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Two of the primary issues with characterizing the variability of raw materials used in
mammalian cell culture, such as wheat hydrolysate, is that the analyses of these materials
can be time consuming, and the results of the analyses are not straightforward to interpret.
To solve these issues, spectroscopy can be combined with chemometrics to provide a quick,
robust and easy to understand methodology for the characterization of raw materials; which
will improve cell culture performance by providing an assessment of the impact that a given
raw material will have on final product quality. In this study, four spectroscopic technolo-
gies: near infrared spectroscopy, middle infrared spectroscopy, Raman spectroscopy, and
fluorescence spectroscopy were used in conjunction with principal component analysis to
characterize the variability of wheat hydrolysates, and to provide evidence that the classifi-
cation of good and bad lots of raw material is possible. Then, the same spectroscopic plat-
forms are combined with partial least squares regressions to quantitatively predict two cell
culture critical quality attributes (CQA): integrated viable cell density and IgG titer. The
results showed that near infrared (NIR) spectroscopy and fluorescence spectroscopy are
capable of characterizing the wheat hydrolysate’s chemical structure, with NIR performing
slightly better; and that they can be used to estimate the raw materials’ impact on the
CQAs. These results were justified by demonstrating that of all the components present in
the wheat hydrolysates, six amino acids: arginine, glycine, phenylalanine, tyrosine, isoleu-
cine and threonine; and five trace elements: copper, phosphorus, molybdenum, arsenic and
aluminum, had a large, statistically significant effect on the CQAs, and that NIR and fluores-
cence spectroscopy performed the best for characterizing the important amino acids. It was
also found that the trace elements of interest were not characterized well by any of the spec-
tral technologies used; however, the trace elements were also shown to have a less signifi-
cant effect on the CQAs than the amino acids. VC 2017 The Authors Biotechnology Progress
published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers,
33:1127–1138, 2017
Keywords: raw material characterization, spectroscopy, multivariate data analysis, principal
component analysis, partial least squares regressions, near infrared, middle infrared, raman,
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Introduction

In the biopharmaceutical industry, a majority of therapeu-

tic proteins are produced in mammalian cell cultures. Mam-

malian cells have the capacity for proper protein folding,
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assembly and post-translational modification, making them
the optimal choice for producing recombinant proteins with
clinical applications.1 Furthermore, specific mammalian cell
lines, such as those derived from Chinese hamster ovary
(CHO) cell lines are preferred.2 In fact, as recently as 2007,
nearly 70% of therapeutic recombinant proteins were pro-
duced in CHO cells,3 with products including blood factors,
hormones, growth factors, monoclonal antibodies and
others,4 whose annual revenue can exceed $99 billion.2

Reaching the level of production required by the biophar-

maceutical industry has required that improvements be made

in protein production. In mammalian cell cultures specifi-

cally, refinement of vector construction, biomarker selection

and advances in gene-targeting have led to higher cell line

productivity.5 Other researchers have also shown that opti-

mizing nutrient and byproduct concentrations in the bioreac-

tor can lead to significantly higher yields.6

Further improvements in cell line productivity have been

accomplished by cell culture media optimization.7–10 How-

ever, improving cell culture performance through media opti-

mization has encountered hurdles. For instance, it is no

longer encouraged to use animal-derived supplements for

cell culture media7–10 because serum is expensive and a

source of contamination, such as viruses.11 The push to use

animal-free media has led to proteins from plant sources,

such as wheat hydrolysate, being used as supplements in cell

culture media.9

Furthermore, the FDA has offered guidelines to improve

product quality and consistency in the biopharmaceutical

industry. The FDA guidance on process analytical technology

(PAT),12 advises that on-line process monitoring equipment

be used to have real-time product quality control. Chemomet-

ric techniques, such as principal component analysis13,14

(PCA) and partial least squares regressions (PLS),13 have

been shown to an important tool in PAT14 due to their ability

to ease the analysis of large data sets generated from on-line

bioprocess sensors. PAT has been used in the biopharmaceuti-

cal industry to characterize process performance,15 allowing

for corrective action to be taken if process performance was

poor. Furthermore, PAT systems for cell culture involving

spectroscopy and PLS have been shown to be able to predict

final product quality based on process conditions.16

Motivated by the above considerations, extending PAT to

include the characterization of raw materials should be the

logical next step. The same PAT paradigm described above,

combining spectroscopy with chemometrics, has been used

in the food17,18 and petrochemical19 industries to characterize

raw material variability, and to predict final product quality

based only on information about the raw materials. The para-

digm is robust enough to span multiple industries, and has

seen use in the biopharmaceutical industry for characterizing

raw material components such as soy hydrolysate,20,21 as

well. Due to the fact that cell culture raw materials are com-

plex mixtures22 it is usually too difficult to identify and

quantify every compound present.23 However, spectroscopy,

such as Raman,23,24 middle infrared,25,26 near infrared27–29

and fluorescence,30 has proven to be advantageous when

combined with chemometrics for characterizing complex

mixtures like those present in raw materials. Furthermore,

prior work has also shown the importance of assessing the

performance of multiple spectroscopic platforms when deter-

mining the impact of a new raw material on cell culture per-

formance.20,31 This work is building upon these principles.

