FL and 0.5 g/L LNnT confirmed an enrichment in
Bifidobacteria and reduction of Proteobacteria™>*,

Bifidobacteria abundance and metabolic activ-
ity could be associated to decreased respiratory
tract infections®®’>'®’. Increased gamma-
glutamylation and N-acetylation of amino
acids, and decreased inflammatory signaling
lipids, are the three most notable molecular
pathways®®.

Bosheva et al* studied gut maturation effects
(microbiota, metabolites, and selected maturation
indicators) of an infant formula containing five
HMOs (2'-FL, 3-FL, LNT, 3'-SL, 6'-SL). In the first
6 months of life, the HMO supplemented formula
shifted the gut microbiome closer to that of
breastfed infants with higher bifidobacteria, par-
ticularly B. infantis, and lower C. difficile *°.
Formula with these 5 HMOs suggest that the
HMOs may boost infant intestinal immune devel-
opment and gut barrier function. HMO-
supplemented formula helps restore dysbiosis in
cesarean-born infants®.

Estorninos and colleagues'®® evaluated the
effects of bovine milk-derived oligosaccharides
(primarily composed of GOS with inherent con-
centrations of sialylated oligosaccharides structu-
rally identical to some in human milk) and
reported similar effects on gut microbiota and
intestinal immunity in healthy term formula-fed

. 164
infants'®?,



Effects of HMOs containing infant formula on
infectious disease prevention

Breastfed children are less likely to suffer from
respiratory and gastrointestinal infections than
formula fed infants*>”®''®'* Research with for-
mulas supplemented with HMOs found (as
a secondary outcome) a decreased rate of respira-
tory tract infections and bronchitis, as well as
a decreased need for antibiotics and
antipyretics''®'°11%, These effects did persist
beyond the six-month intervention period''®'°".
Further analyses of the same data have linked
a microbiome community structure highly domi-
nated by Bifidobacterium species at 3 months of
age with a decreased need for antibiotics, lending
credence to the observation that 2’-FL and LNnT
supplementation reduces the risk of respiratory
infections and the need for antibiotics'®'.
Acetate, one of the compounds produced by the
HMO-stimulated  metabolic  activity  of
Bifidobacterium, may aid in lowering the risk of
respiratory tract infections. Another study found
that infants who were fed a formula containing 2'-
FL (0.2 g/L) and GOS (2.2 g/L) had a lower inci-
dence of illnesses and infestations as reported by
the investigators'*’. Supporting the hypothesis
that the HMO-containing formula provides
immune system benefits, in the study by Lasekan
et al.">* fewer infants needed to visit a healthcare
professional. However, Parschat et al.'*® found no
evidence that infant formula containing five
HMOs reduced the risk of infection in infants.
Leung et al.'®® enrolled 461 infants aged 1-2.5
years in China in an RCT testing three young
child formulas containing bioactive proteins
and/or 2’-FL and/or milk fat for six months and
found no difference in the incidence of upper
respiratory or gastrointestinal tract infections
between all groups.

In summary: There is theoretical evidence that
HMO supplementation in formula fed infants
may have beneficial impacts on microbiota compo-
sition, immunological function, and other para-
meters, hence reducing the prevalence of
infections. However, clinical data are not unequi-
vocal and no study was powered to evaluate the
effect on infections as a primary outcome.
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Effects of HMOs containing infant formula on the
immune system

