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Abstract: It has been recognized that heart rate variability (HRV), defined as the fluctuation of
ventricular response intervals in atrial fibrillation (AFib) patients, is not completely random, and its
nonlinear characteristics, such as multiscale entropy (MSE), contain clinically significant informa-
tion. We investigated the relationship between ischemic stroke risk and HRV with a large number
of stroke-naïve AFib patients (628 patients), focusing on those who had never developed an is-
chemic/hemorrhagic stroke before the heart rate measurement. The CHA2DS2 −VASc score was
calculated from the baseline clinical characteristics, while the HRV analysis was made from the
recording of morning, afternoon, and evening. Subsequently, we performed Kaplan–Meier method
and cumulative incidence function with mortality as a competing risk to estimate the survival time
function. We found that patients with sample entropy (S(s)

E ) ≥ 0.68 at 210 s had a significantly
higher risk of an ischemic stroke occurrence in the morning recording. Meanwhile, the afternoon
recording showed that those with S(s)

E ≥ 0.76 at 240 s and S(s)
E ≥ 0.78 at 270 s had a significantly

lower risk of ischemic stroke occurrence. Therefore, S(s)
E at 210 s (morning) and 240 s ≤ s ≤ 270 s

(afternoon) demonstrated a statistically significant predictive value for ischemic stroke in stroke-naïve
AFib patients.

Keywords: atrial fibrillation; ischemic stroke; heart rate variability; multiscale entropy

1. Introduction

Atrial fibrillation (AFib) is the most common arrhythmia in elderly patients and is a
known risk factor for stroke [1]. In patients without underlying rheumatic mitral valve
disease, AFib is associated with an almost five-fold increase in the risk of stroke after
adjusting for other risk factors [2]. In addition, strokes associated with AFib are often more
disabling and fatal than strokes not associated with AFib, as most strokes associated with
AFib are cardioembolic [3–6]. Consequently, the ability to predict ischemic stroke risk in
patients with AFib is becoming an urgent issue, as many studies have reported a strong
association between the two. The global focus on reducing stroke risks in AFib warrants
an expanded understanding of the epidemiology, risk factors, determinants, and outcomes
of stroke and other vascular conditions that threaten brain health [7]. Using the clinical
characteristic information of patients, such as cardiovascular disease, prior stroke history,
age, and sex, the CHA2DS2 −VASc score is a widely used stroke predictor in patients with
AFib [8].

Heart rate variability (HRV), defined as the interbeat intervals in normal sinus rhythm
(without cardiac arrhythmia such as AFib), is closely related to the autonomic nervous
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system (ANS) activity [9]. This means the HRV characteristics can be used as a marker of
ANS activity. By contrast, interbeat intervals, described as interventricular responses in
AFib, have been considered to exhibit a rather white-noise-like behavior, independent of
ANS activity [10]. However, recent studies of HRV in patients with AFib have demonstrated
that HRV is not completely random, and still contains significant prognostic information
concerning the risk of mortality and ischemic stroke [11].

There are limited studies regarding the HRV features of patients with AFib before
an ischemic stroke event. Previous studies have reported the use of multiscale entropy
(MSE) analysis of HRV as a predictor of ischemic stroke in patients with AFib [12,13].
Watanabe et al. [12] demonstrated that patients with AFib with a higher value of sample
entropy at a time scale of 90 s ≤ s ≤ 300 s were more likely to develop ischemic stroke. Fur-
thermore, MSE profiles are affected by multiscale characterizations, such as time correlation
and probability distribution characteristics. Matsuoka et al. [13] reported that information
entropy as the probability distribution characteristic at scales of 2 s and greater dominantly
contribute to the risk assessment of ischemic stroke events. However, previous studies did
not focus on stroke-naïve patients with AFib. The term “stroke-naïve” in this study is used
to define patients with AFib who had not experienced an ischemic or hemorrhagic stroke
before the heart rate measurement, including intracranial hemorrhage. Furthermore, the
sample size of patients included in previous studies was small (173 patients). Thus, our
goal was to clarify the association between HRV profiles and ischemic stroke risk with a
higher number of stroke-naïve patients with AFib.

