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Abstract: Developing technologies capable of constantly assessing and optimizing day-to-day ac-
tivities has been a research priority for several years. A key factor in such technologies is the use
of highly sensitive sensors to monitor in real-time numerous parameters, such as temperature and
load. Due to their unique features, optical fiber sensors became one of the most interesting and
viable solutions for applications dependent on those parameters. In this work, we present an optical
fiber load sensor, called load cell, based on Fabry–Pérot hollow cavities embedded in a polymeric
material. By using the load cells in a parallel configuration with a non-embedded hollow cavity, the
optical Vernier effect was generated, allowing maximum sensitivity values of 0.433 nm N−1 and
0.66 nm ◦C−1 to be attained for vertical load and temperature, respectively. The proposed sensor’s
performance, allied with the proposed configuration, makes it a viable and suitable device for a wide
range of applications, namely those requiring high thermal and load sensitivities.

Keywords: optical fiber sensors; load sensing; optical Vernier effect; Fabry–Pérot interferometer

1. Introduction

Optical fiber sensors (OFSs) have been used extensively in recent years in several
fields (from biology to civil engineering), mainly due to their intrinsic advantages, such as
their light weight, immunity to electromagnetic fields, multiplexing capabilities, electrical
passiveness at the point-of-care, and multiparameter sensing [1,2]. Despite the numerous
features of conventional OFSs, the limits of sensing resolutions are being reached. Therefore,
efforts are being made to improve OFS resolutions, either by using new materials or
adopting novel sensing configurations. Recently, one of the most attractive and commonly
used techniques to increase the sensitivity of optical fiber sensors is the optical Vernier
effect (OVE). Despite being solely used within interferometry-based OFSs, the inherent
advantages of this effect, such as the possibility to tune OFSs’ sensitivities and develop
highly compact devices, have allowed researchers to reach unprecedented sensitivity
values, mainly in applications for temperature [3,4], strain [5,6], magnetic fields [6,7] and
refractive index monitoring [8,9].

In this work, an optical fiber sensor, based on a hollow Fabry–Pérot interferometer
(FPI), embedded in resin, for temperature and vertical load monitoring, is reported. The
sensors’ sensitivity was magnified using the optical Vernier effect, resulting from coupling,
in a parallel configuration, the embedded sensor with an additional FPI cavity insensitive
to temperature variations, eliminating the need to adopt complex isolation schemes or
mathematical compensation methods. The thermal and load characterization revealed a
linear response throughout the entire tested ranges and a dynamic range up to a maximum
value of approximately 150 N. The attained results, allied with the low-cost fabrication
methods and devices’ compactness, unveil the enormous potential of this sensor’s configu-
ration to be used in a wide range of different applications, acting either as a load cell or
temperature sensor.
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2. Materials and Methods

The developed sensor comprises two different FPIs, namely reference and sensing
FPI (rFPI and sFPI, respectively). Both FPIs were fabricated based on the methodology
previously reported by our team [10], which consists of the recycling of optical fibers
previously damaged by the fiber fuse effect. This catastrophic phenomenon completely
destroys the optical fiber along its path, leaving periodic voids along the optical fiber
core, as visible in Figure 1, on the left. These periodic voids inhibit the optical fiber’s
transmission abilities, rendering it useless for communications purposes. Nevertheless, its
use for the production of inline Fabry–Pérot optical fiber interferometric sensors has been
exhaustively explored [10–12]. The methodology to produce the FPI sensors is based on
the machine splicing technique and is also depicted in Figure 1: It starts with the normal
splice between the damaged fiber and the normal SMF fiber, which results in a void with
higher dimensions in the splice region. The following step is to cleave this fiber in the
splice region in order to isolate the void with higher dimensions. Afterwards, this fiber is
spliced again to another SMF fiber, which results in a hollow microcavity, as depicted in
Figure 1, on the right. The size of the resulting microcavity can be controlled by the size of
the void in the 2nd splice (which is set by the cleave point).
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resin (Liquid Lens), as depicted in Figure 2. The resin was left to cure for 24 h to guarantee 
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cell) was extracted from the mold. The used molds, as well as the resulting structures, are 
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Figure 2. Load cell production apparatus and the resulting load cells. sFPI stands for the sensing 
FPI, which comprises the two different load cells (LC1 or LC2), and l, h and w are the cell’s length, 
height and width, respectively. 

Figure 1. Hollow microcavity production by the recycling of optical fiber damaged by the catastrophic fiber fuse effect.