The effects of HMO 2'-FL enriched feeding formu-
lae on immune function biomarkers in term infants
were studied'®. At the age of three months, the
groups receiving an HMO-supplemented formula
had a higher secretory immunoglobulin A and
lower alpha-1-antitrypsin in comparison to the
non-supplemented group possibly offering immu-
nological benefits®>. A randomized, double-blind,
controlled growth and tolerance study was con-
ducted with healthy singleton infants who were
enrolled by 5days of age and fed either formula
or human milk exclusively from the time of enroll-
ment to the age of 4 months'®>. GOS was given to
the control group, whereas GOS plus either 0.2 or
1.0 g/L 2'-FL was given to the study group and
compared to the breastfeeding reference group.
Concentrations of plasma inflammatory cytokines
were 29-83% lower in infants fed formulas with 2’-
FL and GOS than did infants fed the control for-
mula including GOS only. Infants whose formula
contained 2'-FL showed innate cytokine profiles
more similar to those of breastfed infants.
Biomarkers of immune functions such as plasma
cytokine concentrations, cytokines released by ex
vivo stimulation of peripheral blood mononuclear
cells (PBMCs), and percentages of major lympho-
cyte subsets within the PBMCs population were
used in this study to demonstrate the impact of 2'-
FL-fortified formulas on the developing immune
system. 2'-FL reduced the gap in total
T lymphocyte proportions between breastfed
infants, which is an indicator of improved adaptive
immunity. The discrepancies in apoptotic cell per-
centages between breastfeeding and control groups
were also reduced by 2'-FL, especially in CD8+
T cells and CD8+ T cell subset. These results sug-
gest that compared to GOS alone, supplementing
infant formula with 2'-FL promotes immunological
development and modulation in a way that is com-

parable to that of breastfed infants'®”.

Effects of HMOs containing infant formula on
allergy

Infants diagnosed with CMPA who are not
breastfed are treated with a cow’s milk elimination
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diet, eHF or amino acid formula'®’. Preclinical
studies have indicated that 2'-FL can reduce allergic
responses in a food allergy model'**"*". Laboratory
analysis of 2’-FL and LNnT batches showed no
evidence of residual milk allergens, despite the
fact that HMOs are produced via biofermentation
from lactose, which in theory might bring a risk of
residual milk allergen contamination'®.

An eHF with two HMOs (2'-FL at 1.0 g/L and
LNnT at 0.5 g/L) showed a similar reduction in the
supplemented and non-supplemented eHF, with the
Cow’s Milk-Related Symptom Score (CoMiSS'™)
dropping to the levels seen in presumed healthy
infants. Otitis media and upper respiratory tract
infections were significantly reduced in the HMO
group by 12 months, and lower respiratory tract and
gastrointestinal infections were reduced by 30-40%,
however without statistical significance'®.

In an open-label study testing an AAF with two
HMOs (2'-FL and LNnT) a significant reduction in
symptoms was noted between enrollment and Visit
1, as reported by parents, and between Visit 1 and
subsequent visits, as assessed by physicians'>*.
Control of skin symptoms was generally excellent.

Non-human Oligosaccharides

Non-human oligosaccharides were also shown to
enhance the development of a bifidobacteria domi-
nated gastrointestinal microbiome®®. RCTs evaluat-
ing GOS/FOS as well as only-GOS enriched formulas
have demonstrated a stimulating effect on the growth
of Bifidobacteria and/or Lactobacilli *°. GOS, FOS,
and GOS/FOS mixtures (the most studied being
a 9:1 mixture of scGOS and IcFOS) are the most
researched prebiotics components®>'’*!”!, Clinical
studies have shown that supplementation of infant
formula with a mixture of scGOS and IcFOS (9:1)
leads to a more favorable gut microbiota composition
and activity, closer to that observed in breastfed
infants. There was no statistically significant differ-
ence between infants fed GOS/FOS enriched formu-
las and those receiving regular formulas in terms of
weight, height, or head circumference'”>. Moreover,
scGOS and IcFOS in infant formula has also been
associated with a lower number of infections, fever
episodes, and antibiotic prescriptions'’>'"".
Beneficial effects on Bifidobacteria and Lactobacilli
growth in infants given a scGOS/IcFOS

supplemented formula were observed to be sustained
even after the formula was discontinued, at least for
a few months'’%.