2. Materials and Methods
2.1. Patient Selection

Data pertaining to clinical characteristics and 24-h electrocardiogram (ECG) of 1093 patients
with AFib were recorded from January 2005 to December 2013 at the Fujita Health Univer-
sity Hospital, Aichi, Japan. We excluded patients with certain criteria, such as (1) those
with missing HRV data and missing or incorrect subject information; (2) those with a
pacemaker; (3) those with atrial flutter or paroxysmal AFib; (4) those whose length of ECG
recording was shorter than 20 h; (5) those who had a prior stroke; (6) those who did not
develop an ischemic stroke during the observation period, but had a transient ischemic
attack (TIA); and (7) those who had an intracranial hemorrhage. The remaining patients
were then separated into two groups: (1) the ischemic stroke and (2) the non-ischemic
stroke groups, which comprised patients who developed and did not develop an ischemic
stroke during the follow-up years, respectively. Thereafter, the selected 628 stroke-naïve
AFib patients were grouped based on their availability of morning (04:00 a.m.–08:00 a.m.),
afternoon (11:00 a.m.–15:00 p.m.), and evening (17:00 p.m.–21:00 p.m.) recordings. A
flowchart of patient selection is presented in Figure 1. We did not analyze the data during
midnight hours, as sleep disorders (such as obstructive sleep apnea syndrome) might affect
the sample entropy result [14]. To reduce the effect of confounding factors, we applied
propensity score matching to the remaining patients with covariates as follows: age; body
mass index (BMI); sex; inpatient/outpatient department; underlying diseases such as
hypertension, coronary artery disease, heart failure, diabetes, dilated cardiomyopathy, and
hypertrophic cardiomyopathy; and treatment with digitalis and warfarin. Propensity score
matching was performed by matching one-on-four without replacement and a caliper
of 0.2 of the standard deviation of the logit of the propensity score. In this study, the
HRV time series is referred to as ventricular response interval (VRI) in AFib patients. VRI
recordings were extracted automatically from the 24-h Holter electrocardiograms (ECGs)
(Nihon Kohden, Tokyo, Japan), then interpolated linearly and resampled at 4 Hz. This
research was approved by the ethics committee of Fujita Health University (approval
No. HM17-232) for data measurement and Kwansei Gakuin University ethics committee
(approval No. KG-IRB-18-02) for data analysis, and conformed to the principles outlined in
the Declaration of Helsinki. For the use of data, the opt-out recruitment was approved by
the Fujita Health University.
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Figure 1. Patient selection flowchart.

2.2. CHA2DS2 −VASc Score

We calculated the CHA2DS2 − VASc score, where the acronym of “V” for vascular
disease was replaced by coronary artery disease because of the absence of myocardial
infarction, peripheral artery disease, and aortic plaque data. This score consists of 1 point
for participants who had a congestive heart failure (C), 1 point for hypertension (H),
2 points for those with the age of 75 years or older (A2), 1 point for diabetes (D), 2 points
for prior stroke or TIA (S2), 1 point for coronary artery disease as the vascular disease (V),
1 point for those with the age range from 65 to 74 years old (A), and 1 point for female
participant (S).
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2.3. Analysis of VRI

We calculated the conventional linear indices of VRI in the time-domain, including
the mean VRI and standard deviation of VRI (SDVRI). We also applied non-linear analysis
to better express the complex nature of VRI, as non-linear analysis is considered to be less
dependent on the pre-processing of a recording [15–19]. Long-range correlation properties
were evaluated using detrended fluctuation analysis (DFA) [20–22]. This was estimated
by the scaling exponent α in F(s) ∼ sα, where F(s) is defined as the square root of
mean-square deviations around a linear trend averaged over segments with length n of
integrated time series.

To measure the irregularity of the VRI time series xi, multiscale entropy analysis
(MSE) and multiscale characterizations of the time series were calculated. MSE was
performed in two steps [10]: (1) coarse-graining of the VRI time series, and (2) sample
entropy measurement of each coarse-grained time series. Given a one-dimensional discrete
VRI time series {x1, x2, . . . , xN}, the coarse-grained time series

{
y(s)j

}
was calculated

as follows:

y(s)j =
1
v

jv

∑
i=(j−1)v+1

xi, (1)

where y(s)j is the mean value in j-th non-overlapping segment with length v, and 1 ≤ j ≤ N
v .

