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Abstract

Background: Solving median tree problems under tree reconciliation costs is a classic and well-studied approach for
inferring species trees from collections of discordant gene trees. These problems are NP-hard, and therefore are, in
practice, typically addressed by local search heuristics. So far, however, such heuristics lack any provable correctness
or precision. Further, even for small phylogenetic studies, it has been demonstrated that local search heuristics may
only provide sub-optimal solutions. Obviating such heuristic uncertainties are exact dynamic programming solutions
that allow solving tree reconciliation problems for smaller phylogenetic studies. Despite these promises, such exact
solutions are only suitable for credibly rooted input gene trees, which constitute only a tiny fraction of the readily
available gene trees. Standard gene tree inference approaches provide only unrooted gene trees and accurately
rooting such trees is often difficult, if not impossible.

Results: Here, we describe complex dynamic programming solutions that represent the first nonnaïve exact
solutions for solving the tree reconciliation problems for unrooted input gene trees. Further, we show that the
asymptotic runtime of the proposed solutions does not increase when compared to the most time-efficient dynamic
programming solutions for rooted input trees.

Conclusions: In an experimental evaluation, we demonstrate that the described solutions for unrooted gene trees
are, like the solutions for rooted input gene trees, suitable for smaller phylogenetic studies. Finally, for the first time,
we study the accuracy of classic local search heuristics for unrooted tree reconciliation problems.
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Background
Phylogenetic trees visualize estimates of the evolution-
ary relationships among multiple biological entities such
as molecular sequences, genomes, and species. For biol-
ogists, such trees present a fundamental tool for analyz-
ing how distinct biological entities have evolved but are
full of complexities and seemingly irreconcilable differ-
ences [1]. The implications and potential applications of
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phylogenetic analyses are widespread and are concern-
ing a wide variety of central research areas including
biology, ecology, epidemiology, and conservation biology
(e.g., [2–6]).

Conventional phylogenetic tree inference samples an
individual gene (i.e., a gene family) for a collection of
species and reconstructs the evolutionary history, called
a gene tree, of this gene. The gene is a portion of the
species’ genomes, and it is assumed that the correspond-
ing gene tree is mimicking the evolution of the species.
Accordingly, the gene tree is identified with the species
tree.
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However, it is well-recognized that distinct gene fami-
lies frequently yield incongruent gene trees due to intri-
cate evolutionary processes which are affecting genomic
locations of the genes in different ways [7, 8]. Such pro-
cesses include gene duplications, gene loss, and deep
coalescence. Consequently, identifying a gene tree with its
species tree can result in largely misleading phylogenetic
analyses [9, 10].

Today, algorithmic advances have given rise to power-
ful computational tools for inferring credible species tree
estimates from collections of discordant gene trees by
solving median tree problems [11]. Given a set of gene
trees, median tree problems (also referred to as supertree
problems [12]) seek a tree, called a median tree, that is
minimizing the overall cost function in regards to the
input trees (using a problem-specific cost function). Such
cost functions, for example, include the classic and well-
studied tree reconciliation costs, which are informed by
evolutionary models that explain incongruence between
gene trees and species trees. Tree reconciliation costs
account for the minimum number of evolutionary events
required to reconcile the discordance between a gene tree
and a species tree, where both trees are rooted. For the
tree reconciliation costs, we consider here the fundamen-
tal evolutionary events of gene duplication, gene loss [13–
16], and deep coalescence [17]. The median tree problems
under the tree reconciliation costs, which we refer to as
(median) tree reconciliation problems, will be the focus of
this work.

Similar to the in practice established median tree prob-
lems [11], the tree reconciliation problems are also NP-
hard [18, 19], and therefore, are frequently addressed by
local search heuristics [20–25]. The challenging task of
such heuristic approaches is to efficiently search a globally
optimal species tree in a solution landscape that is liter-
ally of astronomical size (i.e., the search space increases
super-exponentially with the number of taxa [26]). More-
over, this landscape has typically numerous local optima
that can easily trap heuristic approaches [27]. So far, these
local search heuristics lack any provable correctness or
precision [28, 29].

To obviate such heuristic uncertainties, exact dynamic
programming solutions have been described for the tree
reconciliation problems [20, 28]. These solutions are
asymptotically significantly faster than the naïve enumer-
ation of the solution space allowing to compute median
trees suitable for smaller studies. Furthermore, such exact
solutions have demonstrated that local search heuristics
can fail to find optimal solutions for even small-sized stud-
ies (i.e., eight species [30]). This makes exact dynamic
programming solutions the most appealing choice for
phylogenetic studies involving smaller numbers of taxa
(e.g., up to 25 taxa [31]).

Unfortunately, the exact dynamic programming solu-
tions are not applicable to the large number of unrooted
gene trees that are typically inferred from molecular
sequences. Standard tree inference methods that are used
in practice, such as maximum parsimony or maximum
likelihood, infer only unrooted gene trees, and identifying
credible rootings in such trees is often challenging, if not
unattainable [32, 33]. Outgroup rooting, for instance, can
produce inaccurate rootings when evolutionary events
cause heterogeneity in the gene trees. Rooting gene trees
under the molecular clock hypothesis, or likewise by using
midpoint rooting, also can result in an error when there is
a molecular rate variation throughout the tree [34, 35].

However, there has been an increased interest in rooting
unrooted gene trees using a credibly rooted species tree
such that a chosen tree reconciliation cost is minimized
[36–38]. The corresponding extension of the standard rec-
onciliation costs to costs between an unrooted gene tree
and a rooted species tree are well-studied and referred to
as the unrooted gene tree reconciliation cost. For exam-
ple, consider the standard deep coalescence cost defined
between a rooted gene tree and a rooted species tree; the
unrooted deep coalescence cost between an unrooted gene
tree and a rooted species tree is then defined as the min-
imum rooted deep coalescence cost between any rooting
of the unrooted gene tree and the species tree (i.e., the
minimum cost over all rootings).

Naïvely, the tree reconciliation problems for the
unrooted gene tree reconciliation costs can be solved
by a complete enumeration of the input trees’ root-
ing scenarios and selecting a scenario that results in a
median tree with the minimum tree reconciliation cost
using an exact dynamic programming solution for rooted
input gene trees. However, the super-exponential run-
time increase caused by the enumeration makes this
approach unsuitable even for smaller sized phylogenetic
studies involving, e.g., more than five gene trees (see the
“Scalability analysis” section).

