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Abstract: The most common idiopathic interstitial lung disease (ILD) is idiopathic pulmonary fibrosis
(IPF). It can be identified by the presence of usual interstitial pneumonia (UIP) via high-resolution
computed tomography (HRCT) or with the use of a lung biopsy. We hypothesized that a CT-based
approach using handcrafted radiomics might be able to identify IPF patients with a radiological or
histological UIP pattern from those with an ILD or normal lungs. A total of 328 patients from one
center and two databases participated in this study. Each participant had their lungs automatically
contoured and sectorized. The best radiomic features were selected for the random forest classifier
and performance was assessed using the area under the receiver operator characteristics curve (AUC).
A significant difference in the volume of the trachea was seen between a normal state, IPF, and non-
IPF ILD. Between normal and fibrotic lungs, the AUC of the classification model was 1.0 in validation.
When classifying between IPF with a typical HRCT UIP pattern and non-IPF ILD the AUC was 0.96
in validation. When classifying between IPF with UIP (radiological or biopsy-proved) and non-IPF
ILD, an AUC of 0.66 was achieved in the testing dataset. Classification between normal, IPF/UIP,
and other ILDs using radiomics could help discriminate between different types of ILDs via HRCT,
which are hardly recognizable with visual assessments. Radiomic features could become a valuable
tool for computer-aided decision-making in imaging, and reduce the need for unnecessary biopsies.

Keywords: handcrafted radiomics; interstitial lung diseases; usual interstitial pneumonia; machine
learning

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is the most common progressive form of interstitial
lung disease (ILD) with an unknown etiology, usually impacting older adults [1,2]. In
2011, four societies—the American Thoracic Society, the European Respiratory Society,
the Japanese Respiratory Society, and the Latin American Thoracic Association—came
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together to issue an evidence-based statement, which provided recommendations for both
the diagnosis and management of IPF [3]. According to these recommendations, high-
resolution computed tomography (HRCT) can play a crucial role in the diagnosis of fibrotic
lung diseases and has a significant impact on medical decision-making.

Diagnosing IPF comes about using a multidisciplinary discussion (MDD) of the clinical,
radiological, and, if available, pathological data showing a usual interstitial pneumonia
(UIP) pattern which is the most common histopathological form of diffuse lung fibrosis [3,4].
The diagnostic radiological characteristic of UIP necessitates honeycombing with a basal
and subpleural predominance. The upper lobes are less affected, and traction bronchiectasis
may be present [5]. An IPF diagnosis requires a multidisciplinary discussion (MDD) and
the exclusion of known causes of ILD, in addition to the presence of a UIP-specific pattern
on thin-section CT, or a specific combination of HRCT patterns and histopathological UIP
patterns in patients subjected to lung tissue sampling [3]. It is also worth noting that, in
2018, the Fleischner Society expanded on these recommendations for diagnosing IPF to
include the appearance of probable UIP in HRCTs, if the clinical context was consistent
with an IPF [6].

Surgical lung biopsy (SLB), which is recommended when no UIP pattern is present on
the HRCT [3,7], is an invasive procedure that requires pleural drainage and is associated
with a mortality rate ranging from 2.0% to 3.6% [8–13]. Moreover, in a recent study that
included a cohort of patients with pathologically-proven UIP patterns, radiologists only
identified a UIP pattern on thin-section CT with a sensitivity of 34% [14], according to the
recent ATS-ERS guidelines [15]. Furthermore, the radiological assessment of fibrotic lung
diseases is still challenging and often varies between experts [16–19]. Consequently, an
automated approach that assists radiologists (especially less experienced ones) could be
very useful in avoiding unnecessary biopsies in a context of a multidisciplinary discussion.