The length v divided by the resampling frequency of 4 Hz is called the time scale, which
is denoted as s = v/4. The range of the time scale s (seconds) was set to a range of
1 s ≤ s ≤ 300 s. In the next step, we calculated the sample entropy S(s)

E for each time scale s
by the following:

S(s)
E
(
m, r, N

)
= − ln

∑N−m−1
i=1 n(s)

i (m + 1, r)

∑N−m
i=1 n(s)

i (m, r)
, (2)

where m is the subseries length, r is the similarity tolerance, and N is the length of the
VRI time series. Furthermore, n(s)

i (m, r) and n(s)
i (m + 1, r) represent the number of vectors

that match the ith template of length m and m + 1, respectively, which satisfies r. We set
the value of m to 2 and r to 0.15σx, where σx is the standard deviation of the resampled
VRI time series. The sample entropy is the negative natural logarithm of the conditional
probability that two subseries similar for m points remain similar for m + 1, where self-
matches are not included in calculating the probability [23,24]. In addition, the sample
entropy is influenced by the time correlation and the probability distribution characteristics.
Therefore, we calculated the autocorrelation coefficient at lag τ = 1 to quantify the time
correlation characteristic by the following:

R̂(s)(τ) =
1

N − τ

N−τ

∑
i=1

(
y(s)i

)(
y(s)i+τ

)
. (3)

We also calculated Shannon’s information entropy to quantify the probability distri-
bution characteristics by the following:

H(s)
D = −

ns

∑
i=1

p(s)i ln p(s)i , (4)

where the probabilities {pi} were calculated using the histogram-based probability density
function of {y(s)j } with a fixed bin width of 0.15σx, and zero bins were not counted in ns.
The autocorrelation coefficient at lag τ = 1 has a negative correlation with sample entropy,
whereas information entropy has a positive correlation with the sample entropy. Then, we
calculated the variance ratio as the ratio between the variance of the coarse-grained time
series {y(s)j } and the original time series {xi}, denoted as σ2

s /σ2
x .
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All of the analyses were applied to the resampled VRI time series, and the time scale
unit of the MSE profiles was in seconds instead of beats, in order to avoid it being affected
by the cardiac rhythm (sinus or non-sinus) and heart rate [12].

2.4. Statistical Analysis

Quantitative data are presented as mean ± standard deviation (SD) for continuous
variables, and as mean (frequency) for categorical variables. For continuous variables, the
Mann–Whitney U test was conducted to analyze the significant differences between the two
groups. We also calculated the Cohen’s d effect size to determine the size of the differences
between the groups. For survival time analysis, we applied the Kaplan–Meier method
to estimate the survival rate of ischemic stroke and the log-rank test as the statistical test.
Furthermore, we performed a cumulative incidence function (CIF) to evaluate the VRI
index prediction with mortality as a competing risk and Gray’s test to compare the CIF
directly. Competing risk is an event whose occurrence precludes the occurrence of the
primary event of interest [25]. In this study, the competing risk was mortality, and the
primary event of interest was ischemic stroke occurrence. Receiver operating characteristic
(ROC) curves were assessed to estimate the optimal cut-off value by plotting the true
positive rate (sensitivity) against the false positive rate (1-specificity) at various cut-off
values. The optimal cut-off value for the Kaplan–Meier survival time function analysis and
CIF analysis was estimated using the value with the shortest distance to the (0,1) point of
the ROC curves. Statistical tests were performed using R statistical software. A two-tailed
p-value < 0.05 was considered significant.

3. Results
3.1. Patient Clinical Characteristics

Following patient selection (Figure 1), the morning, afternoon, and evening recordings
consisted of 324 (68 with ischemic stroke and 256 without ischemic stroke), 227 (49 with
ischemic stroke and 178 without ischemic stroke), and 353 (73 with ischemic stroke and
280 without ischemic stroke) patients, respectively. Those who had developed an ischemic
stroke during the follow-up period were included in the ischemic stroke group, while
those who did not were included in the non-ischemic stroke group. The event of ischemic
stroke was recorded during the follow-up of 3.25 ± 2.89 years, 3.46 ± 3.11 years, and
3.51 ± 3.02 years for the morning, afternoon, and evening recordings, respectively.