It is important to understand that the different chemical

structures of the complex mixtures present in raw materials

means that no single spectral technology will capture all of

the relevant information for every raw material. It is these

differences that have caused researchers to investigate a myr-

iad of hydrolysates to use as raw materials.32 Therefore,

implementing a spectral technology to characterize wheat

hydrolysate based on the results from characterizing soy, or

any other hydrolysates, would have low prospects for suc-

cess. Until now, there is no study investigating the use of

spectroscopy and chemometrics as a PAT paradigm for the

characterization of wheat hydrolysate as a raw material for

cell culture processes, or as a paradigm for the characteriza-

tion of wheat hydrolysate for any purpose. It is for this rea-

son that four spectroscopic platforms: Fluorescence, Middle-

Infrared, Raman and Near-Infrared, are combined with the

chemometric techniques of PCA and PLS; first, to character-

ize the variability present in the wheat hydrolysates; and sec-

ond, to predict final product quality using only spectral data

of the wheat hydrolysate used as a raw material. This is

especially important, as it has been shown that cell culture

performance benefits when wheat hydrolysate is used as a

raw material.32

Knowing which of the spectral technologies is the best

one to use for estimating the final product quality is not

enough; it is important to understand why the technology

was the best. The amino acid profiles of hydrolysates used to

supplement CHO cell cultures have been shown to be a

good indicator of cell culture performance.33,34 Similarly, the

trace element profiles have also been shown to have a strong

impact on cell culture performance.35 Therefore, even though

the aim of this paper is to show that the use of spectroscopy

and chemometrics is an appropriate paradigm for the charac-

terization of wheat hydrolysate, the trace element and amino

acid profiles are used to justify the spectroscopic results.

Materials and methods

Samples, bioassays, cell line, and raw materials

Wheat hydrolysates were used to supplement cell culture

media for 15 different batches where the cells were being

cultured to express Immunoglobulin G (IgG); the wheat

hydrolysate dosage was 15 g/L for all cultures. Only one

vendor for the media (CD CHO Fusion, CHO DHFR;

Sigma-Aldrich, St. Louis, MO) and supplemental wheat

hydrolysates was used in order to eliminate any variability

that would be introduced by using different vendors. In order

to eliminate variability caused by using different cell-lines,

only a single cell-line was used for the cell cultures (CHO-

K1 Zn GS KO clone #53).

In these analyses, the day 7 integrated viable cell density

(IVCD) and IgG titer were used as cell culture performance

indices. IVCD is representative of overall cell culture health,

where batches with high IVCD values promoted cell growth

more than batches with low values; and it was measured

using a Cedex automated cell counter (Roche Diagnostics

Co., Mannheim, Germany). IgG titer is representative of cell

culture productivity, where batches with high values gener-

ated more product than batches with low values; and it was

measured using an Octet QK with Protein A tips (ForteBio,

Inc., Menlo Park, CA). Duplicate measurements were taken

to ensure consistency.

1128 Biotechnol. Prog., 2017, Vol. 33, No. 4



Amino acids

The amino acid concentrations present in the wheat hydro-
lysate were analyzed using the AccuQ-Tag Ultra Derivatiza-
tion Kit (Water’s Corporation, Milford, MA) for high-
performance liquid chromatography. Concentrations were
obtained for 20 amino acids: alanine, arginine, asparagine,
aspartic acid, cysteine, glutamic acid, glutamine, glycine, his-
tidine, isoleucine, leucine, lysine, methionine, phenylalanine,
proline, serine, threonine, tryptophan, tyrosine, and valine.

Trace elements

The trace element concentrations present in the wheat hydo-
lysate were analyzed using inductively coupled plasma–optical
emission spectroscopy. Concentrations were obtained for 24
trace elements: aluminum, arsenic, barium, calcium, cadmium,
cobalt, chromium, copper, iron, germanium, potassium, mag-
nesium, manganese, molybdenum, sodium, nickel, phosphorus,
lead, selenium, tin, strontium, titanium, zinc and zirconium.

Spectral acquisition

The chemical structure of the wheat hydrolysate used for
media supplementation was examined using four different
spectral technologies: 2D fluorescence spectroscopy, middle
infrared spectroscopy, near infrared spectroscopy, and Raman
spectroscopy.

The 2D fluorescence spectra were measured on an LS45
fluorescence spectrometer (Perkin Elmer, Inc., Waltham,
MA). Prior to obtaining the spectra, the solid powder was
dissolved into distilled water at 1 g/L. Then, the samples
were irradiated 15 times between 250 nm and 750 nm,
where the excitation wavelength was increased incrementally
by 15 nm; at each increment the resulting emission spectrum
was measured from 250 nm to 798.5 nm in intervals of
0.5 nm. The scanning speed was 1,000 nm/min, which was
optimized through trial and error. A single spectrum was
obtained for each sample. Figure 1(a) shows the unprocessed
fluorescence spectrum generated from the hydrolysate used
to supplement batch one. Note, only one spectrum is shown

because the two-dimensional nature of a fluorescence spec-
trum makes it difficult to show the spectra for all of the sam-
ples without obscuring the data. The remaining fluorescence
spectra can be seen in Supporting Information Figure S1.