The interest in radiomics, pioneered in 2012, has increased in recent years [20]. The
field of handcrafted radiomics, briefly stated, extracting a large number of mineable quan-
titative data from medical images using predetermined formulas, has developed rapidly
in recent times [20]. The term radiomics (handcrafted radiomics and deep learning) refers
to the high-throughput extraction of numeric features from medical imaging modalities,
providing high-dimensional data that could be used to identify patterns relating to the
pathophysiology of a disease. These data could then be merged with the characteris-
tics of each patient to aid clinical decision-making [20,21]. Different studies have shown
that radiomics has the potential to complement clinical decision support systems, for ex-
ample, for cancer diagnosis and prognosis [20,22–24]. These studies have shown some
potential to function as imaging biomarkers and to predict clinical outcomes and drug
responses [20,25–27]. While the potential of radiomics has mainly been investigated in on-
cology, it can also be applied to many other diseases, including ILDs and chronic obstructive
pulmonary disease (COPD) [28–30].

We hypothesize that radiomic features are able to decode biological information from
specified regions of interest within the lung that can be used to diagnose IPF with UIP
pattern. The aims of this study are two-fold: (1) to evaluate the use of radiomics, to
differentiate between normal lung tissue and ILDs; (2) to evaluate the use of radiomics to
distinguish IPF with a typical or less typical (biopsy-proven) UIP pattern related to IPF from
HRCT patterns related to non-IPF ILDs. We also conjecture, based on the literature [31],
that tracheal enlargement and tracheal shape would significantly complement handcrafted
radiomic features that would help in the classification of different types of ILDs.

2. Materials and Methods
2.1. Study Population

The study protocol was registered on Clinicaltrials.gov (identifier: NCT04430491),
approved by the ethics committee of the Erasme University hospital (ref: P2017/411).
The electronic medical records at Erasme University hospital (center i) were searched
between 2011 and 2018 for patients diagnosed with ILD. The inclusion criteria were: (i) the
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availability of HRCT with slices of less than 1.5 mm; (ii) the availability of a high-confidence
diagnosis (MDD diagnosis of IPF with a typical UIP pattern; MDD diagnosis of IPF with
a biopsy-proven UIP pattern; or MDD diagnosis of non-IPF ILD, validated by a lung
biopsy showing a pattern other than UIP). The exclusion criteria were (i) the use of contrast
enhancements in HRCT; (ii) images containing metal or motion artifacts; and (iii) images
reconstructed with a slice thickness larger than 1.5 mm (Figure 1). At least 1 chest physician,
1 pathologist, 1 thoracic radiologist, 1 specialist in internal medicine or rheumatology
participated in the MDD. For external validation (database A), we used the group of patients
diagnosed with interstitial lung diseases from the publicly available Lung Tissue Research
Consortium (LTRC, https://ltrcpublic.com/ (accessed on 19 September 2018)). Images
from patients with ostensibly healthy lungs (database B) were collected from the publicly
available Radiomics Imaging Archive (RIA, https://www.radiomicsimagingarchive.eu/
(accessed on 24 October 2021)) (G4). Information was also gathered from patients, such
as the demographic (age, gender) and clinical data (body mass index—BMI), as well as
the measurements of pulmonary function tests (PFT) (forced expiratory volume in 1s
(FEV1), forced vital capacity (FVC), and diffusion capacity of carbon monoxide (DLCO).
The so-called gender, age, and pulmonary function (GAP) score and staging system that
was developed by Ley et al. in 2012 [32] was calculated for each patient and the value
was recorded.

Figure 1. A flowchart diagram shows the patient selection process. (G1) patients with final MDD
diagnosis of IPF with typical UIP pattern in HRCT and no lung biopsy; (G2) patients with a fi-
nal MDD diagnosis of IPF confirmed by Surgical Lung Biopsy (SLB) (less typical HRCT pattern);
(G3) patients with ILDs other than IPF with lung biopsy confirming a non-UIP pattern; (G4) patients
with apparently healthy lungs.

