
Research Article
A Self-Adjusting Search Domain Method-Based Genetic
Algorithm for Solving Flexible Job Shop Scheduling Problem

Bin Li 1,2,3 and Xuewen Xia 3,4

1College of Computer, Minnan Normal University, Zhangzhou 363000, China
2Key Laboratory of Data Science and Intelligence Application, Minnan Normal University, Zhangzhou 363000, China
3Key Lab of Intelligent Optimization and Information Processing, Minnan Normal University, Zhangzhou 363000, China
4College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China

Correspondence should be addressed to Xuewen Xia; xwxia@whu.edu.cn

Received 4 August 2022; Revised 20 September 2022; Accepted 21 September 2022; Published 10 October 2022

Academic Editor: Upaka Rathnayake

Copyright © 2022 Bin Li and Xuewen Xia. )is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As a nondeterministic polynomial (NP) problem, the flexible job shop scheduling problem (FJSP) is a difficult problem to be
solved in terms of finding an acceptable solution. In last decades, genetic algorithm (GA) displays very promising performance in
the field. In this article, a hybrid algorithm combining global and local search with reinitialization (GLRe)-based GA is proposed to
minimize makespan for FJSP. )e solution of FJSP is conveniently represented by a double-layer chromosome representation
method, which is convenient for subsequent genetic operations, that is, sorting of operations and selection of machines. Two
strategies of choosing the job with the most remaining operations (CRO) and 6-dimensional variable determined search position
(6D-VSP) are proposed as two components for GA, which are applied to generate a population with superior quality and reduce
the global search space during the initialization stage. At the same time, in order to prevent the loss of diversity during evolution, a
reinitialization strategy is introduced in the later stage of evolution to adaptively adjust the search domain of the problem. Finally,
two sets of benchmark data are tested. )e experimental results demonstrate the accuracy and effectiveness of the GLRe proposed
in this article for solving FJSP.

1. Introduction

Manufacturing is an industry that converts certain
resources into products that people can use through
the manufacturing process. It basically covers all industries.
)e development of manufacturing is an important factor
inmeasuring the level of national development. As a key part
of themanufacturing industry, job shop scheduling (JSP) has
a positive impact on the competitiveness of enterprises. At
the same time, the study of JSP has certain reference
significance for the research of scheduling problems in other
fields.

As one of the sub-processes of production planning,
scheduling plays an important role in modern
manufacturing systems. In this field, the JSP is recognized as
one of the most basic, typical, and toughest problems to be
solved. As a nondeterministic polynomial (NP) and

combinatorial optimization problem (COP) [1], JSP has
gradually gained more attention in recent decades.

)e description of the classic JSP is as follows. A range of
machines needs to process a group of jobs with unequal
operations. Each operation takes a certain amount of time to
process on a machine [2]. In order to optimize for a certain
objective, a correct sequence of operations must be deter-
mined, and a suitable machine for each operation must be
arranged. However, for increasing the productivity in the
actual production process, one machine is capable of pro-
cessing different jobs, and each type of operation is available
to be performed on one or more different machines. )is
type of problem is known as flexible job shop scheduling
problem (FJSP) [3], which can be regarded as a branch of the
classic JSP [4].

In FJSP, restrictions on processing machines are relaxed,
which is more consistent with conditions of an actual

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4212556, 14 pages
https://doi.org/10.1155/2022/4212556

mailto:xwxia@whu.edu.cn
https://orcid.org/0000-0002-6855-7062
https://orcid.org/0000-0002-4938-1479
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4212556


production. Each operation can be executed on available
machines, which means that each machine has the ability
of processing one or more different operations. )e
same operation takes different processing times on
different machines. )erefore, it is more difficult to be
solved than classic JSP. FJSP is also NP-hard, just like classic
JSP [5].

On the one hand, the complexity of FJSP is manifested in
the need to sequence jobs and make decisions about the
machines that process an operation. On the other hand, the
description of the complexity of FJSP is the evaluation of the
search space, which is also a test of the algorithm’s fast search
ability.

For a simple JSP with the characteristic of randomly
generating schedules, the total number of operations (p) and
the number of machines (m) are fixed, andmp sequences can
be generated. Each sequence is a possible solution. )ere-
fore, under the premise of flexible scheduling, the problem
will becomemore complicated.)e algorithm cannot handle
a huge amount of data in a short time, and it is difficult to
solve it quickly. )e time complexity and space complexity
are proportional to the problem size. At the same time, it is
inversely proportional to the efficiency of algorithm exe-
cution. It has been demonstrated in a published article that
the size of the search space increases exponentially with the
scale of the problem.