To measure the middle infrared (MIR) spectra, all of the
samples were loaded as a powder onto the sample stage.
Then, the transmission spectra were obtained by scanning
each sample from 4,000 cm21 to 400 cm21 in increments of
1 cm21. Sixty-four scans were selected to be co-added
together in order to maximize the signal-to-noise ratio of the
resulting spectra. Triplicate spectra were obtained for each
batch to ensure consistency. Figure 1(b) shows the three
unprocessed MIR spectra generated from the hydrolysates
used to supplement all 15 batches.

The near infrared (NIR) spectra were measured on a
Bruker MPA FT-NIR spectrophotometer (Bruker Optics, Bil-
lerica, MA). Prior to measurement, all of the samples were
packed into 22 mm glass vials. Then, the reflectance spectra
were obtained by scanning each sample from 12,493 cm21

to 3,995 cm21 in increments of 4 cm21. 64 scans were
selected to be co-added together in order to maximize the
signal-to-noise ratio of the resulting spectra. Triplicate spec-
tra were obtained for each batch to ensure consistency. The
spectra for the first batch were measured at the wrong reso-
lution and were discarded. Figure 1(c) shows the three
unprocessed NIR spectra generated from the hydrolysates
used to supplement the remaining 14 batches.

The Raman spectra were measured on an RXN3 Raman spec-
trophotometer (Kaiser Optical Systems, Inc., Ann Arbor, MI)
equipped with an optical fiber probe. The model RXN3 is the
most optimal to use because it has the 998 nm laser, which is the
least prone to cause fluorescence in the sample matrix. Prior to
obtaining the spectra, the solid powder was dissolved into dis-
tilled water at 10 g/L. Then, the Raman scattering intensity was
measured for Raman Shifts between 500 cm21 to 3,000 cm21

with a resolution of 1 cm21; the exposure time was 30 seconds
and 32 scans were co-added together for each spectrum. Dupli-
cate spectra were obtained for each batch to ensure consistency.
Figure 1(d) shows both unprocessed Raman spectra generated
from the hydrolysates used to supplement all 15 batches.

Figure 1. The variability of the wheat hydrolysates’ chemical structure was characterized using four spectral technologies.

The raw data, before any preprocessing is applied, is shown here for: (a) fluorescence spectroscopy; (b) middle infrared spectroscopy; (c) near
infrared spectroscopy; and (d) Raman spectroscopy.

Biotechnol. Prog., 2017, Vol. 33, No. 4 1129



Data preprocessing and feature selection

Each of the four spectral technologies requires unique and
comprehensive preprocessing techniques. This is to ensure
that the multivariate analysis that follows is able to focus on
the variability of the raw material as opposed to the variabil-
ity induced by the measuring system.

The 2D fluorescence maps, see Figure 1(a), did not have
peaks that were aligned with one another between multiple
samples. This was corrected with a peak scaling and shifting
algorithm that maximizes the cross-correlation between the
original signal and the target signal with aligned peaks.36

Then, the Raman and Rayleigh light scattering artifacts were
removed from the spectra using polynomial interpolation.37

Figure 2(a) shows the fluorescence spectrum generated from
the hydrolysate used to supplement batch one after the above
preprocessing techniques were applied, the remaining fluores-
cence spectra can be seen in Supporting Information Figure
S2. To facilitate the data analysis techniques discussed in the
Multivariate Data Analysis section, each two-dimensional
fluorescence spectrum was unfolded into a one dimensional
vector.37

The MIR spectra were converted from transmission spec-
tra to absorbance spectra using Eq. (1) where %A is the per-
cent absorbance and %T is the percent transmittance. A
multiplicative scatter correction (MSC) algorithm was
applied to the MIR spectra39 and then the signal was
smoothed by using a third-order Savitsky-Golay smoothing
filter based on 15 data points.40 Figure 2(b) shows the MIR
spectroscopy data resulting from the applied preprocessing
techniques.

%A5log10

100

%T

� �
(1)

The NIR spectra were preprocessed by smoothing with a
third-order Savitsky-Golay filter based on 15 data points.40

Then, the first-order derivative was taken to improve the res-
olution of the overlapping peaks in the 3995-5995 cm21

range. Figure 2(c) shows the NIR spectroscopy data resulting

from the applied preprocessing techniques.

The Raman spectra were preprocessed by fitting a polynomial
baseline to the spectra (fourth-order with a window size of
2500 data points).41 Figure 2(d) shows the Raman spectros-

copy data resulting from the applied preprocessing techniques.

For all spectral technologies the data was averaged for
each batch, mean centered, and mean scaled prior to multi-

variate data analysis. After preprocessing, feature selection
was performed for all spectral technologies, except for the
fluorescence spectra, based on the one-way ANOVA F-
test.42 This was done to ensure that the features used would

maximize between batch variability while simultaneously
minimizing within batch variability. Due to only having one
fluorescence spectrum for each sample, variable importance
in projection13 was used for feature selection in the fluores-

cence spectra. The results of the feature selection are visible
in Figure 2(b–d). For all of the spectroscopic data, only the
most relevant 40% was kept for subsequent analysis.