Infant formulae with added prebiotics have been
linked to a lower fecal pH and a SCFAs pattern closer
to that of breastfed infants, without increased fre-
quency of stool*®. Non-human oligosaccharides also
promote the growth of a bifidobacteria-dominated
gut microbiome, selectively stimulate the growth of
Bifidobacteria and/or Lactobacilli*®. Clinical investi-
gations have demonstrated that adding a mixture of
scGOS and IcFOS (9:1) to infant formula results in
a more favorable gut microbiota composition and
activity, closer to breastfed infants. Beneficial effects
on Bifidobacteria and Lactobacilli growth in infants
fed with a scGOS/IcFOS supplemented formula were
observed to be sustained even after months of dis-
continuing the formula'’®, It has been shown that
some bifidobacteria only grow in the presence of
human milk oligosaccharides™. However, it is not
known if this has any clinical impact for the infant.
There are almost no data comparing the effects of
HMO and non-human oligosaccharides in infants.
Only in the study by Marriage et al."*’ there was only-
GOS group compared to two GOS group with differ-
ent levels of 2’-FL. As a consequence, there is no
evidence to state that HMOs added to infant formula
are more effective than non-human oligosaccharides.

Limitations

Today, there is still a dearth of information on the
addition of HMOs to infant formula. No definitive
conclusions can be drawn on whether supplemen-
ted or non-supplemented formula yields better
clinical outcomes because to the limited data from
the current research. Due to the differences in
design and primary outcomes of the clinical trials,
there is inconsistency in the findings. The optimal
dosing of HMOs also necessitates fine-tuning.
There are substantial variations in the studies in
terms of study design, location, lactation sampling,
the number of time periods at which development
parameters are assessed, the specific HMOs that
were analyzed, and the statistical methodologies
utilized to predict the correlations*. The majority
of the included studies have a relatively small sam-
ple size to quantify disease outcomes, which
reduces their precision and statistical ability to



find meaningful relationships. Because of these
differences, it is not possible to do a meta-
analysis. The benefits of sialylated-HMOs are not
well recognized, despite the fact that neutral oligo-
saccharides like 2'-FL and 3'-FL have been the
subject of substantial research into their involve-
ment in infant nutrition, growth, and development
in both pre-clinical and clinical settings. There is an
immediate need for more investigations on the
health advantages of HMOs in human milk with
varying structural compositions'*®. There are
almost 200 different oligosaccharides in human
milk, but today only five are added to infant for-
mula, while studies with seven are going on. An
increase in the number of HMOs used could
enhance the outcomes. However, the ideal dosage
of HMOs in infant formula is still up for debate, as
HMO levels fluctuate in breast milk. Therefore, if
the formula is administered at a consistent HMO
concentration and ratio, formula-fed infants may
consume less of specific HMOs in the early stages
of the trial, but more HMOs afterward than
breastfed infants. The fact that statistical associa-
tions do not imply a causal relation further empha-
sizes the need for randomized, placebo-controlled
interventional trials and supplementary mechanis-
tic studies.

In conclusion, HMOs are a major ingredient of
human milk, which is the best source of nutrition
for infants. HMOs act in tandem with other bioac-
tive components and also act through many path-
ways that converge to specific activities, as is
predicted from many biological processes. HMOs
are known to support a healthy gut microbiome,
build the gastrointestinal barrier and promote
brain growth and cognitive function, among other
important physiological roles. A growing body of
research also suggests that particular HMOs con-
tribute to the development of immunological com-
petence, both locally and systemically, in part
through influencing the metabolism of particular
bacteria, such as particular Bifidobacterium species.
The study of milk microbiota and HMOs relies
heavily on the strain-specific characterization of
beneficial human microbiota organisms and their
consumption of specified HMOs. Human milk
research is a promising field since more benefits
and correlations between components will be
uncovered as time goes on. Regarding formula
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feeding, more clinical trials in children are needed
comparing the multiple effects of non-human to
human oligosaccharides supplementation.
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