Here, we describe an exact and non-naïve method,
termed UrExact, for solving the tree reconciliation prob-
lems for complete1 and unrooted input gene trees, i.e.,
using the unrooted reconciliation costs. Perhaps surpris-
ingly, UrExact has the same asymptotic runtime as the
best know exact method [28], termed RExact, for the tree
reconciliation problems for rooted input gene trees. In
practice, however, gene trees also can be incomplete. This
can be addressed by filling in the gene trees (e.g., [29]),
and then applying UrExact. Another option is to apply the
minus method [39]; that is when computing the pairwise
unrooted reconciliation costs between a gene tree and a
candidate species tree, the species tree is constrained to
the host-species of the gene tree’s leaf-genes. We show

1By “complete” we imply that the trees have full taxon sets.
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how to handle the minus method in the “Results” section,
which requires an extension of our approach. Further,
using comparative experimental studies, we showcase the
runtime differences between the naïve enumeration solu-
tion using RExact and our solutions in practice. These
studies demonstrate that, in contrast to the naïve solution,
UrExact is suitable for exact inference on smaller phy-
logenetic studies (i.e., up to 11 taxa for 100 input gene
trees). Finally, we study the accuracy of classic local search
heuristics for unrooted median tree reconciliation prob-
lems, and demonstrate that it typically requires a large
number of independent heuristic runs to find an exact
median tree for already small scale phylogenetic stud-
ies. This suggests that such heuristic approaches may
often not be suitable for credible phylogenetic studies, in
particular for large-scale studies.

Related work
Our exact dynamic programming solution for the
unrooted tree reconciliation problems, UrExact, are build-
ing on research areas related to (i) the tree reconciliation
costs, (ii) the time complexities of the tree reconciliation
problems, and (iii) the unrooted tree reconciliation costs.
Therefore, here we will provide more detail for each of
these areas.

Tree reconciliation costs
The pioneering work of Goodman et al. [15], almost 40
years ago, introduced tree reconciliation as a fundamen-
tal approach of explaining discord between a gene tree
and a species tree by evolutionary means. Tree reconcil-
iation is an approach that is embedding a rooted gene
tree into a rooted species tree using a mapping func-
tion that relates every gene in the gene tree to the most
recent species in the species tree, referred to as the gene’s
host-species, that could have contained the gene. In prac-
tice, the mapping of a gene tree’s leaf-genes is known
to be the species from which the genes were sampled.
The mapping function allows identifying the evolution-
ary events gene duplication, gene loss, and deep coales-
cence. Gene duplications are genes in the gene tree that
have the same host-species as one of their children. Gene
losses are accounted for by the maximum subtrees in the
species tree that have no host-species. Associated with
the number of these events are the tree reconciliation
costs which are termed gene duplication cost, gene loss
cost, and gene duplication and loss cost accounting for
the number of gene duplications, gene losses, and gene
duplications plus losses, respectively. Another classic rec-
onciliation cost is the deep coalescence cost that accounts
for each edge in the species tree the number of embedded
lineages from the gene tree minus one, which are assumed
to be the additional lineages caused by deep coalescence
events [17].

Time complexity of the tree reconciliation problems
For rooted input gene trees, the tree reconciliation prob-
lems are NP-hard under the costs for (i) gene duplication,
gene loss, and gene plus loss [18], and (ii) deep coales-
cence [19]. However, RExact can solve these problems
in O(3nmn/b) time and with O(2n + mn/b) space, using
dynamic programming, a bit-vector encoding of size b
(ideally representing the register size of the computation
machine used) and Gray encoding, where n is the num-
ber of input trees and m the number of unique rooted
splits in the input trees [28]. The time complexities of the
tree reconciliation problems for unrooted input gene trees
are open, though, we conjecture that the problems are
NP-hard.

Unrooted tree reconciliation costs
Initially, all gene tree parsimony costs were defined only
for comparing rooted gene trees with rooted species trees.
[15, 17]. However, in general, unrooted trees can be com-
pared with rooted trees by identifying the rootings of the
unrooted tree that is minimizing any provided cost func-
tion between a pair of rooted trees. Further, the gene
tree parsimony costs satisfy the plateau property, which
is sufficient for the linear time identification of all opti-
mal rootings and rooting costs in the unrooted gene tree.
The plateau property is satisfied when all optimal root-
ings of the unrooted gene tree form a subtree in this
tree, and the rootings along every path toward a leaf have
monotonically increased costs [38].

Methods
Basic definitions
A rooted tree is a rooted binary tree whose leaves are
labeled by species names (not necessarily uniquely). Let
T be a gene tree. By L(T) we denote the set of all leaf
labels (i.e., species) present in T. The root of T is denoted
root(T). A node n is called internal if it has two children,
which are denoted by Ch(n). A cluster of a node g, denoted
by clu(g), is the set of leaf labels below g. A species tree is
a rooted tree whose leaves are uniquely labeled (that is,
there are no two leaves with the same species label).

Let S = 〈VS, ES〉 be a species tree. For nodes a, b ∈ VS,
by a + b we denote the least common ancestor of a and b
in S. We also use the binary order relation a ≤ b if b is a
node on the path between a and root(S) (note that a ≤ a).
Two nodes a and b are called siblings if they are children
of a + b.

For a rooted tree G, called here a rooted gene tree, and
a species tree S such that L(G) ⊆ L(S), a least common
ancestor mapping, or lca-mapping, is a function from the
nodes of G to the nodes of S such that M(g) = s if g and s
are leaves with the same label, or M(g) = M(a)+M(b) if g
is an internal node of G such that a and b are the children
of g.
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An unrooted gene tree is a tree whose internal nodes
are of degree 3 and species names label the leaves. An
unrooted gene tree G can be rooted by placing the root on
an edge e (that is, by subdividing edge e with a new node
ρ and designating it to be the root). Such a rooting (i.e., a
resulting rooted gene tree) is denoted Ge.