Several differences in the baseline clinical characteristics between patients with AFib
who had an ischemic stroke and those who did not were observed before the propensity
score matching, including the CHA2DS2 −VASc score (Table 1). After matching, no sig-
nificant difference was found in the baseline clinical characteristics between patients with
AFib who developed an ischemic stroke and those who remained stroke-naïve for each
time range (Table 2 for the morning recording). The CHA2DS2 −VASc score did not show
any significant differences between the two groups in any time range.

Table 1. Baseline clinical characteristics of patients before propensity score matching (628 selected
patients with AFib).

Clinical Characteristics
Full Cohort (n = 628)

p-ValueIschemic Stroke
(n = 74)

Non-Ischemic Stroke
(n = 554)

Age, years 72.73 ± 9.1 69.12 ± 11.87 0.01 *

BMI (kg/m2) 22.31 ± 3.72 22.89 ± 3.83 0.26

Female 23 (31) 180 (32) 0.81

Outpatient department 32 (43) 261 (47) 0.53
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Table 1. Cont.

Clinical Characteristics
Full Cohort (n = 628)

p-ValueIschemic Stroke
(n = 74)

Non-Ischemic Stroke
(n = 554)

Underlying disease

Hypertension 56 (76) 345 (62) 0.02 *

Coronary Artery Disease 34 (46) 204 (37) 0.13

Heart Failure 45 (61) 343 (62) 0.85

Diabetes 21 (28) 163 (29) 0.85

Dilated Cardiomyopathy 2 (3) 33 (6) 0.25

Hypertrophic Cardiomyopathy 2 (3) 11 (2) 0.68

Medication

Warfarin 33 (45) 277 (50) 0.38

ACE Inhibitor, ARB 38 (51) 239 (43) 0.18

Ca-channel Blocker 5 (7) 44 (8) 0.72

Digitalis 15 (20) 176 (32) 0.04 *

CHA2DS2 −VASc score 3.73 ± 1.43 3.26 ± 1.59 0.01 *
Ischemic stroke: patients who developed an ischemic stroke during the observation period; non-ischemic stroke:
patients who did not develop an ischemic stroke during the observation period; BMI: body mass index; ACE:
angiotensin converting enzyme; ARB: angiotensin receptor blocker. Data are presented as the mean ± standard
deviation (SD) or number and frequency. An asterisk (*) indicates p-value < 0.05.

Table 2. Baseline clinical characteristics of patients after propensity score matching for the morning
recording range (04:00–08:00 a.m.).

Clinical Characteristics
Matched Subset (n = 324)

p-ValueIschemic Stroke
(n = 68)

Non-Ischemic Stroke
(n = 256)

Age, years 72.41 ± 8.95 72.82 ± 10.44 0.67

BMI (kg/m2) 22.43 ± 3.73 22.29 ± 3.52 0.86

Female 22 (32) 81 (32) 0.91

Outpatient department 29 (43) 114 (45) 0.78

Underlying disease

Hypertension 51 (75) 180 (70) 0.44

Coronary Artery Disease 29 (43) 112 (44) 0.87

Heart Failure 42 (62) 161 (63) 0.86

Diabetes 18 (26) 69 (27) 0.93

Dilated Cardiomyopathy 1 (1) 9 (4) 0.38

Hypertrophic Cardiomyopathy 2 (3) 5 (2) 0.61

Medication

Warfarin 31 (46) 119 (46) 0.89

ACE Inhibitor, ARB 33 (49) 118 (46) 0.72

Ca-channel Blocker 5 (7) 22 (9) 0.74

Digitalis 15 (22) 58 (23) 0.91

CHA2DS2 −VASc score 3.69 ± 1.44 3.61 ± 1.5 0.79
Data are presented as the mean ± standard deviation (SD) or number and frequency. Abbreviations are the same
as those in Table 1.
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3.2. Analysis of VRI