Assembling the load cells comprised of the encapsulation of the FPIs (one for each
pair of rFPI and sFPI). Two 3D printed molds with a different height (h) and width (w) were
used (the length (l) was kept constant) to evaluate the influence of the resin volume on
the sensitivity of the load cells. The optical fiber containing the hollow microcavity was
placed at the center of the cell’s cast, which was then filled with a thermal setting epoxy
resin (Liquid Lens), as depicted in Figure 2. The resin was left to cure for 24 h to guarantee
its full solidification, after which the resin block with the embedded optical fiber (load
cell) was extracted from the mold. The used molds, as well as the resulting structures, are
depicted in Figure 2.
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To generate the OVE, one needs to overlap two interferometric signals, either in series
or parallel configuration, with slightly detuned frequencies. Such superposition gives
origin to a beating shape spectrum, which can usually be modulated by an envelope
function [13,14]. Typically, one can fully describe the OVE envelope in terms of its free
spectral range (FSRenv). Assuming the specific case of OVE generation by two FPIs in
a parallel configuration, where one acts as reference (rFPI) and the other one as sensing
element (sFPI), the FSRenv is given as [4,6]:

FSRenv =

∣∣∣∣ FSRrFSRs

FSRr − FSRs

∣∣∣∣, (1)

where FSRr and FSRs are the free spectral ranges of rFPI and sFPI, respectively. The FSR of
each FPI can be written as [13,15]:

FSRr,s =
λ1λ2

2nLr,s
, (2)

λ1,2 being the central wavelengths of two adjacent maxima/minima, and n and L the
FPIs’ cavity medium refractive index and physical length, respectively. Considering the
rough approximation λ1λ2 ≈ λ2, Equation (2) can be further simplified:

FSRr,s =
λ2

2nLr,s
, (3)

Assuming that rFPI and sFPI reflection spectra (Rr,s) can be mathematically described
as [4,6]:

Rr,s = ar,s cos
(

4πLr,s

λ

)
, (4)

where ar,s is an arbitrary reflection amplitude, the OVE spectrum shall be given by the sum
of the two FPIs’ spectra, as schematically represented in Figure 3.
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One of the most important figures of merit of the OVE is the magnification factor (M).
By definition, M represents the sensitivity enhancement ratio between sFPI and the OVE
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envelope. Considering SsFPI and Senv as the sensitivities of sFPI and the OVE envelope,
respectively, M can be written as:

M =
Senv

SsFPI
=

∆λenv

∆λsFPI
, (5)

where ∆λsFPI and ∆λenv are the wavelength shifts of each spectrum when an external
stimulus is applied.

As depicted in Figure 3, if rFPI is insensitive to the desired measurand, or if it is
maintained at constant and controlled conditions, a small wavelength variation experienced
by the sFPI originates an enormous wavelength shift of the OVEenv. This principle is
called the traditional OVE [16] and was applied to the sensors developed in this work,
using the two fiber optic hollow cavities embedded in an epoxy resin (denominated as
LC1 and LC2) as sFPIs, and as rFPI, a similar fiber optic hollow cavity, but without any
embedding material.

Two different load cells (LC1 and LC2) were used to assess how the volume distribution
of the embedding resin affects the overall load cells’ sensitivity. The final dimensions of LC1
and LC2 are presented in Table 1, and the spectra of LC1 and LC2 (measured in reflection
by a Micron Optics optical interrogator, model SM125 with 5 pm of resolution and an
acquisition rate of 1 Hz), as well as the respective OVE spectra generated in a parallel
configuration with the rFPI (denominated OVE1 and OVE2, respectively), are depicted
in Figure 4.

Table 1. Physical dimensions of the load cells LC1 and LC2, where w, h and l are the width, height
and length of each cell, respectively.

Sensor w (cm) h (cm) l (cm)

LC1 1.00 ± 0.05 0.40 ± 0.05 3.00 ± 0.05
LC2 1.70 ± 0.05 0.90 ± 0.05 3.00 ± 0.05
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Figure 4. Spectra of (a) LC1, (b) FPI2, (c) VFPI1 and (d) VFPI2. The purple dashed lines in (c,d) repre-
sent the lower envelopes of the spectra. λLC1,2 and λOVE1,2 are the monitored central wavelengths of
the FPIs and OVEs’ envelopes, respectively, used in the sensors’ characterizations.

When a vertical load is applied to each cell, the embedding resin will contract along
the Z axis and expand in the remaining directions (X and Y axis). Therefore, a spectra
wavelength shift is expected for LC1 and LC2 and, consequently, in OVE1 and OVE2 as
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well. Figure 5 depicts a schematic of the forces involved when a mass is placed on the top
of one of the developed load cells, where LFPI represents the embedded FPI cavity length,
and ∆λFPI the correspondent wavelength shift.
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3. Results

To characterize the developed sensors in terms of temperature and vertical load, two
separated setups were assembled.

First, the two sensors were thermally characterized using a climatic chamber (Weiss
Technik L C/64/70/3, 0.3 ◦C of resolution). The temperature was varied in steps of 5 ◦C
within the range of 15–50 ◦C, with a stabilization time of 15 min at each step. As already
reported in the literature, fiber optic FPIs with an air cavity similar to the one of the rFPIs
can be considered insensitive to temperature for small thermal variations [17,18]. Therefore,
the sensing configuration depicted in Figure 6. was adopted, where both LCs were placed
inside the climatic chamber along with the rFPI, which was fixed in a glass microscope slide
with Kapton tape and left free of applied strain. At each temperature step, the individual
spectra of LC1 and LC2 were recorded, as well as OVE1 and OVE2 spectra. A red shift was
verified for all sensing elements, as can be seen in Figure 7.
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The peaks’ central wavelength shifts of LC1/LC2 and OVE1/OVE2 with temperature
variations were monitored, resulting in the data presented in Figure 8.
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Figure 8. The wavelength shift of LC1 (closed blue circle), LC2 (closed green circle), OVE1 (opened
blue square), and OVE2 (opened green square) with temperature. The colored solid lines represent
the linear fits applied to each respective dataset.