Note: All raw data is available in Supporting Information
File S3.

Multivariate Data Analysis

Principal component analysis (PCA)

PCA is used in exploratory data analysis to make large,

complex datasets easier to interpret visually. Each observa-
tion is projected from the original feature space onto latent
variables, called principal components. Due to the collinear

nature of the variables that comprise the original feature
space, a relatively small number of principal components
can describe the correlation structure that exists in the origi-
nal feature space. Observations that are similar across many

of the original variables will appear clustered together in the
projection, also known as the score space. Therefore, it can
be seen if there any observations, or groups of observations,

that deviate from the others.

Figure 2. The data from each spectroscopic platform required unique preprocessing, and feature selection, to ensure that subsequent
analysis was focused on sample variability, and not measurement variability.

(a) Fluorescence spectrum after the peaks were aligned and light scattering artifacts were removed. (b) Middle infrared absorbance spectra after a
multiplicative scatter correction algorithm and a Savitsky-Golay smoothing filter were applied. (c) First derivative of the near infrared spectra after a
Savitsky-Golay smoothing filter was applied. (d) Raman spectra after the data was fit to a polynomial baseline.
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PCA is performed on a single matrix of Data, X. The data

matrix has N observations (batches) and K variables (spectra

wavelengths) that were measured for each observation.

When projected onto the principal components, the value of

each observation on these new axes are known as scores;

these are represented as t1, t2, etc. Viewing a plot of t1 vs. t2

or t1 vs. t3 etc. is how one visualizes the data in the score

space. The original variables are related to the latent varia-

bles through loading vectors, denoted as p1, p2, etc. Equation

(2) describes mathematically the relationship between X, ti

and pi. E is the residual matrix, and it contains the raw data

variance not described by the first A principal components

(A may have values of 1, 2, . . ., N-1). More information on

PCA can be found in the literature.13,14

X5
XA

i51

tip
T
i 1E (2)

Partial least squares regression (PLS)

PLS is used to create a regression model that describes

the linear functional dependence of Y on X. It differs from a

traditional regression model by finding this dependence in

the dimensionally reduced score space which allows for a

more robust regression models to be built due to the uncorre-

lated noise in the raw data being left out of the projection to

the score space.

In a PLS model, the X and Y blocks are both projected into

the score space, as described in the PCA section, with the

added constraint that the covariance between the X block

scores and Y block scores be maximized. Equations (3) and

(4) describe the mathematical relationship between X, Y, ti, ui

pi and qi. For the Y block projection, ui represents the scores,

qi represents the loadings and F is the residual matrix. More

information on PLS can be found in the literature.13

X5
XA

i51

tip
T
i 1E (3)

Y5
XA

i51

uiq
T
i 1F (4)

The root mean square error of prediction (RMSE) is a

useful statistic for comparing the relative performance of

PLS models. It is calculated from Eq. (5), where yi is the

value of y observed during the ith batch, ŷi is the value pre-

dicted by the model for the ith batch, and N is the number of

observations a prediction is obtained for. The lower the

RMSE value, the more accurate the PLS model. Therefore,

when comparing the spectral technologies, the one with the

lowest RMSE value performs the best. It is important to note

that RMSE is scale dependent, so the RMSE for a model

predicting IVCD values cannot be compared to the RMSE

for a model predicting IgG titer values because of their

measurements being in different units.

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN

i51

yi2ŷið Þ2
vuut (5)

Results

Exploratory data analysis

Product Quality. There were two critical quality attrib-

utes (CQA) considered in this analysis: integrated viable cell

density (IVCD) and IgG titer. They were selected as repre-

sentative CQAs because they can be measured quantitatively,

and a common goal for cell culture engineers is to maximize

both of them. The CQAs were both measured at harvest, and

Figure 3 shows a plot of IVCD vs IgG Titer for all 15

batches. It can be seen that they are positively correlated

with one another; which is to be expected, because when

more cells are grown, then the amount of product created

should be higher. It can also be seen that some batches per-

formed well, which are characterized by their high IVCD

and IgG titer values; and other batches performed poorly,

which are characterized by their low IVCD and IgG titer val-

ues. The color scheme in Figure 3 is representative of the

classification assigned to each of the 15 batches by the cell

culture operator. Industrial scale batches that exhibited good

performance are colored in green, industrial scale batches

that exhibited poor performance are colored in red and

batches from the pilot plant are colored in blue. The impor-

tance of these classifications is considered in the Discussion

section below.

Spectra. PCA was performed separately on the spectra gen-

erated from the wheat hydrolysate using each of the four spectral

Figure 3. Visualization of product quality; a plot of IgG Titer vs. IVCD for all 15 batches.

Batches that performed poorly, relative to one another, are clustered in the bottom left corner of the figure and batches that performed well are clus-
tered in the upper right corner.
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technologies. The resulting score spaces are shown in Figure 4.

Figure 4(a) is from the fluorescence spectroscopy model, (b) is

from the MIR spectroscopy model, (c) is from the NIR spectros-

copy model, and (d) is from the Raman spectroscopy model.

While four or five principal components were extracted for the

PCA models, only two axes can be visualized simultaneously.