In order to solve FJSP, scholars have proposed various
algorithms from different perspectives. However, there are
some common shortcomings of these algorithms, such as
large search space and the inability to solve quickly.

)e goal of FJSP is to obtain a reasonable scheduling
sequence by allocating resources. )is characteristic is well
matched with the concept of chromosomes in genetic al-
gorithm. A sequence is obtained after genetic operations of a
chromosome. An optimal scheduling scheme is finally ob-
tained by decoding. )erefore, this article chooses genetic
algorithm as the basic algorithm.

Meanwhile, in an algorithm, a reasonable initialization
method can reduce the search space to a certain extent. It
should also reduce the time complexity of the algorithm and
shorten the calculation time. A good algorithm should also
avoid the population falling into local optima at a later stage
in evolution to the greatest extent possible. )erefore, it is
necessary to design a more efficient and accurate algorithm
for FJSP.

In this article, we propose an improved hybrid algorithm
combing global and local search with reinitialization
(GLRe)-based genetic algorithm (GA) to solve FJSP. Firstly,
considering there are two issues that need to be dealt with,
that is, operations sequence (OS) and machine selection
(MS), we adopt a double-layer gene chain structure in
encoding and decoding phrases. Moreover, taking into ac-
count the load capability of each machine, a new initiali-
zation approach is proposed to reduce the search space of the
problem in the initialization stage. After a population falls
into a local optimum, some chromosomes in the population
are reinitialized aiming to raise the diversity of the pop-
ulation. Meanwhile, different crossover and mutation op-
eration strategies are used.

)is article is organized as follows. Section 2 gives a
detailed description of FJSP. Some relevant literature
addressing FJSP is listed in Section 3. Section 4 describes the
processing of population initialization, chromosome
encoding and decoding schemes, selection, and other genetic
operations. In Section 5, the performance of this algorithm is
introduced and analyzed through comparative experiments.
In Section 6, some final conclusions are provided.

2. Problem Formulation

FJSP can be classified into partial FJSP (P-FJSP) and total
FJSP (T-FJSP).)is article conducts research on P-FJSP.)e
FJSP is formulated as a set of n jobs J� {J1, J2, J3, ..., Jn} that
need to be processed on m machines M� {M1, M2, M3, ...,
Mm}. Each job Ji consists u operations O� {Oi1, Oi2, Oi3, ...,
Oiu}. Oi,j denotes the j-th operation of Ji. Each operation
needs to select one machine from the feasible machine group
to process. In addition, the processing sequence of all op-
erations needs to be determined to minimize the makespan,
which is the total operation time from the start of processing
to the completion of all operations. )ere are some re-
strictions on the assignment between jobs and machines.
Below, the optimization objective function and constraints
are given, and related concepts are explained.

Obj.

f � min 􏽘
n

i�1
􏽘

u

j�1
Si,j,k + ti,j,k

⎛⎝ ⎞⎠, (1)

s.t.

ti,j,k > 0, (2)

􏽘

m

k�1
Xi,j,k ≥ 1, (3)

Si,j,k + ti,j,k ⩽ Si,j+1,k, (4)

􏽘

n

i�1
􏽘

u

k�1
Xi,j,k � 1, (5)

Ti,i,k − Pi,j,k � ti,j,k, (6)

xi,j,k �
1, if machine k can process Oi,j,

0, otherwise,
􏼨 (7)

where the objective of scheduling is to minimize the
makespan of all operations. )e start time of an operation
Oi,j processing on machine k is denoted by Si,j,k. ti,j,k means
the processing time of the operation Oi,j on the machine k.
Ti,j,k is the time point when the current operation Oi,j
completes processing. Pi,j,k denotes the time point when
operation Oi,j begins processing.

Equation (2) indicates that the processing time of each
operation is greater than 0. Equation (3) represents that each
operation can be run on at least one machine. Equation (4)
shows that all operations are performed in a predefined

2 Computational Intelligence and Neuroscience



order. Equation (5) means that when a machine is pro-
cessing a certain operation, other operations cannot be
performed at the same time. Equation (6) explains that each
operation cannot be interrupted until the processing is
completed and the transportation time between operation
and machine is negligible.