Cost functions
Now, we introduce several cost functions used when rec-
onciling a rooted gene tree G and a species tree S. An
internal node g ∈ VG is a (gene) duplication if M(g) =
M(g′) for g′ a child of g. The total number of gene
duplications is called duplication cost and denoted by
D(G, S). The deep coalescence cost is defined as follows
[17]: DC(G, S) = ∑

a,b siblings in G(|π(M(a), M(b))| − 1),
where π(x, y) is the set of all nodes on the shortest path
connecting x and y in S. Note that the standard definition
of the deep coalescence cost function [40] simply differs
by 1 − |VG| from our definition, which is a constant value
for a fixed G, and the results presented in this work can
be easily adapted for the standard definition. Next, we
define the the loss cost based on the formula derived in
[19]: L(G, S) = DC(G, S) + 2 · D(G, S) − |VG| + 1 and the
duplication-loss cost: DL(G, S) = D(G, S) + L(G, S).

The above cost functions can be naturally extended to
unrooted gene trees. For every cost function c defined
above for rooted gene trees, we define its unrooted coun-
terpart as mine∈E(G) c(Ge, S). For convenience, we adopt
the same notation (i.e., D, DC, L, DL) to denote unrooted
cost functions. The edge e, such that Ge has the minimal
cost c(Ge, S), is called optimal (for c).

For a given rooted or unrooted gene tree G and a
species tree S, c(G, S) can be computed in linear time
[41, 42].

Problems
We say that a species tree S is over a set of species I if
L(S) = I. Let Q be a collection of unrooted gene trees
G1, G2, . . . , Gn. By L(Q) we denote the set of all species
present in the trees of Q. We extend the notion of the
cost function to collections of gene trees. For a given
species tree S over L(Q), by c(Q, S) we denote the total
cost

∑
G∈Q c(G, S).

Problem 1 (uMinST - Minimal Species Tree) Given a
collection of unrooted gene trees Q and a cost function c
find a species tree Smin that minimizes the total cost c(Q, S)

in the set of all species trees S over L(Q).

We call a species tree Smin minimal (for Q and
c) and we denote the respective minimal cost by
cmin(Q). We also define a simpler variant of the previ-
ous problem that does not require finding a tree Smin

explicitly.

Problem 2 (uMinCC - Minimal Cost Computation)
Given a collection of unrooted gene trees Q and a cost
function c compute cmin(Q).

Similarly, we define problems for the collections of
rooted trees, called rMinST and rMinCC, respectively.
Note that [28] provides a dynamic programming solution
to rMinST and rMinCC.

Solution to rMinST and rMinCC - overview
In this section, we show how rMinCC is solved in [28].
Any internal node v of a gene or species tree determines
a split A|B, where A and B are the clusters of children of
v. For a collection Q of rooted gene trees let r(Q) be the
multiset of all rooted splits present in trees of Q. We also
set r(T) to be r({T}) for any rooted tree T. For brevity,
here we present the dynamic programming formulations
only for D and DC costs. For DL and L, please refer to [28].

For a collection of gene trees Q and a species s, �(Q, s)
is the total cost contribution of the nodes from Q to a leaf
of some species tree over L(Q) labeled by s. Let now X and
Y be two disjoint sets of species. Then �(Q, X, Y ) is the
total cost contribution of the nodes from Q to an internal
node v of some species tree over L(G) such that the cluster
of v is X ∪ Y and v has two children whose clusters are
X and Y. Given a species leaf s and a split X|Y and a cost
c ∈ {D, DC, DC}:

�c(Q, s) =
∑

q∈r(Q)

λc(q, s),

�c(Q, X|Y ) =
∑

q∈r(Q)

γ c(q, X|Y ),

where
λD(A|B, s) = λDL(A|B, s) = 1 [A ∪ B = {s}] ,

λDC(A|B, s) = 1 [∃i : Ai = {s} 
= Ai+1]

γ D(A1|A2, X1|X2) = 1
[
A1 ∪ A2 ⊆ X1 ∪ X2 ∧ ∃i : X1 � Ai � X2

]
,

γ DC (A1|A2, X1|X2) = 1
[∃i, j : Xj � Ai ⊆ X1 ∪ X2 � Ai+1

]
.

The above functions can be used to compute the cost as
follows:

c(Q, S) =
∑

s∈L(S)

�c(Q, s) +
∑

q∈r(S)

�c(Q, q). (1)

The dynamic programming solution to rMinCC from [28]
is as follows:

�c(Q, Z)=
{

�c(Q, s) if Z = {s},
minX|Y∈splits(Z) �c(Q, X) + �c(Q, Y ) + �c(Q, X, Y ) otherwise,

where splits(Z) is the set of all splits (2-partitions) of Z
and the solution is given by �c(Q, L(Q)).

Unrooted reconciliation
We now summarize the previous structural results on rec-
onciliation of an unrooted gene tree with a species tree.
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These results will be used for the design of our main
dynamic programming solutions to uMinST and uMinCC
problems.

Without loss of generality, we assume that every
unrooted/rooted gene tree has at least 3 distinct labels
and it has all labels from a species tree, i.e., L(G) =
L(S) ≥ 3. Let G be an unrooted gene tree and S be
a fixed species tree. The split of the root of S we call
top-split.

A set of species Z is simple if Z is a subset of a cluster
from the top-split. Let ζ(Z) be a predicate that is true if Z
is simple. Further, let G be an unrooted tree. Any internal
node g of G determines a star A|B|C, where A, B and C are
the leaves of three subtrees obtained from G by removing
g. Note that A ∪ B ∪ C = L(S). Let Ā = B ∪ C, B̄ =
C ∪ A and C̄ = A ∪ B. Then, it follows from [42, 43], that
given a top-split we have five disjoint types of stars (see
Fig. 1) in unrooted gene trees (reordering of A, B and C
may be required; e.g., the two stars in G2 from Fig. 2 are
represented as a|b|c (or a|c|b) and bc|a|a in the context of
the top-split a|bc):

S1 if ¬ζ(A) ∧ ζ(Ā),
S2 if ζ(A) ∧ ζ(Ā),
S3 if ¬ζ(A) ∧ ¬ζ(Ā) ∧ ζ(B) ∧ ζ(C),
S4 if ¬ζ(A) ∧ ¬ζ(B) ∧ ¬ζ(C),
S5 if ζ(A) ∧ ¬ζ(B) ∧ ¬ζ(C).