As PCA was used for exploratory data analysis, Figure 4 shows

the two components on which the various batches and their clas-

sifications can be most easily distinguished from one another

visually. The Hotelling’s T2 ellipse, drawn in black in Figure 4,

is the multivariate analogue of univariate confidence intervals.

For all four spectral technologies, it can be seen that, at the 95%

confidence level, none of batches’ projections fall outside of the

ellipse; therefore, none of the batches were excluded from subse-

quent analysis.

The PCA model statistics are summarized in Table 1. A is

the number of principal components that were extracted, as

determined by 7-fold cross-validation; R2(X) describes the

fraction of variance present in the spectra that is explained

by the A principal components and Q2 describes the predic-

tive fraction of variance present in the data that is explained

by the A principal components. R2 and Q2 values of one are

optimal, but are not seen in practice. The R2(X) values seen

in Table 1, which are larger than 0.98 for all four models,

indicate that the multivariate data analysis techniques

employed in this study accurately describe the data generated

by all four of the spectral technologies under consideration.

Furthermore, the Q2 values, which are larger than 0.92 for

all four models, indicate that the models will be useful for

the assessment of spectra generated in the future.

Regression models

Predicting Product Quality from Spectral Data. Eight

PLS models were created to quantitatively predict the CQA

values from each spectral technology individually. Four of

these models used IVCD as the Y block data, and the

remaining four models used IgG titer. For both sets of four

models, the X block data consisted of preprocessed spectra

from one of the four technologies.

The value of each PLS model, relative to the other models

that were built to predict the same CQA, was assessed by

examining the predictive power of the models. For each of

the four spectral technologies, an observed vs. predicted plot

was generated for both IVCD, shown in Figure 5, and IgG

titer, shown in Figure 6. It can be seen from Figures 5 and 6

that the CQA values predicted by the PLS models built from

the fluorescence and near infrared spectra show good agree-

ment with the CQA values observed experimentally. How-

ever, it can also be seen that the PLS models built from the

middle infrared and Raman spectra do not.

The models were also assessed quantitatively from the

model statistics given in Table 2. It can be seen in Table 2

that, relative to the PCA models described in Table 1, the

inclusion of product quality data in the PLS models reduced

the number of principal components that could be extracted

before the predictive power of the model started to degrade.

Furthermore, by comparing the R2(X) values in Tables 1 and

2, it can be seen that extracting fewer principal components

resulted in a smaller fraction of the variance present in the

spectra being described by the PLS models. However, it can

be seen that all of the PLS models have R2(X) values greater

than 0.5, which indicates that a majority of the variances

present in the spectra were still captured by the PLS models.

It is necessary for a model to capture enough of the vari-

ance present in the spectra to predict the CQA values, but it

is more important for a model to adequately describe the

variance present in the CQAs. It can be seen from the R2(Y)

values in Table 2 that, for both IVCD and IgG titer, the

Figure 4. Score spaces for the PCA models built from the preprocessed: (a) Fluorescence spectra. (b) MIR spectra. (c) NIR spectra.
One lot is missing because of the spectra being measured at the wrong resolution. (d) Raman spectra. It can be seen that
there were no outliers; and that, for all four models, the projections are similar for batches with the same classification.

The score space for the model built from NIR spectra shows the most separation between groups, followed closely by the model built from fluores-
cence spectra.

Table 1. Model Statistics for All Four PCA Models

A R2(X) Q2

Fluorescence 5 0.986 0.964
Middle Infrared 4 0.990 0.974
Near Infrared 4 0.970 0.926
Raman 5 0.987 0.961
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Figure 5. Observed vs. predicted plots for predicting IVCD cells

mL x 1011

� �
for the PLS models built from the preprocessed: (a) Fluorescence

spectra. (b) MIR spectra. (c) NIR spectra. (d) Raman spectra.

It can be seen that the models built from fluorescence and near infrared spectra have a lower prediction error compared to the models built from middle
infrared and Raman spectra.

Figure 6. Observed vs. predicted plots for predicting IgG titer
mg

mL

� �
for the PLS models built from the preprocessed: (a) Fluorescence

spectra. (b) MIR spectra. (c) NIR spectra. (d) Raman spectra.

It can be seen that the models built from fluorescence and near infrared spectra have a lower prediction error compared to the models built from
middle infrared and Raman spectra.

Table 2. Model Statistics for PLS Models that Predict Product Quality from Spectral Data

Model Statistics

Y Block X Block A R2(X) R2(Y) Q2 RMSECV

IVCD Fluorescence 1 0.517 0.717 0.627 1.03 3 1011

Middle Infrared 1 0.724 0.326 0.209 1.50 3 1011

Near Infrared 1 0.768 0.665 0.641 1.01 3 1011

Raman 1 0.615 0.167 0.004 1.68 3 1011

IgG Titer Fluorescence 1 0.566 0.710 0.655 37.4
Middle Infrared 1 0.725 0.415 0.314 52.7
Near Infrared 3 0.936 0.871 0.756 30.4
Raman 1 0.615 0.150 27.40 3 1025 63.6

Biotechnol. Prog., 2017, Vol. 33, No. 4 1133



models built from the fluorescence and near infrared spectra

are able to describe a majority of the variance present in the

CQAs, whereas the models built from the middle infrared

and Raman spectra are not. Furthermore, the Q2 values indi-

cate that fluorescence and near infrared spectra generated in

the future can be used to predict the CQAs with reasonable

accuracy. The cross-validated root mean square error of pre-

diction (RMSECV) provides a quantitative confirmation of

the qualitative conclusions drawn from Figures 5 and 6: the

models built from the Raman and middle infrared spectra

have 41%–110% larger model prediction error than the mod-

els built from the fluorescence and near infrared spectra.