2.2. High-Resolution CT (HRCT) Scanning

For center (i), the HRCTs were acquired on a 64- or 128-detector row CT system
(Somatom, Definition, Siemens Healthineers, Erlangen, Germany). For database A, HRCT
images were acquired using 4 different CT vendors (Siemens, Erlangen, Germany), (GE,
Waukesha, WI, USA), (Philips, Amsterdam, the Netherlands), and (Toshiba, Tochigi-ken,
Japan). For database B, all scans were acquired from the same scanner (GE Medical Systems,
Waukesha, WI, USA). The slice thickness of all scans varied between 0.5 and 1.5 mm.

2.3. Segmentation

The process of delineating a region of interest (ROI) that will be utilized to extract
handcrafted radiomic features is known as segmentation. A workflow for radiomics from
segmentation to data analysis is depicted in Figure 2. Segmentation of the lungs and sectors,
as well as the tracheobronchial tree, were performed automatically using an automated
workflow created with MIM software (MIM Software Inc., Cleveland, OH, USA). Sectorized
lung segmentation was performed to account for the differences in the spatial distribution
of the lesions between UIP and non-UIP patterns. Each sector was defined as a (ROI). As

https://ltrcpublic.com/
https://www.radiomicsimagingarchive.eu/


J. Pers. Med. 2022, 12, 373 4 of 12

shown in the left part of Figure 2, sectors 1 and 2 represent the upper section of the lung,
sector 3 represents the middle section, and sector 4 represents the basal section.

Figure 2. Radiomics Pipeline for lung fibrosis classification from CT images. First, the region of
interest (ROI) was delineated. Second, handcrafted radiomic features were extracted from both ROIs.
Third, feature selection methods were applied to select the most informative set of features. Fourth,
the selected set of features were train the Random Forest classifier to arrive at a prediction.

2.4. Radiomic Features Extraction

To minimize the effects of the variations in image voxel size, all HRCT images were
resampled into 1× 1× 1 mm3 voxel size, using linear interpolation to address the disparate
reconstruction settings found in the datasets [33]. 1 × 1 × 1 mm3 was the maximum
voxel size available in the dataset [34]. Radiomic features, except for the trachea volume,
were extracted from the ROIs of the lung and sectors within the HRCT images, using
the RadiomiX Discovery Toolbox (version, October 2019; https://www.radiomics.bio
(accessed on 23 June 2020)), which calculates radiomics features in compliance with the
Imaging Biomarkers Standardization Initiative (IBSI) [35]. Voxel intensities were aggregated
into bins of 25 Hounsfield Units (HUs)—for nonfiltered features, excluding first-order
statistics features—to reduce noise and interscanner variability [36]. The extracted features
describe the fractal dimension, intensity histogram, first-order statistics, texture, and shape.
Mathematical definitions and descriptions of the features mentioned can be found in other
studies [21].

2.5. Data Splitting

For the first aim, i.e., normal vs. ILDs (G4 vs. G1,2,3), the data from center (i) and
database B was combined and split into training and validation datasets, with a ratio of
0.8:0.2. For the second aim, i.e., IPF/UIP vs. non-IPF ILDs (G1 and 2 vs. G3), datasets
from center (i) were randomly divided into training and validation dataset, using a ratio of
0.8:0.2, and data from database A was used as an external validation dataset.

2.6. Feature Selection and Modeling

To avoid any information leaking, all of the feature selection and model training was
conducted in the training dataset alone. In order to reduce feature dimensionality, several
steps were applied. Firstly, features with (near) zero variance (i.e., features that have the
same value in ≥95% of the data points) were excluded. Next, feature pairs with Spearman
correlation (r ≥ 0.90) were considered to be highly correlated, and the feature with the
highest average correlation with all other features was removed. Then, the remaining
features were fed into the Boruta dimension-reduction and feature-elimination algorithm,
with the maximal number of important sources, runs set to 1000. The Boruta algorithm is a
wrapper method based on random forest classification [37]. Afterward, a random forest
model was trained with the remaining features and the top-10 features with the highest
mean decrease in Gini were retained for the final random forest model. Five models were
trained: 1 model was trained to classify between normal and ILDs, while the rest were used
to classify between IPF with different UIP pattern appearances (i.e., UIP on HRCT or UIP
not on HRCT but confirmed with a lung biopsy) and non-IPF ILDs with no UIP pattern
and confirmed by a lung biopsy.

https://www.radiomics.bio
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2.7. Statistical Analysis

All statistical analyses were performed using R on RStudio (version 4.0.2; https://www.
R-project.org/ (accessed on 10 January 2022)). Comparisons between datasets were summa-
rized using a Wilcoxon rank-sum test for the continuous variables and an X2 Fisher exact
test for categorical variables. A Spearman correlation was used to evaluate the correlation
between radiomic features.