3. Literature Review

Brucker and Schile [6] firstly took the machining flexibility
into account in 1990. However, their proposed polynomial
graph algorithm is not efficient for larger instances and
complex FJSP. With the development of methods for solving
NP-hard problems, it is found that heuristic and meta-
heuristic algorithms display more favorable performance
than these traditional methods [7–9]. )us, in recent de-
cades, it has been widely used for solving FJSP.

Nouri et al. [10] used a neighborhood-based genetic
algorithm (NGA) to solve FJSP in which scheduler agents
and cluster agents are used to guide the search process. With
the goal of minimizing the maximum completion time of all
jobs, Jiang and Zhang [11] proposed a variable neighbor-
hood search method based on gray wolf optimization, which
further strengthen the exploration of the algorithm itself.
Xing et al. [12] put forward a knowledge-based ant colony
optimization (KBACO) algorithm for FJSP. )e model of
KBACO learns from ant colony optimization and applies the
acquired knowledge to guide the current search process.

Zhang et al. [13] proposed an efficient hybrid method
that combines particle swarm optimization (PSO) algorithm
and tabu search (TS) algorithm to improve the efficiency of
local and global searches and find a near-optimal scheduling
scheme. Gao et al. [14] used a variable neighborhood descent
(VND) with GA-based algorithm to find assignable time
intervals for the deleted operations based on the concept of
earliest and latest event time. Li and Gao [15] presented a
hybrid algorithm for FJSP based on GA and TS, which uses
the characteristics of the two algorithms to control the global
and local search processes, respectively, and balance in-
tensification and diversification well. Zhao et al. [16] pro-
posed a self-learning discrete Jaya algorithm (SD-Jaya) to
solve the energy-saving distributed heterogeneous flow shop
scheduling problem (FSP). Taking into account energy
consumption, Zhao et al. [17] proposed a two-stage coop-
erative evolutionary energy-saving scheduling algorithm
(TS-CEA) to solve FSP.

In terms of initialization mode and genetic operations,
scholars proposed different strategies. Kacem et al. [18]
presented a new assignment localization (AL) model that
assigns tasks based on the load capacity of each machine.
Zhang et al. [19] proposed a global and local selection ap-
proach (GL) based on GA, which takes into consideration
the total load capacity of all machines. Pezzella et al. [20] put
forward an integration strategy to generate the initial
population and select individuals to breed new individuals.
Mahmudy [21] proposed an improved real-coded genetic
algorithm (IRCGA) that uses real vectors as chromosome
representations better helps the algorithm in searching.
Amjad et al. [22] proposed a new formula based on a

feedback mechanism. According to the formula, the prob-
ability of crossover and mutation can be adjusted auto-
matically in the process of evolution. Chen et al. [23]
investigated a self-learning genetic algorithm (SLGA) based
on reinforcement learning, which can adjust key parameters
intelligently. Zhou et al. [24] used an adaptive differential
evolution algorithm with the goal of minimizing the
manufacturing period. )e control parameter values and
mutation operators in the algorithm are adaptively selected
according to their historical performance. Based on the
reinforcement learning mechanism, Zhao et al. [25] pro-
posed a cooperative water wave optimization algorithm
(CWWO) in the framework of VNS. )e algorithm com-
bines path relinking and VNS method as an improved in-
terrupt operator to enhance local search ability.

As discussed above, multiple categories of meta-heuristic
algorithms have been used to solve FJSP successfully [26].
Due to the better performance and greater generality of GA,
it has gained great attention [27]. Furthermore, extensive
studies have demonstrated that GA has superior performance
for the quality of the solution. However, in the existing lit-
erature, there is a common shortcoming that the makespan is
too large after initialization, which leads to an excessively large
space for searching and seriously affects the quality of the final
solution. Moreover, at the later stage of evolution, the di-
versity of chromosome in the population declines seriously.
As a result, the population nearly stops evolving.

4. The Proposed Algorithm

As a widely used heuristic algorithm, GA has been suc-
cessfully applied in solving COPs [28]. Unlike traditional
deterministic methods, GA uses a population composed of a
certain number of individuals to perform an optimizing
process. Note that, each individual in GA is called a chro-
mosome denoting a candidate solution. During the search
process, new chromosomes are generated through crossover,
mutation, and selection operations, and genes on the
chromosomes are changed to generate new chromosomes.
Newly generated individuals are continuously added to the
mating pool for evolution. When a given number of gen-
erations is reached, the final solution can be obtained by
decoding the optimal individual.