Discussion

Exploratory data analysis

Figure 3 shows that there were batches characterized by

high cell growth and high productivity, and that there were

batches characterized by low cell growth and low productivity.

In practice, cell culture engineers should strive to operate in
the upper right quadrant of Figure 3. However, it was impor-
tant that the training data used to build the regression models
include underperforming batches as well, so as to ensure that
the models can be used to assess if a future batch will perform
poorly.

It can also be seen in Figure 3 that the data points are

clustered together in a way that aligns with the classification

assigned to each batch by the cell culture operator. The four

red data points in the bottom left quadrant of Figure 3 repre-

sent batches that are classified as bad. Similarly, the green

data points that are clustered together in the top right quad-

rant of Figure 3 represent the batches that are classified as

good, and the cluster of blue data points represent batches

from the pilot plant, with some overlap between these two

clusters.

The score space projections shown in Figure 4 utilize the

same color scheme. It can be seen that the model built from

near infrared spectra shows the clearest distinction between

the clusters for each of the three classifications, followed

closely by the model built from fluorescence spectra. The

models built from middle infrared and Raman spectra also

show that each of the three classifications are clustered

together, but that there is a small degree of overlap between

them, which implies that they may not be as useful as the

models built from near infrared and fluorescence spectra.

Suggesting that the models built from near infrared and

fluorescence spectra are more useful may appear to contra-

dict the PCA models’ statistics given in Table 1, where the

models built from middle infrared and Raman spectra have

the largest R2(X) and Q2 values. However, each of the four

spectral technologies describe various aspects of the wheat

hydrolysate’s chemical structure, and the aspects described

by one technology are not necessarily the same as the

aspects described by another. Therefore, even though the
inter-batch variability that was seen in the wheat hydroly-
sate’s chemical structure is better described by the models
built from middle infrared and Raman spectra; the CQAs are
more related to the aspects of the chemical structure that are
described by the models built from near infrared and fluores-
cence spectra.

Regression models

Predicting Product Quality from Spectral Data. The
PLS model statistics shown in Table 2 also validate the con-
clusions drawn from the PCA models. The R2(Y) values for
the models built from the middle infrared and Raman spectra
are significantly lower than the values for the models built
from the near infrared and fluorescence spectra. They indi-
cate that, at best, 42% and 33% of the variability that was
seen in the IgG titer and IVCD values, respectively, had any
relationship with the aspects of the wheat hydrolysate’s
chemical structure that are described by the middle infrared
spectra. They also indicate that, at best, 17% and 15% of the
variability that is seen in the IgG titer and IVCD values,
respectively, had any relationship with the aspects described
by the Raman spectra.

Impact of Wheat Hydrolysate Composition on Product
Quality. Thus far, it has been shown that the CQAs are
correlated with the spectra generated from the wheat hydro-
lysates. In order for this to be true, specific components in
the wheat hydrolysate must have impacted the cell culture
performance. As amino acid and trace element concentra-
tions are known to have an impact on cell growth and pro-
ductivity, the amino acid and trace element profiles were
measured for the wheat hydrolysates that were added to each
batch.

Four new PLS models were created to establish the rela-
tionship between the CQAs and the amino acid and trace
element profiles of the wheat hydrolysates. The results from
these models are summarized in Table 3. The large R2(X)
values indicate that the amino acid and trace element pro-
files are described well by the PLS models; and the large
R2(Y) values indicate that the IVCD and IgG titer profiles
are also well described by the models. The Q2 values indi-
cate that up to 64% and 58% of the variability that is seen
in the IgG titer and IVCD measurements, respectively, was
caused by the variations in the amino acid concentrations
of the wheat hydrolysates. They also indicate that up to
45% and 39% of the variability that is seen in the IgG titer
and IVCD measurements, respectively, was caused by var-
iations in the trace element profiles. The RMSECV values
indicate that the amino acid profile had a more consistently
measureable effect on the CQAs than the trace element
profile did.

It is important to note that the models only imply that
there is a correlation between the CQAs and the amino acid

Table 3. Model Statistics for PLS Models that Predict Product Quality from Hydrolyste Composition

Model Statistics

Y Block X Block A R2(X) R2(Y) Q2 RMSECV

IVCD Amino Acids 2 0.788 0.722 0.577 1.09 3 1011

Trace Elements 2 0.708 0.707 0.394 1.32 3 1011

IgG Titer Amino Acids 2 0.764 0.785 0.640 38.18
Trace Elements 2 0.706 0.758 0.445 48.40
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and trace element profiles. However, it is known that the

relationship is causal due to the CQAs indirect dependence

on the raw materials via cellular metabolism.