To assess the model’s level of performance, the area under the curve (AUC) from the
receiver operating characteristic (ROC) analysis was used and a 95% confidence interval
(CI) was reported. To estimate the goodness-of-fit of the models, the Hosmer–Lemeshow
test was used, and calibration plots were generated to visualize the consistency of models.
This study was assessed using a Radiomics Quality Score [21] that consists of 16 items with
different scores that sum up to 36 points and was designed specifically for radiomic studies.

3. Results
3.1. Patients Characteristics

A total of 328 patients were included in the study after the application of the exclusion
criteria (Figure 1). A group of 122 patients from the center (i) was included. These patients
were divided into three groups: (G1) patients with a final diagnosis of IPF and with typical
UIP pattern in HRCT (n = 39); (G2) patients with non-typical UIP pattern and a final MDD
diagnosis of IPF confirmed by SLB (n = 41); (G3) patients non-IPF ILD diagnosis confirmed
by SLB (n = 42). From database (A), a total of 109 patients were included and divided into
two groups: (1) IPF with UIP pattern patients (n = 53) and (2) non-IPF ILD with no UIP
pattern (n = 56). From database (B) (G4), 97 healthy patients were included. A comparison
between patients with a final diagnosis of IPF\UIP, non-IPF ILD, and healthy patients
was performed and summarized in Table 1. As expected, there was a higher percentage
of males among IPF patients (79% vs. 51%, p < 0.001), whereas no significant differences
were noticed regarding age (p = 0.06), and lung function tests (FEV1, p = 0.8; FVC, p = 0.18;
DLCO, p = 0.23; BMI, p = 0.34).

Table 1. Demographic and clinical characteristics of patients with IPF, non-IPF ILD, and healthy
groups. IQR: interquartile range; SD: standard deviation.

Variable IPF\UIP (HRCT & Biopsy) Non-IPF ILD (Biopsy) Normal p-Value

Age (median (IQR) 65 (60, 71) 63 (57, 72) 62 (56, 67) 0.06
Sex = M (%) 104 (78.8) 51 (51.5) 56 (57.7) <0.001

FEV1 (mean (SD)) 71.08 (18.34) 71.77 (21.94) - 0.8
FVC (mean (SD)) 67.39 (19.53) 71.07 (22.17) - 0.18

DLCO (mean (SD)) 38.92 (11.62) 36.73 (16.12) - 0.23
BMI (mean (SD)) 28.06 (4.42) 28.69 (5.59) - 0.34

3.2. Feature Extraction and Feature Selection

Original features were extracted (n = 170) for the whole and sectorized lung. Shape
features and features with little or zero variance were excluded (n = 33). A list of the selected
features after removing the highly correlated features, applying the Boruta algorithm, and
Gini decrease can be found in Appendix A, Table A1. Feature selection methods yielded
ten radiomics features as inputs for the group comparisons.

3.3. Performance of the Models

The volume of the trachea was observed to differ significantly (p < 0.001) between
the control, IPF/UIP, and ILDs other than IPF patients (49.23 ± 12.96, 73.40 ± 22.01, and
61.67 ± 18.81 cm3, respectively, mean ± SD), and also between IPF/ UIP and ILD (non-IPF)
(p < 0.001) (Figure 3). In addition, no association was detected between tracheal volume
and either lung function (FVC% predicted, r = −0.03, p = 0.59), or the GAP index (r = 0.17,
p = 0.01). Following the feature selection, the volume of the trachea was selected as an
important feature for all models, except for the classification between normal and ILDs.

https://www.R-project.org/
https://www.R-project.org/


J. Pers. Med. 2022, 12, 373 6 of 12

Figure 3. The difference in the volume of the trachea between IPF, non-IPF ILD, and normal, p < 0.001.