By applying linear fitting to the data presented in Figure 8, the maximum thermal
sensitivity (ST) of 0.66 ± 0.03 nm◦C−1 was attained with OVE2, representing a magnification
factor value of M = 4.3 ± 0.3 relative to the sensitivity value achieved with the LC2
(0.153 ± 0.002 nm◦C−1, Table 2). It should be noted that the sensitivities observed for LC1
and LC2 are due to their resin encapsulation: with the thermal variations, the resin will
expand/contract, inducing a correspondent strain in the hollow cavity and correspondent
wavelength shift of the FPI spectra.
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Table 2. Summary of the LC1, LC2, OVE1 and OVE2 sensitivities to temperature (ST) and normal
load (SLoad) variations.

Sensor ST
(nm ◦C−1) R2 M-Factor SLoad

(nm N−1) R2 M-
Factor

LC1 0.074 ± 0.001 0.998 – 0.053 ± 0.001 0.999 –
LC2 0.153 ± 0.002 0.999 – 0.102 ± 0.001 0.999 –

OVE1 0.265 ± 0.002 0.999 3.6 ± 0.1 0.182 ± 0.004 0.988 3.4 ± 0.1
OVE2 0.66 ± 0.03 0.988 4.3 ± 0.3 0.433 ± 0.005 0.998 4.2 ± 0.1

To assess the sensors’ responses to vertical load, the developed sensors were mounted
on a mechanical test machine (Shimadzu®, AGS-5 kND). The spectral responses of both
sensing elements (LC1 and LC2) were monitored for a load range of 0–150 N, approximately,
resulting in the data plotted in Figure 9.
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Analogous to the temperature characterization, the linear fits applied to the vertical
load characterization data revealed that OVE2 attained the highest load sensitivity value
(SLoad = 0.433 ± 0.005 nm N−1), which translates to a magnification factor of M = 4.2 ± 0.1
(Table 2), and presented a high linear correlation factor (R2 > 0.998). The higher sensitivity
values of OVE2 may be explained not only by the magnification provided by the optical
Vernier effect but may also be due to the sensing FPI intrinsic physical characteristics,
namely its dimensions and shape. As temperature and load variations are transduced as
strain to the FPI cavities, it is known that the larger the FPI physical length is, or the lower
FSR value (in this case, FSRLC1 ≈ 7.67 nm and FSRLC2 ≈ 8.13 nm), the less sensitive to
strain variations it will be, as suggested in [19].

From the results presented in Table 2, it can be verified that all load cells’ configurations
present linear behavior for both temperature and normal load variations. However, slight
structural differences in the sensing elements (volume of load cells and physical dimensions
of the sFPIs) may lead to major sensitivity discrepancies, even if the same resin material
is used, as occurred in LC1 and LC2. Therefore, since similar magnification values were
provided to OVE1 and OVE2 by the optical Vernier effect, the higher sensitivities achieved
by OVE2 were expected. The maximum theoretical resolutions were calculated for this
device, attaining the values of 0.008 ◦C and 0.012 N for temperature and load, respectively,
determined by dividing the optical interrogator wavelength resolution by the attained
sensitivities. The results presented in this work corroborate the use of the proposed sensor
scheme to monitor temperature and normal load variations, with a sensitivity performance
comparable with works already reported in the literature [17,18,20], but for a wider range
of applied normal load (0–150 N).
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4. Conclusions

In summary, a novel optical fiber sensor architecture for vertical load sensing was
developed based on hollow FPI cavities embedded in epoxy resin (LiquidLens Advanced).
The highest load sensitivity values were attained for the load cell with higher encapsulating
dimensions (LC2), corroborating the use of similar physical parameters to develop new load
cells in the future. By coupling the LC1 and LC2 cavities with a similar non-embedded one
in a parallel configuration, the optical Vernier effect was generated, attaining a maximum
vertical load sensitivity of 0.433 nm N−1, which is ~4.2 times higher than the sensitivity
value of the single LC2 FPI sensor (0.102 nm N−1). Despite presenting relatively high-
temperature sensitivities, in the future, cross-sensitivity issues could be mitigated by
using both load sensors simultaneously and the respective 2 × 2 sensitivity matrix or by
using another temperature sensor as a reference. As the rFPI used to generate the OVE is
insensitive to temperature, the sensing architecture complexity was further reduced since
mathematical compensations and isolation schemes are not required. Therefore, the small
footprint and high sensing resolutions of the proposed sensors make them a suitable and
valid solution for many sensing challenges, especially for those where very sensitive and
compact load sensors are required.
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