There were no significant differences in the conventional linear indices of the time-
domain, except for SDVRI in the evening recording range, which showed a borderline
association with ischemic stroke (p = 0.04) (Table 3). The DFA of all of the time recordings
showed that the scaling exponents was 0.64 at the scale less than approximately 100 s,
which implied white-noise like behavior at small time scales, while it was 0.89 at the scale
higher than 100 s, which implied the near-1/f fluctuation behavior at large time scales
(morning recording range result in Figure 2). DFA scaling exponents did not show any
significant difference between the two groups in small time scales and large time scales
of all-time recordings. Furthermore, the statistical test of the MSE analysis showed that
S(s)

E did not differ significantly between the two patient groups for any of the time ranges.
Lastly, the variance ratio did not show any significant difference between the two groups of
patients in any of the time ranges, demonstrating that the normalization of the time series
was effective.

Table 3. Linear indices of heart rate variability in the time-domain.

Clinical Characteristics Ischemic Stroke Non-Ischemic Stroke p-Value Effect Size

Morning recording (04:00–08:00 a.m.)

Mean VRI (s) 0.89 ± 0.22 0.84 ± 0.21 0.06 0.23

SDVRI (s) 0.2 ± 0.07 0.19 ± 0.06 0.07 0.23

Afternoon recording (11:00 a.m.–14:00 p.m.)

Mean VRI (s) 0.79 ± 0.14 0.75 ± 0.15 0.07 0.23

SDVRI (s) 0.17 ± 0.05 0.16 ± 0.04 0.18 0.26

Evening recording (17:00–21:00 p.m.)

Mean VRI (s) 0.81 ± 0.19 0.77 ± 0.17 0.09 0.19

SDVRI (s) 0.17 ± 0.05 0.16 ± 0.04 0.04 * 0.26
VRI: ventricular response interval; SDVRI: SD of VRI; s: seconds. Data are presented by as mean ± standard
deviation (SD). An asterisk (*) indicates p-value < 0.05.
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Figure 2. Fluctuation functions F(s) estimated by the detrended fluctuation analysis (DFA) of the
morning recording. Comparison between stroke-naïve AFib patients who developed (blue triangle)
and did not develop (red circle) an ischemic stroke during the observation period. The unit of s is
seconds. Error bars represent the standard deviation, while dashed lines indicate the slopes with
α1 = 0.64 and α2 = 0.89. No significant difference was found in the scaling exponents of DFA between
the two groups.
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No significant difference in S(s)
E was found between the two groups using the Mann–

Whitney U test. We performed Kaplan–Meier survival analysis to check whether S(s)
E

would be able to reflect the survival rate of ischemic stroke in stroke-naïve AFib patients
when the survival time for each patient was included. In this analysis, survival time was
defined as the length of time starting from the heart rate measurement date to the time
when one had an ischemic stroke occurrence in the ischemic stroke group or the end of the
follow-up period for the non-ischemic stroke group. The cut-off value was determined by
the closest value to the (0,1) point in the ROC curve. Using the log-rank statistical test, the
morning recording showed that patients with S(s)

E ≥ 0.68 at the time scale of 210 s had a

significantly lower survival rate of ischemic stroke than those with S(s)
E < 0.68 (Figure 3a).

This implied that they had a higher risk of an ischemic stroke occurrence. For the afternoon
recording, those with S(s)

E ≥ 0.76 at the time scale of 240 s and S(s)
E ≥ 0.78 at the time scale of

270 s had a significantly higher survival rate of ischemic stroke than those with S(s)
E < 0.76

and S(s)
E < 0.78, which indicated they had a lower risk of an ischemic stroke occurrence (the

result for 270 s is shown in Figure 3b).
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Figure 3. Kaplan–Meier survival curves for ischemic stroke occurrence. The patients were stratified by (a) S(s)
E ≥ 0.68 (blue

line) and S(s)
E < 0.68 (red line) at a time scale of 210 s of the morning recording and (b) S(s)

E ≥ 0.78 (blue line) and S(s)
E < 0.78

(red line) at a time scale of 270 s of the afternoon recording.