When classifying between a normal lung (G4, database B) and a lung with ILDs (G1
+ G2 + G3) from center (i), an AUC of 1.0 (CI: 1.0–0.1) was achieved in validation (M1)
(Figure 4). For the classification between G1 and G3 (center i), significant results were
obtained using whole lungs with an AUC of 0.96 (95% CI: 0.90–1.0) in validation (M2). For
the classification between G2 and G3 (center i), significant results were achieved using
sector 1 (upper zone of the lung) with an AUC of 0.87 (95% CI: 0.74–1.0) in validation (M3).

Figure 4. The graph shows the area under the receiver operating characteristic (AUC) curve of
different models in the validation (a)\test (b) dataset. (M1) normal lungs vs. ILD; (M2) IPF\UIP on
HRCT (G1) vs. non-IPF ILD (biopsy-proven) (G3); (M3) IPF\UIP pattern proven by biopsy (G2) vs.
non-IPF ILD (biopsy-proven) (G3); (M4) IPF with UIP (G1 + G2) vs. non-IPF ILD (biopsy-proven)
(G3); M4.1) IPF with UIP (G1 + G2) vs. non-IPF ILD (G3) vs. non-IPF ILD (biopsy-proven)(G3) in
testing; (M5) IPF with UIP (G1 + G2) vs. non-IPF ILD (biopsy-proven) (G3) mixed with 40% of the
testing dataset.

When combining G1 and G2 to distinguish the results from G3 (center (i)), an AUC
of 0.82 (95% CI: 0.68–0.95, M4) and 0.66 (95% CI: 0.59–0.73, M4.1) in validation and test
dataset (database A) were achieved using whole lungs respectively. When 40% of the test
dataset (from database A) is introduced to the training dataset, and retaining the remaining
60% as testing, an AUC of 0.77 (95% CI: 0.69–0.85) was achieved (M5).

The detailed sensitivity and specificity of the models for validation/testing dataset are
summarized in Table 2. To gauge the presence of overfitting when retraining all the models
with randomized outcomes, no single feature was chosen as significant when the Boruta
algorithm was applied and the workflow had to be halted.
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Table 2. Detailed predictive and diagnostic values among various models studied, using the valida-
tion/testing dataset.

Model (M)
AUC Accuracy Sensitivity Specificity

(95% CI) % % %

M1 1.0 (1.0–1.0) 99 98 98
M2 0.96 (0.90–1.0) 91 88 94
M3 0.87 (0.74–1.0) 72 65 90
M4 0.82 (0.68–0.95) 70 66 79
M4.1 0.66 (0.59–0.73) 65 60 69
M5 0.77 (0.69–0.85 69 64 75

Among all models, M1, M2, and M4 showed proper calibration with p = 0.68, 0.32, and
0.07, respectively (Figure 5). The radiomics quality score of this study was 64% (23 of 36).

Figure 5. Calibration plots of radiomics models on the validation/testing dataset. (A) Normal vs. ILD (M1);
(B) IPF\UIP vs. non-IPF ILD (M2); (C) IPF with UIP (G1 + G2) vs. non-IPF ILD (biopsy-proven) (M4).

4. Discussion

In this study, we developed a quantitative signature (radiomics) extracted from HRCT
to classify fibrotic lung disease. A random forest classifier was used to differentiate between
(1) normal lungs and interstitial lung diseases (ILDs); (2) idiopathic pulmonary fibrosis (IPF)
(with typical or less typical usual interstitial pneumonia (UIP) radiological presentation),
and non-IPF ILDs (other than IPF as proven by the absence of UIP in a surgical biopsy).
Briefly stated, we were able to demonstrate that radiomic features derived from HRCT
images can be used to distinguish between a normal state and ILDs, as well as between IPF
with a UIP pattern and ILDs with no UIP pattern verified by surgical biopsy. The inclusion
of biopsy-proven non-IPF ILDs patients strengthens the study, as well as making it unique
(Appendix A, Table A2).