Given a species tree S, an edge of an unrooted tree G
is symmetric if removing the edge from G creates two
trees whose top-clusters are either both simple or both are
not simple. The remaining edges are called asymmetric.
E.g., all edges of S4 are symmetric, while all edges of S1

are asymmetric. We have the main theorem for unrooted
reconciliation theory.

Theorem 1 (Adopted from [42–45]) If e is a symmet-
ric edge in any star or e is the asymmetric edge from S5
then c(Ge, S) = c(G, S), i.e., e is optimal for every cost
c ∈ {D, DC, L, DL}.

The edges satisfying the conditions from the above
theorem induce a connected unrooted subtree in G called
a plateau. The plateau in our article equals the DL-plateau
from [42], where the c-plateau is the graph induced by the
set of optimal rooting edges for the cost c. Since any opti-
mal rooting for DL is optimal for D, DC and DL [42], to
solve our problems it is sufficient to focus on the plateau
(or DL-plateau) rootings only. Examples are depicted in
Fig. 2.

Decomposing unrooted gene trees
Before we start with the main results, we show how given
a species tree (or its top-split only), an unrooted gene tree
can be decomposed into two parts: one part which is of the
rooted nature and the second part related to the plateau.
Note that the notion of a cost function refers to D, DC, L
or DL.

We start with the following observation, which follows
from Theorem 1 and stars definitions.

Lemma 1 The top-split of the species tree is sufficient
to determine the optimal rooting of a given unrooted gene
tree.

Fig. 1 Stars S1-S5. The edges denote the relation ζ as follows: A → Ā is ¬ζ(A) ∧ ζ(Ā), A ↔ Ā is ¬ζ(A) ∧ ¬ζ(Ā) and A − Ā is ζ(A) ∧ ζ(Ā). The nodes
whose clusters are B and C we call right-hand in a given star. A red edge is an element of the plateau, i.e., its rooting is optimal (see Thm. 1)
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Fig. 2 Unrooted trees and costs. Examples of four unrooted gene trees with stars reconciled with the species tree S = (a, (b, c)) having the top-split
a|bc. Plateau edges are thick and red. The embeddings into S are obtained for one of the optimal edges located in the plateau

A rooted subtree of an unrooted gene tree G is a proper
subtree of some rooting of G. Then, we have the following
property.

Lemma 2 Let T be a rooted subtree of an unrooted gene
tree G and let S be a species tree over L(G). T is a subtree
in every plateau rooting of G if and only if the following
conditions are satisfied:

• M(t) < root(S),
• or M(t) = root(S) and t is a not a duplication,

where t = root(T).

Proof (<=) The statement is obvious if t is a leaf. We
show that no edge in T is symmetric in G if t is an inter-
nal node in G. If M(t) < root(S) then t is a center of S1
or S2 and the children of t in T are right-hand in the star.
Thus, the remaining edges in T are asymmetric (only S1
can be present in T) with the star-arrows directed towards
the leaves of T. A similar property holds in the second
case with the difference that t is a center of S3. Thus, the
edges of T are disjoint with the plateau and T is a rooted
subtree in every plateau rooting of G. (=>) If t is mapped
below the root of S, the tree contains only asymmetric
non-plateau edges. Otherwise, t is a duplication mapped
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to the root, then at least one edge e′ connecting t with its
child is symmetric. Thus, T is not present in the rooting
placed on e′. A contradiction.

We conclude that every unrooted gene tree G can be
decomposed into two parts: a plateau G∗ and the rooted
forest Ǧ obtained from G by removing the internal nodes
and edges of G∗. Note that G∗ is an unrooted tree with at
least one edge and Ǧ is a forest whose edges are asymmet-
ric in G. Moreover, if Ǧ contains a tree with a non-root
internal node, then this node is a center of S1. The leaves
of G∗, which are also the roots of Ǧ, are called border
nodes. Since not every two stars can share an edge, pos-
sible topologies of stars in gene tree are limited. Figure 3
depicts all possible types of gene trees depending on the
stars (see also Fig. 2).

Cost contribution functions
For an unrooted gene tree G let stars(G) be the multi-
set of all stars present in G (similarly it is defined for

collections of gene trees). Here we define the cost con-
tribution functions for our four standard costs. For every
cost, we define λ̂ as the contribution of a given star to
a species (i.e., a leaf of the species tree) in the context
of a top-split, γ̂ as the contribution of a given star to a
non-root internal node of a species tree (a split X|Y ) in
context of a top-split, σ as the contribution of a given star
to the root of a species tree in context of a top-split, and
ε which is the cost correction depending on the gene tree.
For an unrooted gene tree G, a species s and a top-split
�, �̂(G, s, �) is the total cost contribution of the stars (in
the context of a top-split �) from G to a leaf of some
species tree over L(G) labeled by s. Given two disjoint
sets of species X and Y and a top-split �, �̂(G, X|Y , �)

is the total cost contribution of the stars (in the context
of a top-split �) from G to an internal node v of some
species tree over L(G) such that (i) the cluster of v is
X ∪ Y and (ii) v has two children whose clusters are X
and Y, respectively. Then, the total cost contributions are
defined:

Fig. 3 Types of unrooted trees. Four possible types of unrooted gene trees G (under the assumption that |L(G)| ≥ 3 and L(S) ≥ 3). Red color (in the
center) denotes G∗ (plateau) while grey subtrees denote the rooted forest Ǧ. Border nodes are marked by black circles and decorated with its
possible star types (when applicable). See also Fig. 2
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�̂c(G, s, �) =
∑

a∈stars(G)

λ̂c(a, s, �),

�̂c(G, X|Y , �) =
∑

a∈stars(G)

{
σ c(a, �) X|Y = �,
γ̂ c(a, X|Y , �) otherwise,

where the contribution functions λ̂c, γ̂ c and σ c for
c ∈ {D, DL, DC} are depicted below. Here, � is a
top-split of some species tree S, X|Y is a split of
some node from S, s is a species, G is an unrooted
gene tree and A = A|B|C is a star of type τ from
G.