To verify this result, we set the mortality as a competing risk in the CIF method, while
ischemic stroke was set as the primary outcome. For the morning recording, the CIF results
revealed that patients with S(s)

E ≥ 0.68 at the time scale of 210 s had a significantly higher

cumulative incidence probability of ischemic stroke than those with S(s)
E < 0.68, while no

significant difference was observed in the risk of mortality (Figure 4a). In contrast, the
afternoon recording showed that patients with S(s)

E ≥ 0.76 at the time scale of 240 s and

S(s)
E ≥ 0.78 at the time scale of 270 s had a significantly lower cumulative incidence proba-

bility of ischemic stroke than those with S(s)
E < 0.76 and S(s)

E < 0.78, while no significant
difference was observed for the risk of mortality (result for 270 s is shown in Figure 4b).
Meanwhile, the cumulative incidence probability did not show any significant difference
in both ischemic stroke risk and mortality risk for the evening recording.
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The MSE profiles were affected by characteristics such as the time correlation and
probability distribution characteristics. To clarify which characteristic contributes to the
ischemic stroke outcome and the difference in S(s)

E , we performed survival time analyses to
both the autocorrelation coefficient at lag τ = 1 (R(s)(1)) to calculate the time correlation
characteristic and the information entropy (H(s)

D ) for the probability distribution charac-
teristic. The cut-off value was determined using the ROC curve. Based on the morning
recording, patients with R(s)(1) < 0.88 at the time scale of 210 s had a significantly higher
cumulative incidence probability of ischemic stroke than those with R(s)(1) ≥ 0.88, while
no significant difference was observed in the risk of mortality (Figure 5a). For the afternoon
recording, those with R(s)(1) < 0.82 at the time scale of 240 s and R(s)(1) < 0.81 at the
time scale of 270 s had a significantly lower cumulative incidence probability of ischemic
stroke than those with R(s)(1) ≥ 0.82 and R(s)(1) ≥ 0.81, while no significant difference
was observed for the risk of mortality (the result for 270 s is shown in Figure 5b). The
cumulative incidence probability did not show any significant difference in both ischemic
stroke risk and mortality risk for the evening recording.

In terms of probability distribution characteristics, the morning recording showed that
patients with H(s)

D ≥ 2.18 at the time scale of 210 s had a significantly higher cumulative

incidence probability of ischemic stroke occurrence than those with H(s)
D < 2.18, while

no significant difference was observed for mortality risk (Figure 6a). Meanwhile, the
cumulative incidence probability did not show any significant difference for both ischemic
stroke risk and mortality risk for the afternoon and evening recording (the result for 270 s
of the afternoon recording is shown in Figure 6b).
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Figure 6. Cumulative incidence function for ischemic stroke occurrence and mortality. The patients were stratified by

(a) information entropy (H(s)
D ) ≥ 2.18 (blue and green line) and H(s)

D < 2.18 (red and black line) at a time scale of 210 s of the

morning recording and (b) H(s)
D ≥ 2.15 (blue and green line) and H(s)

D < 2.15 (red and black line) at a time scale of 270 s of
the afternoon recording. An asterisk (*) indicates p-value < 0.05.

4. Discussion

The present study demonstrated that sample entropy (S(s)
E ) at the time scale of 210 s

of the morning recording and 240 s ≤ s ≤ 270 sec of the afternoon recording have a
statistically significant prognostic value for ischemic stroke outcome in stroke-naïve AFib
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patients. Furthermore, the autocorrelation coefficient at lag τ = 1 as the time correlation
characteristics of the MSE profiles might contribute to the difference in S(s)

E .
We confirmed the presence of white noise-like fluctuations at shorter scales (less than

approximately 100 s) and near-1/f fluctuations in longer scales (more than approximately
100 s) in the VRI time series of AFib patients (Figure 2) with α1 = 0.64 and α2 = 0.89, which
is similar to the previous study [13]. Several findings have described the existence of
white noise characteristics as an uncorrelated process (over short scales) and 1/f noise as a
correlated process (over long scales) in the HRV of patients with AFib [11,26]. The dynamics
of the regulatory process underlying the long-term component may be common between
the HRV of a healthy subject and an AFib patient [11]. Thus, the time scales exhibiting
near-1/f fluctuations were reported to reveal new information regarding the complexity
of HRV, which could be measured by MSE analysis [10]. To evaluate the irregularity of
ECG signals in the 1/f fluctuation area and the onset of a disease, sample entropy is
considered to be an effective complex system analysis [27]. Furthermore, Ho et al. [28]
also reported that the sample entropy calculated in the 1/f fluctuation area may serve as a
significant predictor of mortality in patients with congestive heart failure. However, our
Mann–Whitney U statistical test of S(s)

E did not show any significant difference between
AFib patients who had an ischemic stroke outcome and those who remained stroke-naïve.