Differentiating between normal and ILD lung tissues might seem a trivial task. How-
ever, it is a time-consuming process since the clinician has to go through all the scans.
Developing an automated approach that differentiates between normal and abnormal
lungs would decrease the amount of time a clinician needs to assess images on a daily
basis. A previous study presented a novel texture analysis method that incorporates texture
matching with histogram features analysis [38]. This study reported that their method
achieved a sensitivity of 92.96% and a specificity of 93.78% in differentiating between
normal and abnormal lungs. The study made use of a part of the handcrafted radiomic
features used in our analysis. Using all-handcrafted radiomic features, we achieved a
sensitivity of 98% and a specificity of 98% to identify an ILD.

Many ILDs have characteristics and changes in the lungs similar to those of IPF/UIP
on HRCT, making the diagnosis very difficult—even for experienced radiologists [39].
Visual assessments of ILDs while using HRCT can be very subjective due to the high
variability in the knowledge of inter-readers [16–18]. Therefore, providing automated
diagnostic assistance in this setting would be highly beneficial, especially for less expe-
rienced radiologists. Texture image analysis is not new in fibrotic lung diseases and has



J. Pers. Med. 2022, 12, 373 8 of 12

been researched to automatically analyze ILDs on CT images [38,40–46]. However, most
of the existing studies have focused on prognostic questions rather than providing diag-
nostic support. Maldonado et al. showed that short-term reticular changes evaluated by
CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Rating) corre-
lated with physiological parameters and were predictive of survival in IPF patients [41].
Humphries et al. concluded that the use of Data-driven Texture Analysis (DTA) for IPF
patients correlates with both pulmonary function tests and visual assessment on CT images
at baseline [45]. However, a more thorough classification of phenotypes can be provided by
applying radiomic data stratification. Walsh et al., used a deep learning approach for auto-
mated classification of fibrotic lung disease, according to the 2011 ATS/ERS/JRS/ALAT
idiopathic pulmonary fibrosis diagnostic guidelines on a dataset of 1157 HRCT scans. The
algorithm performance was compared to that of 91 radiologists and showed an accuracy
of 73.3%, compared to the median accuracy of the radiologists, 70.7% [47]. To the best
of our knowledge, no study has investigated the potential of handcrafted radiomics for
differentiation between IPF/UIP and other ILDs.

By assessing the potential of handcrafted radiomics to differentiate between IPF with
typical UIP presentation on HRCT and ILDs other than IPF, we discovered another benefit of
automation similar to that achieved by differentiating between normal and abnormal lung
tissue. It could serve mainly as a decision-aiding tool that would increase the diagnostic
accuracy of the disease, reduce the need for invasive lung biopsies, and decrease the time
needed to conduct routine scans.

IPF is also associated with wide parenchymal and airway conditions, such as those
found in the trachea wall, which leads to pathological changes [48]. Ratwani et al., studied
the correlation between the change of tracheobronchial tree size and the disease severity
of IPF [31]. Our study found a significant difference in the volume of trachea between
normal, IPF/UIP and, ILDs patients. Furthermore, it was found that the volume of the
trachea was higher for IPF subjects compared to normal and ILDs other than IPF (Figure 3).
No correlation was seen between the volume of the trachea and %FVC predicted. This
conclusion may be consistent with the findings of Ratwani et al. [31], who found that
there was no association between %FVC predicted and growing tracheobronchial tree size,
indicating that tracheal expansion is not only due to fibrosis and that other variables may
be at play. Such findings suggest that the increase of the volume of the trachea might be a
good new handcrafted radiomic feature to serve as a promising tool in the diagnosis of IPF.