The most important aspect of determining the effect that

the wheat hydrolysate composition had on the product qual-

ity is identifying the specific amino acids and trace elements

that had a large, statistically significant effect on the CQAs.

A given component is statistically significant when its effect

is distinguishable from noise in measurement, which is con-

cluded at the 5% significance level when the component’s

model coefficient’s 95% confidence interval does not contain

0. Furthermore, the model coefficient’s sign indicates

whether a given component had a positive, or negative,

effect on the CQAs. The size of the effect that a given

component had on the CQAs is determined from the variable

importance in projection (VIP) metric, where a larger VIP

value indicates a larger effect.

As two principal components were extracted for each of

the PLS models, a component is considered to be statistically

significant only when it’s model coefficients 95% confidence

interval doesn’t contain zero for both principal components

one and two. Furthermore, only the components whose VIP

values are larger than one were taken to have had a large

enough effect for further consideration. These requirements

may have been more strict than necessary; resulting in some

amino acids or trace elements being excluded from the sub-

sequent analysis that should possibly have been included.

However, they ensured that only the most consistently

Figure 7. Amino acid and trace element VIP values and model coefficients, with their respective 95% confidence intervals, for the
model predicting IVCD.

It can be seen that arginine, phenylalanine, tyrosine, isoleucine, threonine, copper, phosphorus, molybdenum, arsenic and aluminum had a large, sta-
tistically significant effect on cell growth.

Figure 8. Amino acid and trace element VIP values and model coefficients, with their respective 95% confidence intervals, for the
model predicting IgG titer.

It can be seen that glycine, arginine, tyrosine, isoleucine, phenylalanine, copper, molybdenum, phosphorus, arsenic and aluminum had a large, statis-
tically significant impact on cell productivity.
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significant components, with the largest effects, would be

used to justify the spectral model results.

Each of the components’ VIP values and model coeffi-

cients, with their respective 95% confidence intervals, are

shown in Figure 7 for the models built to predict IVCD. The

model coefficients that are statistically significant, and the

VIP values that are greater than one, are all colored in green;

the model coefficients that are not statistically significant,

and the VIP values that are less than one, are colored in red.

It can be seen that there are five amino acids present in the

wheat hydrolysates that meet the requirements for additional

consideration, all of which had a negative impact on IVCD.

In order of decreasing importance, they are: arginine, phe-

nylalanine, tyrosine, isoleucine and threonine. It can also be

seen in Figure 7 that there are three trace elements that had

a positive effect on IVCD that should be considered further:

copper, phosphorus and molybdenum; and that there are two

trace elements that had a negative effect on IVCD that

should be considered further: arsenic and aluminum.

The same data is presented in Figure 8 for the models built

to predict IgG titer. Out of all of the components, five amino

acids that had a negative impact on IgG titer are kept: gly-

cine, arginine, tyrosine, isoleucine and phenylalanine; three

trace elements that had a positive effect are kept: copper,

molybdenum, and phosphorus; and two trace elements had a

negative effect are kept: arsenic and aluminum. All three

groups are listed in order of decreasing importance.

Justification of the Results for Predicting Product Quality
from Spectral Data. It was previously claimed that in order

for the correlation that was found to exist between the CQAs

and the spectra generated from the wheat hydrolysates to be

valid, specific components in the wheat hydrolysate must

have had an impact on the product quality. While left

unstated thus far, it is also necessary that the spectra were

able to describe the aspects of the wheat hydrolysate’s chem-

ical structure relevant to the components that had an impact.

Several amino acids and trace elements that had a large, sta-

tistically significant effect on the critical quality attributes

were identified; therefore, the spectral technology that is able

to best quantify these components should also be the spectral
technology that is able to predict the CQAs the most
accurately.

Four new PLS models were built to evaluate the relative
capability of each spectral technology to characterize the
amino acids that were demonstrated to have impacted the
CQAs. The results from these four models are presented in
Table 4. However, as the model built from the fluorescence
spectra extracted 11 principal components from a dataset
that contained 15 spectra, the probability of the model being
over-fit was high. The model was confirmed to be over-fit
from a permutations plot, which is given in Supporting
Information Figure S4(a). Therefore, a second model was
built from the fluorescence spectra that did not use cross-
validation to determine the number of principal components
to extract. In this case, two principal components were
extracted; and the model is not over-fit, as evidenced by the
permutations plot given in Supporting Information Figure
S4(b). The results of this model are also given in Table 4.

It can be seen from Table 4 that the models built from the
spectra of all four technologies are able to describe a major-
ity of the variances that were present in the spectra. How-
ever, only the models built from the near infrared and
fluorescence spectra are able to describe a large amount of
the variances seen in the amino acid profiles. Furthermore,
the RMSECV is lowest for the models built from the near
infrared and fluorescence spectra, which indicates that these
two technologies are superior when characterizing the amino
acid profile of the wheat hydrolysate.