4.1. Chromosome Representation. When using GA to opti-
mize a problem, the first issue that needs to be dealt with is
designing a proper chromosome representation method.
Considering distinct properties of FJSP, this article proposes
a double-layer chromosome representation. )e details of
the representation are described as follows based on a simple
example. A simple instance with three jobs and four ma-
chines of P-FJSP is shown in Table 1, where columns 1 and 2
correspond to jobs and operations, respectively, and col-
umns 3–6 correspond to machines.)e numbers in the table
represent the required time that a machine processes an
operation. )e symbol “-” in the table indicates that a
machine cannot process a corresponding operation. For
example, for Job1, it contains two operations, the first

Computational Intelligence and Neuroscience 3



operation can be performed on the 2nd, 3rd, and 4th ma-
chines, and the second operation can be performed on the
1st, 3rd, and 4th machines. )e essence of FJSP is the two
sub-problems of OS and MS [29]. )erefore, the double-
layer chromosome representation improves the traditional
lengthy single-layer method, with the first layer representing
OS and the second layer representing MS. )is represen-
tation makes encoding and decoding easier and avoids the
formation of illegal chromosomes and unnecessary repair
mechanisms.

4.2. Operation Sequence Part. A feasible chromosome
generated according to Table 1 is shown in Figure 1. Due to
the double-layer gene chain structure adopted, the length of
a chromosome is equal to the number of all operations. In
the OS part, the first “2” represents the first operation of the
second job, which can be represented by O21. )e
second number “1” expresses the first operation of the first
job, represented by O11. )e second occurrence of the third
number “2” indicates the second operation of the second job,
denoted asO22. Subsequent numbers have similar meanings.
)us, the sequence of operations “2-1-2-3-1” can be
expressed by operations sequence: O21–O11–O22–O31–O12.

4.3. Machine Selection Part. Similar to the OS, the length of
the chromosomes in the MS part is also the total number of
operations. In the MS part in Figure 1, for example, for
operation O22, since the number in its corresponding po-
sition is 3, it represents selecting the third machine to handle
this operation. )e number of machines depends on the
problem itself, consequently, the value in the MS part is
designed for representing the serial number of the machine
processing the current operation.

)e advantage of this OS-MS chromosome represen-
tation is that this method is more versatile, and it can
simplify the logical structure of array processing, which is
convenient for subsequent genetic operations.

4.4. Population Initialization. Population initialization is an
important task of GA. Generally, an efficient initialization
method can speed up the population convergence speed
[30]. Currently, the mainstream scheme to initialize the MS
is the global and local selection (GL) strategy came up by
Zhang et al. [19], which is also used in this article of MS part.
On the premise of pre-calculating the total processing time,
the load of each machine is fully considered, and then the
most suitable machine is selected to process for each op-
eration. However, for the initialization of the OS, a random

method is more commonly used in the published literature.
)erefore, in this section, we propose two efficient strategies
to initialize the OS for arranging the proper sequences for all
jobs, which are described as follows:

(1) Choosing the job with the most remaining opera-
tions (CRO)

(2) 6-Dimensional variables to determine the search
position (6D-VSP)

For CRO, a job with the most remaining operations is
selected each time. )e specific steps of CRO are as follows:

(i) Step 1: create an array to record each job selection,
initialize each element to 0.

(ii) Step 2: create an array of length n, initialize each
element as the operations of each job.

(iii) Step 3: select a job with the most remaining oper-
ations (MRO) in the array created in Step 2. If the
same value exists, select a job randomly.

(iv) Step 4: store the selected job number in the array
created in Step 1. Decrement the value at the
corresponding position of the array created in Step 2
by 1.

(v) Step 5: repeat steps 3 and 4 until all elements created
in step 2 are 0.

)e implementation of CRO is shown in Figure 2. Take
the 3 jobs in Table 1 with 5 operations as an example, the
number of operations of each job is 2, 2, and 1, respectively.
When the remaining operations are the same, a job is
randomly selected. Assuming that the first job selected is
Job2, then update the array S, while the value of the cor-
responding position of the array P is decreased by 1. Repeat
this step until all values in array P are 0. Finally, the array S is
the code for the OS part of the chromosome.