The decrease in model performance in the test dataset might be explained by the
presence of variation in acquisition and reconstruction parameters. When the random
forest algorithm learned part of the test dataset in the training dataset (M4.1), the model
AUC increased from 0.66 to 0.77. Such findings indicate the need for addressing the
challenges associated with differences in imaging parameters.

This study has some limitations. Firstly, we did have the additional categories of UIP
patterns (definite, probable, indeterminate, or alternative) in the training dataset but not
in the test dataset. Therefore, we only used the test dataset when we combined G1 and
G2. Secondly, the healthy CT scans (G4) were obtained only from one center (center iii).
Thirdly, the CT acquisition parameters of HRCT varied between and within the centers, and
radiomic features are known to be influenced by different CT acquisition and reconstruction
parameters [34,49,50]. Furthermore, we could not assess the reproducibility of features due
to the lack of anthropomorphic phantom or test-retest scans acquired with settings similar
to the scans used in this study. Henceforth, future studies must employ reproducibility
studies to ensure the generalizability of the developed models. The application of radiomics
to IPF may be broadened to include treatment decision aids. Further research should be
undertaken to investigate the progression of IPF/UIP at baseline and follow up to evaluate
the effectiveness of the antifibrotic treatment. In addition, a combination of deep learning
and handcrafted radiomics with the addition of blood or genetic biomarkers would be a
powerful tool in the classification of ILDs.
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5. Conclusions

At present, there is minimal radiomics research on ILDs. Our findings are, nonetheless,
promising and underline the strong potential of HRCT-based radiomics for the identifica-
tion of ILDs. The classification between IPF/UIP and other ILDs using radiomics might
capture features indicating different types of ILDs in HRCT, which are hardly recognizable
via visual assessment. The radiomic features extracted from HRCT, along with clinical fea-
tures, might aid in the assessment of ILDs and be used as a valuable tool for computer-aided
decision-making in imaging.
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Appendix A

Table A1. Features name for each model.

Model Features Name

M1 GLSZM_SZNN, GLDZM_LISDE, GLSZM_HISAE, GLSZM_HILAE, GLCM_diffVar, GLRLM_GLV, GLCM_infoCorr2,
GLSZM_LILAE, IH_medianD, GLDZM_LILDE

M2 NGLDM_LGSDE, GLDZM_DZN, GLDZM_LISDE, Trachea_Volume, NGLDM_HGLDE, GLRLM_GLV, GLCM_clusShade,
IH_qcod, GLDZM_HILDE, GLCM_contrast

M3 GLCM_infoCorr2, Fractal_sd, Trachea_Volume, GLCM_maxCorr, GLDZM_SDE, GLRLM_GLV, IH_energy, GLDZM_LISDE,
NGLDM_DV, Stats_kurtosis

M4 Trachea_Volume, GLDZM_DZN, NGLDM_LGSDE, GLCM_infoCorr2, GLDZM_SDE, GLCM_sumVar, NGTDM_strength,
NGLDM_HGLDE, GLDZM_LISDE, GLCM_maxCorrM4.1

M5 Trachea_Volume, GLRLM_GLV, GLCM_diffVar, GLSZM_HILAE, NGLDM_LGSDE, GLSZM_SAE, IH_qcod, GLSZM_ZE,
GLSZM_IV, Stats_kurtosis
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Table A2. List of ILDs included in the study.

ILD Names

Hypersensitivity pneumonitis (HP)
Nonspecific interstitial pneumonia (NSIP)
Connective tissue disease-associated interstitial lung disease (other than systemic sclerosis
(SSc-ILD)) (CTD-ILD)
Lymphoid interstitial pneumonia (LIP)
Unclassifiable ILD
Idiopathic pulmonary fibrosis (IPF)
Pleuro-parenchymal fibroelastosis
Desquamative interstitial pneumonia (DIP)
Eosinophilic pneumonia
systemic sclerosis SSc-ILD
Respiratory bronchiolitis (RB-ILD)
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