Another four PLS models were built to determine the rela-
tive performance of each spectral technology for characteriz-
ing the trace elements that were demonstrated to affect the
CQAs. The results from these four models are presented in
Table 5. The model built from the near infrared spectra is
over-fit, as evidenced by the permutations plot in Supporting
Information Figure S5(a). Therefore, a second model was
built from the near infrared spectra that extracted two princi-
pal components; and the model is not over-fit, as evidence
by the permutations plot in Supporting Information Figure
S5(b). The results of this model are given in Table 5.

Table 4. Model Statistics for PLS Models that Predict Amino Acid Concentrations from Spectral Data

Model

Summary RMSECV

A R2(X) R2(Y) Q2 Arginine Glycine Phenylalanine Tyrosine Isoleucine Threonine

Fluorescence* 11 0.999 0.986 0.651 97.29 25.02 50.21 39.18 93.26 117.6
Middle Infrared 2 0.953 0.220 0.030 153.9 35.26 79.73 63.51 135.9 212.9
Near Infrared 2 0.899 0.553 0.354 111.6 29.28 60.02 48.88 102.4 150.1
Raman 1 0.615 0.172 0.031 154.7 34.91 77.81 61.57 130.8 209.8
Fluorescence† 2 0.778 0.476 0.176 133.5 33.99 68.65 54.32 125.5 156.0

*Model is over-fit.
†A is determined from permutations plot in order to ensure model reproducibility.

Table 5. Model Statistics for PLS Models that Predict Trace Element Concentrations from Spectral Data

Model

Summary RMSECV

A R2(X) R2(Y) Q2 Copper Phosphorous Molybdenum Arsenic Aluminum

Fluorescence 3 0.934 0.625 0.307 2.135 231.1 0.309 0.085 0.159
Middle Infrared 2 0.953 0.313 0.061 2.781 262.8 0.367 0.090 0.182
Near Infrared* 10 0.995 0.971 0.573 1.992 172.2 0.241 0.064 0.203
Raman 3 0.967 0.659 0.405 2.918 219.6 0.255 0.163 0.225
Near Infrared† 2 0.896 0.525 0.290 2.159 191.3 0.357 0.072 0.179

*Model is over-fit.
†A is determined from permutations plot in order to ensure model reproducibility.
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It can be seen that for the models built to predict the trace
element profile, the spectra from all four technologies were
described well by the model; and that for the models built
from all of the spectra, except for the middle infrared spec-
tra, a majority of the trace element profile is described by
the model as well. However, it was surprising that the model
built from the Raman spectra managed to perform better
than the models built from the fluorescence and near infrared
spectra. However, it should be noted that the trace element
profile was not being characterized directly, as the trace ele-
ments do not absorb light at the frequencies that the samples
were irradiated with. Rather, the ability of each spectral
technology to characterize the trace element profile was
more likely due to the effect that the trace elements had on
other aspects of the wheat hydrolysate’s chemical structure
that were able to be characterized, such as the difference in
bond lengths present in a glutamic acid molecule and a cop-
per (II) glutamic acid complex.

The very poor performance of the models built to predict
the CQAs from the Raman spectra indicates that the aspects
of the chemical structure of the wheat hydrolysate that the
trace elements had an effect on were not the same aspects
that affected the CQAs. Therefore, if it is desirable to assess
the impact that the trace element profile of a raw material
has on the CQAs in the future, it is suggested to use a spec-
troscopic technology better suited to measuring the trace ele-
ments directly, such as x-ray spectroscopy.

The overall implication, then, is that the amino acids present
in the wheat hydrolysate, and their impact on the CQAs, are
the reason, at least in part, that the models built from the near
infrared and fluorescence spectra are the most effective for pre-
dicting the CQAs from the hydrolysates’ spectra alone.

Conclusions

First, it should be emphasized that there is not a single
spectroscopic technology that will perfectly characterize a
given raw materials chemical structure. Furthermore, the
aspects of the chemical structure that are characterized may
not always be relevant for every product quality metric
under consideration. However, the results presented here
have demonstrated that if the goal is to maximize cell
growth and productivity, then the most important compo-
nents present in the wheat hydrolysates used to supplement
cell culture media are contained within their amino acid pro-
file. It was also demonstrated that near infrared and fluores-
cence spectroscopy are the best technologies to use for the
characterization of wheat hydrolysates, because of their abil-
ity to characterize the amino acid profile. The authors recom-
mend using near infrared spectroscopy because the models
built from its spectra performed slightly better than the mod-
els built from Fluorescence spectra, despite the amount of
data present in a fluorescence spectrum being much larger.

Facilitated by advancements in technologies such as perfu-
sion bioreactors, the biopharmaceutical industry is moving
towards continuous manufacturing. As this trend continues,
the variability of the raw materials used for cell culture will
have a larger and larger impact on the final product quality,
relative to the in process variability, due to the process being
operated at steady-state. Therefore, the accurate and repro-
ducible characterization of raw material quality will be of
paramount importance to ensure that final product quality
will be good, consistently. Furthermore, spectroscopy and
chemometrics are already utilized for the real-time

monitoring of biopharmaceutical processes. Therefore, the

extension of this well-established PAT paradigm to charac-

terize raw materials, such as wheat hydrolysates, should be

the logical next step, as it will allow companies to rapidly

expand the design space of their processes.
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