• Duplication cost (D):

λ̂D(A, s, �) = 1[ B = C = {s} ∧ τ ∈ {S1, S2}]
(2)

γ̂ D(A, X|Y , �) = γ D(B, C, X|Y ) (3)
εD(G) = 1. (4)

• Deep Coalescence cost (DC):

λ̂DC(A, s, �)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λDC(B|C, s) if τ ∈ {S1, S3}
λDC(A|Ā, s) if τ = S5
max

{
λDC(B|C, s), λDC(A|Ā, s)

}
if τ = S2 ∧ ¬(B=C∧ |B| = 1)

0 otherwise

γ̂ DC(A, X|Y , �)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ DC(B, C, X|Y ) τ ∈ {S1, S3}
γ DC(A, Ā, X|Y ) τ = S5
γ DC(B, C, X|Y )+
+ 1+[|A|=1]

2 γ DC(A, Ā, X|Y ) τ = S2 and ¬(B=C∧|B|= 1)

0 otherwise

σ DC(A, �) = 0,

εDC(G) = 0.

• Loss and Duplication-Loss cost; for c ∈ {L, DL}, let
ωL = 2 and ωDL = 3 in

λ̂c(A, s, �) = λ̂DC(A, s, �) + ωc · λ̂D(A, s, �)

γ̂ c(A, X|Y , �) = γ̂ DC(A, X|Y , �) + ωc · γ̂ D(A, X|Y , �)

σ c(A, �) = σ DC(A, �) + ωc · σ D(A, �)

εc(G) = 1 − |VG| + ωc

The next theorem defines how these functions can be
used to compute the unrooted cost given an unrooted
gene tree and a species tree. This result is the unrooted
analogue of Eq. (1).

Theorem 2 Let G be an unrooted gene tree with
|L(G)| ≥ 3 and S be a species tree over L(G). If c is a cost
function {D, DL, L, DC} and � is the top-split of S, then

c(G, S) =
∑

s∈L(S)

�̂c(G, s, �) +
∑

x,y siblings inS
�̂c(G, clu(x)| clu(y), �) + εc(G).

Proof Let R denote the right-hand side of the above for-
mula. We start with the duplication cost and gene trees of
type U4.

Cost D vs. U4: The plateau of G contains stars S4/S5.
Then, the remaining stars have type S1/S3. We show that
D(Ge, S) = R, where e is a plateau edge. Let g be an inter-
nal node of Ge, M(g) = s and, if g 
= root(Ge), then g is a
center of star A|B|C of type τ .

(U4.a) If s is a leaf. Then, g is a duplication and τ is S1
with B = C = {s}. The case is incorporated in λ̂D (see (2)).
Note that τ cannot be S3/S4/S5 under the assumption that
L(S) ≥ 3.

(U4.b) If s is an internal non-root node of S with the
split X|Y . In this case, B ∪ C ⊆ X ∪ Y and X ∪ Y is a
subset of the element from �. Then, τ = S1. In such a
case, g is a duplication if and only if γ D(B|C, X|Y , �) = 1
(See (3), where γ D was defined in “Solution to rMinST and
rMinCC - overview” section.

(U4.c) The remaining case is when s = root(S). We
have three subcases: τ = S3 (border of G∗), τ ∈ {S4, S5}
(internal of G∗) or g = root(Ge). If τ = S3, then, g is a
border node and by Lemma 2, it is not a duplication. In
our formula, the contribution of stars S3 is 0. If τ ∈
{S4, S5} then g is a duplication. This case is contributed
in (5a). Finally, if g = root(Ge) then it is also a duplication
counted in εD(G). Note that, given a plateau with n inter-
nal nodes (or equivalently, n stars S4/S5), the total number
of duplications at the root of S, equals n + 1 (one duplica-
tion for each star S4/S5 plus one for the root of G). Thus,
our formulas count exactly the number of duplications in
such a case.

This completes the proof for gene trees of the type U4.
Gene tree type U3: The proof is almost the same as in

the previous case. The only difference is that the plateau
consists of a single edge (n = 0; no stars in the plateau).
Thus, the third subcase in (U4.c) can be omitted.

Gene tree type U1-U2: Now, the gene tree contains one
or two stars S2 (sharing an edge) and the remaining stars
are of type S1 (if present).

(U1-2.a) If s is a leaf, then τ is S1 or S2. Then, g is a
duplication and the rest is similar to (U4.a).

(U1-2.b) The same as (U4.b) plus the case when τ = S2.
(U1-2.c) If g = root(Ge), then it is not a duplication, and

its contribution is 0.
Since there is no duplication mapped to root(S) if G con-

tains S2, the above cases count every duplication present
in Ge. However, the presence of εD(G) = 1 which is
needed for proper calculation in other cases, requires cor-
rection of the total contribution. The correction by −1 is
only performed when S2 is present in G, but the difficulty
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is that G can have one or two such stars. This correction
is embedded in (5b) and (5c) as follows. Assume that the
first star S2 is A|B|C. If the second star S2 is present we
assume it is Ā|B′|C′, where B′ ∪ C′ = A.

• |A| = 1 and G has only one star S2. Then, the star
contributes −1 in (5b).

• |A| = 1 and G has two stars S2. The first star
contributes −1 from (5b), while the second star
contributes 0 from (5d).

• |A| 
= 1 
= |Ā|. In such a case G has two stars S2,
each contributes −0.5 from (5c).

Thus, the total correction is −1 in every case. This
completes the proof for the case of duplication cost.

Cost DC: The technical proof for DC is analogous to D.
Cost DL and L: Note that the formulas for DL and L

are linear combinations of D and DC with the scalar addi-
tion of 1−|VG| (see “Cost functions” section). Further, the
optimal rootings are shared across all costs; therefore, the
proof for this case follows from D and DC proofs and the
corresponding contribution formulas.

Dynamic programming solution to uMinCC
Let Q be a collection of unrooted gene trees, c be a cost
function and Z ⊆ L(Q). Here we extend �̂, �̂ and ε to col-
lections of unrooted gene trees, e.g., �̂(Q) = ∑

G∈Q �̂(G)

and so on. The dynamic programming formulas for the
solution to the uMinCC problem is defined as follows (the
superscript c is omitted):

ϒ(Q, Z, �)= �̂(Q, s, �) if Z = {s},
minX|Y∈splits(Z) ϒ∗(Q, X|Y ,�) otherwise,

ϒ∗(Q, X|Y , �)=ϒ(Q, X, �)+ϒ(Q, Y , �) + �̂(Q, X|Y , �).