On that account, we intended to check the ability of S(s)
E to reflect ischemic stroke

risk in stroke-naïve AFib patients by applying the Kaplan–Meier and CIF methods, where
the length of time until an ischemic stroke event occurred was included. As a result, we
found that patients with S(s)

E ≥ 0.68 at the time scale of 210 s of the morning recording
had a higher risk of developing an ischemic stroke (Figure 3a). This result was consistent
even when mortality was included as a competing risk in CIF analysis, where S(s)

E only
reflected the risk of ischemic stroke outcome and not mortality (Figure 4a). This indicated
that AFib patients who had a higher risk of an ischemic stroke occurrence were those
whose VRI generated a higher degree of irregularity in the near-1/f fluctuation area of the
morning recording. For the afternoon recording, we discovered that those with S(s)

E < 0.76

at the time scale of 240 s and S(s)
E < 0.78 at the time scale of 270 s had a higher risk of

developing an ischemic stroke (the result for 270 s is shown in Figure 3b). Even with a
competing risk in the CIF analysis, this result remained consistent and showed that S(s)

E
only reflected the risk of ischemic stroke outcome and not mortality (the result for 270 s
is shown in Figure 4b). This suggests that patients with AFib whose VRI generated a
lower degree of irregularity in the near-1/f fluctuation area had a higher risk of ischemic
stroke for the afternoon recording. Thus, these results implied that S(s)

E in scales exhibiting
near-1/f fluctuation demonstrated a statistically significant predictive value for ischemic
stroke outcome in stroke-naïve AFib patients. Furthermore, the statistical test of S(s)

E by
Mann–Whitney U test, which showed no significant difference between the two groups,
maybe because of the length of survival time, which was not included in the analysis.
Therefore, we discovered that S(s)

E was able to reflect the risk of an ischemic stroke event in
stroke-naïve AFib patients when the survival time for each patient was included.

Our morning recording result was in agreement with the previous studies that S(s)
E

at large time scales were higher in ischemic stroke patients than in non-ischemic stroke
patients [12,13], while our afternoon recording result was similar to reports from other
studies that demonstrated a decrease in nonlinear behavior of the heart rate, which is
associated with the worsening of pathological states [29]. It has been reported that healthy
participants generate more complex dynamics than diseased participants [30]. Therefore,
our results confirmed that those with a decrease in the degree of irregularity were more
likely to develop an ischemic stroke based on the afternoon recording. This may attributed
to the loss of complexity in patients with unfavorable outcomes. Our research agreed
with a previous finding showing that acute ischemic stroke patients with a significantly
lower complexity were more likely to develop stroke-in-evolution than those with a higher
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complexity [31]. A similar result was also demonstrated, that higher values of the com-
plexity index were significantly associated with favorable outcomes in patients [32]. Less
complex dynamics were observed in patients with many states of disease compared with
patients in healthy conditions [33,34]. This is because the information content is degraded
as physiological systems become less complex. Furthermore, they become less adaptable
and less able to cope with the exigencies of constantly changing environments [34,35].
Young healthy systems are the most complex and adaptive systems [30].

Based on the time range, there was a diurnal variation in S(s)
E found in this study.