Informally, in the above recurrence, for each top-split
X|Y and for each Z such that Z ⊆ T or Z ⊆ T ′, ϒ(Q, Z, �)

is the minimal cost contribution of a non-plateau parts of
input gene trees in the set of all species trees over L(Q)

having a node v whose cluster is Z, where the contribution
is only calculated for the nodes strictly descendant from v.
The formula for ϒ∗(Q, X|Y , �) extends the ϒ by including
the contribution of the nodes whose split equals X|Y . Note
that the contribution of the plateau is incorporated in ϒ∗
in the special case when X|Y = Q (see def. of �̂).

Theorem 3 Let c be a cost function and Q be a collection
of unrooted gene trees such that |L(Q)| ≥ 3, and L(Q) =
L(G) for every gene tree G from Q. Then, the solution to
uMinCC is min�∈splits(L(Q)) ϒ∗(Q, �, �) + ε(Q).

Proof Without loss of generality, we may assume that Q
consists of one gene tree G. Given a species tree S with
top-split � and having a node s with a cluster Z, by par-

tial Z-contribution of S we denote the partial cost defined
recursively as follows:

cZ(G, S) =
⎧
⎨

⎩

�̂c(G, s, �) if Z = {s},
cX (G, S) + cY (G, S) + �̂c(G, X|Y ), �) if X|Y is the split of s.

It follows from Theorem 2, that c(G, S) = c�(G, S)+εc(G).
Let � = T |T ′. It is sufficient to prove that, for each

Z ⊆ T or Z ⊆ T ′, ϒc(Q, Z, �) is the minimal partial
Z-contribution in the set of all species trees over L(Q)

having a node whose cluster is Z. Then, it follows that
ϒ∗(Q, �, �) is the minimal partial �-contribution in the
set of all species trees over L(Q) having a top-split �.

The proof follows by induction from Theorem. 2. We
omit technical details.

Solving uMinST follows directly from the values of ϒ : it
is sufficient to track which partitions of the cluster Z into
X and Y under a given top-split yield the minimal value.
Such partitions determine clusters in optimal species trees
and they can be used to infer one or all optimal species
trees.

Theorem 4 (Complexity) Given a collection of Q
unrooted gene trees with m leaves and n species. The
time complexity of the dynamic programming formula is
O(nm3n) and the space complexity is O(3n + m).

Proof We have the following identities: | stars(Q)| =
m − 2|Q|, the number of splits of |X| = k equals
1
2

∑n−1
k=1

(n
k
) = 2k−1 − 1. Then, computing stars requires

O(m) time, while each value of λ, γ , etc. requires O(n)

time. Thus, a single �̂ or �̂ computation needs O(mn)

time. Note that Z must be a nonempty subset of an
element from � in ϒ . Thus, the size of ϒ array is∑n−1

k=1
(n

k
)
(2k − 1) ≈ 3n. Similarly, the size of �̂ array

is
∑n−1

k=1
(n

k
)
(2k−1 − 1) ≈ 3n. Thus, the time complexity

of the algorithm is O(mn3n) and the space complexity is
O(3n + m).

Now, we compare the above complexity with the naïve
approach i.e., try all rooting variants to compute the min-
imum cost. We may assume that every gene tree has the
size of n. Then, we have 2n − 3 rooting variants of a sin-
gle gene tree. As the REXACT requires O(mn3n) time, we
need O((2n − 3)mmn3n) time for the naïve algorithm.

The general case when L(G) ⊆ L(S)

When L(G) ⊆ L(S), the split needed to determine the
star type can be located below the root of S. For example,
the star ab|c|d cannot be determined for the split abcde|f ,
since the set of labels of the star is a subset of an ele-
ment of the split. To determine the type of a star A|B|C
the species tree split X|Y has to satisfy the following con-
dition: L ⊆ X ∪ Y , L ∩ X 
= ∅ and L ∩ Y 
= ∅, where
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L = A ∪ B ∪ C. The split X|Y satisfying above condition
will be called a rooting split for L. Then, Theorem 2 can be
reformulated as follows

Theorem 5 Let G be an unrooted gene tree with
|L(G)| ≥ 3 and S be a species tree such that L(G) ⊆ L(S). If
c is a cost function {D, DL, L, DC} and T is a split in S such
that T is a rooting split for L(G), then

c(G, S) =
∑

s∈L(S)

�̂c(G, s, T)

+
∑

x,y siblings in S
�̂c(G, clu(x)| clu(y), T) + εc(G).

Proof Note that the rooting split is uniquely determined.
The rest follows from the proof of Theorem 2.

It follows from the above theorem that the rooting split
is crucial for proper computation of the cost. Therefore,
the dynamic programming formula has to be modified
to capture possible different rooting splits. Let τ be the
set of pairs 〈a, R〉, where a is a star and R is its rooting
split. Then, we have the following dynamic programming
formula:

ϒ(Q, Z, τ) =
∑

〈a,R〉∈τ λc(a, s, R) if Z = {s},
minX|Y∈splits(Z) ϒ∗(Q, X|Y , τ ′) otherwise,

ϒ∗(Q, X|Y , τ) = ϒ(Q, X, τ) + ϒ(Q, Y , τ)

+ ∑
〈q,X|Y〉∈τ σ (a, X|Y ) +

+ ∑
〈q,R〉∈τ ,R
=X|Y γ (a, X|Y , R),

where τ ′ = τ ∪ {〈a, X|Y 〉 : if X|Y is a rooting split for a
∈ stars(Q) }. Now, the time complexity of the algorithm
is O(mn32n) as the τ is an additional component with
O(m3n) possible values.

Similarly, we can adopt the dynamic programming algo-
rithm to solve the species tree inference using the minus
method in which the cost between a gene tree G and
a species tree S such that L(G) ⊆ L(S) is defined
as c(G, S|L(G)), were S|L(G) is the species tree obtained
from S by contracting the set of species in S to L(G).
Then, the above dynamic programming algorithm solves
the problem under the minus method setting; however,
the contribution formulas require modification. For the
rooted component, the formulas (λ and γ ) are provided
in [28], while for the plateau component (σ ) they remain
unchanged for all our cost functions.

Results
Scalability analysis
We present a scalability study that compares the run-
times of our proposed dynamic programming method

with the previously best-known (naïve) method to solve
the median tree reconciliation problems for unrooted
input gene trees. Recall that, as presented in the intro-
duction, the naïve method is enumerating all possible
combinations of rootings of the input trees and solving
the respective rooted problem for each such combination.
The number of such combinations grows exponentially
fast with the increase of the number of input trees (i.e.,
nk , where n is the number of taxa and k is the number
of trees). We (i) showcase that our method is signifi-
cantly more scalable than the naïve approach and then (ii)
we study the scalability of our method under conditions,
which are infeasible for the naïve method.

Experimental setup
Both the developed here unrooted exact method and
the previously introduced rooted exact method [28] were
implemented in Python. Recall that the naïve method uses
the rooted exact method as a subroutine. The overall naïve
method was implemented in Python as well.

The scalability studies were performed under Ubuntu
14.04.5 LTS with 1.4GHz CPUs.

Discussion
To compare the implementations of UREXACT and the
naïve method we study the scalability on input instances
with a fixed number of taxa (n = 9) and a varying num-
ber of input trees (k ∈ {2, 3, 4, 5}). The input trees for
each such instance were generated randomly using the
pure-birth process; the roots were then removed from
trees. For consistency, we generated five datasets for each
different k.

The scalability results (runtimes averaged over five
datasets) are presented in Table 1. Note that for k = 2
and k = 3 the naïve approach proved to be somewhat
faster than UREXACT (this can be explained by ). How-
ever, already for k = 5, the exponential run-time growth
of the naïve approach resulted in the approximately 120-
fold advantage of the UREXACT method. Further, naïve
method could not complete for k = 6 in under 24 hours.

As shown above the naïve method is infeasible for more
than five input trees; it is important to note that most of
phylogenetic studies in practice involve significantly more
than five input trees. Next, we present the scalability study
of UREXACT under more realistic conditions. Namely, we
generated several input datasets with the number of trees

Table 1 Average runtimes of the UREXACT and naïve methods;
(s) stands for seconds, (m) for minutes, and (h) for hours; k
denotes the number of trees

k = 2 k = 3 k = 4 k = 5

UREXACT 75.9(s) 113.8(s) 2.6(m) 0.05(h)

naïve 7.7(s) 111.7(s) 26.1(m) 6(h)
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k = 20 and k = 100 and the number of taxa varying
from n = 5 to n = 11. Similar to the previous study, to
present consistent results we generated five datasets for
each combination of k and n and averaged the runtime of
our method over those five instances; the input trees were
generated using the pure-birth process.

The average runtime results are depicted in Table 2.
It shows that our method was able to complete compu-
tations of exact median trees for all generated datasets.
In the worst case (n = 11 and k = 100) UREXACT
took about 26 hours to complete. Note that Tables 1 and
2 confirm that the scalability of the presented method
grows linearly with the number of trees (as implied by
the asymptotic analysis in “Dynamic programming solu-
tion to uMinCC” section). This is a significant achieve-
ment, given that the naïve approach assumes exponential
growth.

Accuracy of heuristics
Local search heuristics have become a standard when
addressing median tree problems (e.g., [20, 46–49]). Con-
sequently, analyzing the accuracy of such heuristics is
of critical importance. Recent algorithmic advances in
exact computing solutions for median tree reconcilia-
tion problems made it possible to evaluate the accu-
racy of local search heuristics addressing these problems
[31, 50]. However, these algorithmic advances address
only tree reconciliation problems for rooted input trees.
Our presented algorithms solve the tree reconciliation
problems exactly for unrooted trees with up to 11 taxa (see
“Scalability analysis” section). Thus, for the first time,
these algorithms (implemented in UREXACT ) make it
possible to analyze the accuracy of local search heuristics
for reconciliation problems for unrooted input trees suit-
able for smaller phylogenetic studies. Here, we analyze the
accuracy of URHEUR [37], one of the theoretically most
advanced local search heuristics for unrooted tree recon-
ciliation problems that are implementing the elementary
“valley-terraces theorems” [38].

A local search heuristic initiates its median tree search
for a given set of input trees under some distance from an
additionally provided starting tree. The heuristic searches
the local neighborhood of the candidate tree for a tree
with the minimum overall distance to the input trees,
which constitutes a local search step. Then, the tree found
in a local search step becomes the starting point for

Table 2 Average runtimes of the UREXACT method; (s) stands for
seconds, (m) for minutes, and (h) for hours; n denotes the
number of taxa

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

k = 20 0.7(s) 4.1(s) 24.9(s) 154.2(s) 11.7(m) 66.8(m) 7.8(h)

k = 100 3.1(s) 19.3(s) 116.2(s) 678.8(s) 62.1(m) 314.7(m) 25.7(h)

the following local search step, and so on, until a local
minimum is reached, which is reported by the heuristic.
The local neighborhood of a tree is the set of trees into
which it can be transformed by applying at most one tree
edit-operation of a fixed type.

URHEUR implements the above described local search
heuristic for median tree reconciliation problems under
the gene duplication (D) and the duplication-loss (DL)
costs, using the classic Rooted Nearest Neighbor Inter-
change tree edit operation for rooted trees [51] to define
the local neighborhood. Further, URHEUR offers the
option to choose the starting tree to be randomly selected
under the Yule random tree model, called random mode,
or using a cluster-based approach called clusters mode.
The clusters mode selects the clusters for the starting
tree following the greedy consensus strategy when gen-
eralized to incomplete input trees. If the resulting tree is
not binary, then the tree is binarized randomly by adding
clusters under the Yule model.

Experimental setup
Similarly to the scalability study in “Scalability analysis”
section, we generated 5 independent gene tree sets
(datasets) for each n = 5, 6, . . . , 11 (where n indicates
the number of taxa). Each such dataset contains 20 trees
generated via the pure-birth process.