One possible explanation for this variation might be the presence of a circadian rhythm
of S(s)

E in the 1/f fluctuation area of stroke-naïve AFib patients. A circadian rhythm is
a physiological and behavioral cycle with a recurring periodicity of approximately 24 h,
controlling a variety of biological processes, such as the sleep–wake cycle [36,37]. According
to our results, patients who remained stroke-naïve had a lower degree of irregularity in
the morning (indicated by lower S(s)

E ), followed by a higher degree of irregularity in the

afternoon (indicated by higher S(s)
E ). Thus, we hypothesized that this circadian pattern

of S(s)
E in scales larger than 100 s disappeared in patients who were at a higher risk of

developing an ischemic stroke event.
As MSE profiles provide a possible characterization of the biosignal complexity [38],

factors such as time correlation and probability distribution characteristics affect the results
of S(s)

E . Therefore, we applied both survival analyses to verify the factors contributing

to the difference in S(s)
E in our study. The time correlation characteristic was calculated

by autocorrelation coefficient at lag τ = 1 (R(s)(1)), while the probability distribution
characteristic was calculated by information entropy (H(s)

D ). As a result, we confirmed

that R(s)(1) had a negative correlation with S(s)
E in the morning and afternoon recording.

For the morning recording, patients with R(s)(1) < 0.88 at the time scale of 210 s had a
higher risk of developing an ischemic stroke (Figure 5a). For the afternoon recording,
those with R(s)(1) ≥ 0.82 at the time scale of 240 s and R(s)(1) ≥ 0.81 at the time scale of
270 s had a higher risk of developing an ischemic stroke (the result for 270 s is shown in
Figure 5b). On the contrary, we found that H(s)

D had a negative correlation with the result

of S(s)
E for the morning recording. The results showed that patients with H(s)

D < 2.18 at the
time scale of 210 s had a higher risk of developing ischemic stroke (Figure 6a). Unlike the
time correlation characteristic, H(s)

D was assumed to have a positive correlation. Thus, our
result implied that only the time correlation characteristic might contribute to the difference
in S(s)

E , because H(s)
D had an adverse effect on S(s)

E .
Matsuoka et al. [13] revealed that the probability distribution characteristic of MSE

profiles in a wider range of scales of s ≥ 2 s is a useful measure for ischemic stroke risk
assessment, while our result of H(s)

D did not show any significant difference between the
two groups. Furthermore, the previous study did not find any significant difference in the
time correlation characteristic between the two groups, while the present study found that
R(s)(1) at longer time scales might contribute to S(s)

E . The difference between our finding
and previous studies could be as a result of two reasons: firstly, we had a larger number
of participants in our study, which were selected by the propensity score matching based
on several baseline clinical characteristics covariates to reduce the effect of confounding;
secondly, we focused on “stroke-naïve AFib patients”, which means that only patients with
AFib that had never developed any ischemic or hemorrhagic stroke before the heart rate
measurement date were included.

This study had several limitations. The present study was an observational study with
a cohort of Japanese patients at a single institution. This may have caused selection bias. To
verify the findings of this study, further investigation with more heterogeneous participants
(i.e., foreign patients) may eliminate the possibility of this bias and confirm whether the
proposed hypothesis can be applied to a more diverse population. We also did not perform
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a comparison of the predictive performance in patients based on antithrombotic drug
intake due to the limited data on the subject information. Moreover, the vascular disease
in CHA2DS2 − VASc score only consisted of coronary artery disease due to the absence
of myocardial infarction, peripheral artery disease, and aortic plaque data. Furthermore,
there were only a limited number of previous studies to interpret our results. Thus, the
generalizability of our findings in each time range (morning, afternoon, and evening)
may verify our proposed hypothesis, such as the presence of a circadian rhythm of S(s)

E in
stroke-naïve AFib patients with a low risk of developing an ischemic stroke event.

5. Conclusions

Our study found that stroke-naïve AFib patients whose VRI generated a higher degree
of irregularity in scales exhibiting near-1/f fluctuations had a higher risk of developing an
ischemic stroke in the morning recording, while they had a lower risk of ischemic stroke
outcome in the afternoon recording. We also found that the time correlation characteristic
of the MSE profiles might contribute to the difference in S(s)

E . In summary, S(s)
E at the time

scale of 210 s for the morning recording and 240 s ≤ s ≤ 270 s for the afternoon recording
demonstrated a statistically significant prognostic value for ischemic stroke outcome in
stroke-naïve AFib patients. This finding may provide valuable information for improving
ischemic stroke risk assessment in stroke-naïve patients with AFib.
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