Since URHEUR is a randomized local search method
that performs a single local search run, we executed it
10000 times on each dataset. Additionally, we executed
UREXACT on each dataset. That way we were able to eval-
uate the accuracy of URHEUR. That is, for each dataset
we computed how many times (out of the 10000 runs) did
the heuristic find a global optimum (i.e., a true median
tree). We report the resulting percentage (averaged over
5 independent datasets for each n) as the accuracy of the
heuristic.

Results and discussion
Figure 4 showcases the obtained results, which were com-
pute using a standard laptop in less than 24 hours. Note
that we performed our comparison on the examples of
the classic duplication (D) and duplication-loss (DL) costs.
Further, we executed the heuristic in the modes random
and cluster.

Figure 4 demonstrates that, while the accuracy of the
heuristic is quite high for smaller taxa numbers, it quickly
deteriorates. That is, it typically requires a large number
of independent runs of URHEUR to find a global optimum
for n ≥ 9. Further, URHEUR is never guaranteed to find a
global optimum; for example, it never does so in the (DL,
clusters) condition for n ∈ {8, 9, 10}.

The trends shown in Fig. 4 suggest that, for larger num-
ber of taxa, it is crucial to have exact solutions, since the
heuristic is never guaranteed to find a global optimum.
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Fig. 4 Heuristic-exact comparison. Demonstrates the accuracy of URHEUR, enabled by the exact inference via UREXACT. Each plot title in parenthesis
indicates the cost function (duplications/DL) and the heuristic mode (random/clusters)

Discussion
In this work, we presented the first method that is
capable of computing exact median trees (under tree
reconciliation costs) from collections of unrooted gene
trees. In particular, we introduced a novel algorithm that
solves median tree reconciliation problems under the
gene duplication, deep coalescence, gene loss, and gene
duplication-loss cost functions. This dynamic program-
ming solution represents the first step towards enabling
the efficient inference of large-scale median trees using
the cluster-constrained paradigm (for more details, see
ASTRAL [52]).

Our method, UREXACT, represents a complex dynamic
programming approach; it builds on top of the previ-
ously introduced REXACT method [28] via employing,
and extending, the plateau properties (see “Unrooted tree
reconciliation costs” section). The main observation used
for the design of the algorithm is that an optimum root-
ing of an input gene tree only depends on the top two
clusters of the species tree (i.e., the clusters/clades of
the two nodes immediately below the root); we refer to
such top two clusters as the top-split. Then the dynamic

programming formulas were expressed through a com-
prehensive analysis of different configurations of plateaus
(and the corresponding star types [38]) that could appear
in the input gene trees. For each unrooted reconciliation
cost function, we propose a novel way to compute its cost
using contribution functions that depend only the star
and the split from the species tree. Having this, we design
a unified dynamic programming algorithm, that can be
parametrized by the set of contribution functions. Given
the intricacy of the contribution functions’ formulations,
we provide a formal proof of their correctness focusing
mainly on the gene duplication cost function, allowing
their verification.

It is important to note that our method UREXACT runs
in O(mn3n) time for complete input gene trees, which is
asymptotically the same as for REXACT. We show how
to handle the minus method in “The general case when
L(G) ⊆ L(S)” section, adding a factor of O(m3n) to the
overall time complexity.

Further, we showcase two scalability studies demon-
strating the ability of UREXACT. In the first study, we
compare UREXACT with the naïve method (implemented
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via enumerating all possible rootings of the input trees)
and demonstrate that the naïve approach becomes infea-
sible when the number of input trees exceeds five (which
is a very small number of trees for studies in practice).
The second study demonstrates the scalability of UREX-
ACT under more realistic conditions – we fix the number
of input trees to be either 20 or 100. UREXACT was able to
compute exact median trees with up to 11 taxa.

Finally, we evaluated the significance of UREXACT in
comparison to an inexact, but fast, local search heuris-
tic, URHEUR [37]. In particular, having the exact median
tees computed by UREXACT, we were able to evaluate the
accuracy of URHEUR on up to 11 taxa. Our results suggest
that it is crucial to develop exact dynamic programming
solutions for precise evolutionary inference, given that the
accuracy of local search heuristics quickly deteriorates.

Conclusion
Supertree approaches, and in particular median tree
approaches, proved to be valuable tools for inference
of phylogenetic species trees. Unfortunately, to the best
of our knowledge, there is no median tree problem of
interest that was shown to be efficiently solvable (i.e.,
in polynomial time). Therefore, in practice, median tree
problems are typically addressed by using local search
heuristics. Despite the vast popularity and often appealing
scalability of such heuristics, they have several significant
drawbacks. The most concerning drawback is that there is
typically no guarantee on the quality of supertrees found
by such heuristics; that is, computed supertrees can be
arbitrarily far from the truth.

To overcome the drawbacks of local search heuristics,
the method REXACT that solves median tree reconcili-
ation problems has been proposed previously. REXACT
is guaranteed to find the best median trees under a tree
reconciliation cost function of interest. To do that REX-
ACT requires an input of rooted gene trees. In practice,
however, gene trees are typically unrooted. This factor
incurs an additional layer of complexity to solving tree
reconciliation problems. That is, since the tree recon-
ciliation costs are defined for rooted gene trees, solv-
ing tree reconciliation problems naïvely (using REXACT)
would require a full enumeration of all rooting combina-
tions of the input trees. Such an approach is infeasible
both in theory and in practice – as our scalability study
shows.

We propose an exact novel method, UREXACT, that is
capable of computing exact median trees for collections
of unrooted gene trees. The dynamic programming algo-
rithm developed in this work is enabled by the crucial
so-called plateau properties [38]. Despite the intricacy
of the developed algorithm, the asymptotic runtime of
UREXACT is the same as the asymptotic runtime of REX-
ACT when input gene trees are complete. Perhaps, most

surprisingly, this implies that the runtime of UREXACT
grows linearly as the number of input trees grows.

Finally, note that the proposed dynamic programming
formulation can be now applied to much larger datasets
(i.e., with hundreds of taxa) using the cluster-constrained
approach. This approach entails selecting a set of clusters
that are likely to appear in the “true” species tree, and con-
straining the dynamic programming procedure to work
only with the selected clusters. This approach proved to
be highly efficient, for example, with the popular ASTRAL
software [52, 53]. The implementation of this powerful
idea is part of our future research efforts.
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