For the 6D-VSP, its essence is to increase the ran-
domness of the selection of each job, avoiding the similarity
of chromosomes in the initial stage. )e specific steps of 6D-
VSP are as follows:

(i) Step 1: determine two values that sum to 1 ran-
domly to determine the lower bound (lb) and upper
bound (ub).

(ii) Step 2: generates an array of length the total number
of operations, where the elements consist of job
numbers.

(iii) Step 3: the difference between the two values cre-
ated in step 1 forms a new array of length total
operations.

(iv) Step 4: randomly generate an array between 0 and 1
with length equal to the total number of operations.

(v) Step 5: multiply the corresponding position ele-
ments (MCE) of the two matrices obtained in Steps
3 and 4 to obtain a new array.

(vi) Step 6: add the elements in the array gotten in Step 5
to the lower bound determined in Step 1, and get an
index array after sorting.

Table 1: A simple instance of 3× 4 P-FJSP.

Job Operation M1 M2 M3 M4

Job1
O11 — 3 2 5
O12 2 — 3 3

Job2
O21 3 — 4 2
O22 2 1 3 5

Job3 O31 - 3 — 5

4 Computational Intelligence and Neuroscience



(vii) Step 7: match the index array with the array gen-
erated in Step 2 to get a matched array.

)e implementation of 6D-VSP is shown in Figure 3.
)e array obtained by (8) is sorted to obtain an index array.
From the position of each element of index array in the job
numbers array, the matched array can be obtained, which is
the coding of the OS part.

Random array∗ (ub − lb) + lb. (8)

)e purpose of the two strategies is to reduce the search
space during the initial optimizing process. )e effectiveness
of these strategies will be verified in the subsequent ex-
periments in Section 5.1.

4.5. SelectionOperation. )epopulation reproduction of GA
originated from the laws of nature is based on individual
selection operations [31]. Excellent individuals are chosen
from the initial population and retained in the mating pool
to provide parental genes for the next generation of evo-
lution through one or more reproductions. )e roulette
wheel selection and stochastic universal selection are two
popular selection methods.

)e former is a fitness-based selection method, whereas
the latter is a completely random selection method [32]. )e
convergence rate of roulette selection is faster, but the
population tends to fall into local optimum. )e advantage
of stochastic universal selection is that the diversity of the
population is well maintained in the process of evolution,
but the speed of convergence is slower.

)erefore, to trade off the exploration and the exploi-
tation, this article adopts the tournament selection. Tour-
nament selection is based on a return sampling strategy,
where a certain number of individuals are taken from the
population at a time and the best one is selected to enter the
offspring population. )is process is repeated until the size
of the new population reaches the size of the original
population. It overcomes the problem of directly destroying
the selection method based on population diversity as fit-
ness. )is strategy makes the outstanding individuals have

Chromosome

Operation Sequence

Operation

Operation Sequence

Machine Selection

Machine Selection

Machine Number

Job Number

Schedule
2 1 2 3 1

2 1 2 3 1

2 4 1 3 2

2 4 1 3 2

J2 J1 J2 J3 J1

OS Part

MS Part

O21

O21

O11

O11

O22

O22

O31

O31

O12

O12

M2 M4 M1 M3 M2

Figure 1: A chromosome generated from Table 1.

s

P

MRO

Selected

Update S

Update P

0 0 0 0 0 0 0

0 0 0

0 0

01 1

2

0 0 0 00 00 00 2 0 0 02

2

12 12 12

1

1

1 1 1 1

01 1

00 1

00 1

1

1 1 1

2 12 3

0 012 3

01 12 3

01 12 3

1 12 23

Job1 Job2 Job1 Job2Job1 Job2 Job3

Job2 Job1

Job1

Job3 Job1

Job2

Job2

Figure 2: )e process of CRO.

1 1 2 2 3

0.96 0.96 0.96 0.96 0.96

0.4854 0.1418 0.9157 0.9595 0.4218

0.466 0.1362 0.8791 0.9211 0.4049

0.486 0.1562 0.8991 0.9411 0.4449

3

3

1

1 1

4 5 2

22

0.02 0.98ib,ub

Job numbers

Difference

Random array

MCE

Add relb

Index array

Matched array

Figure 3: )e process of 6D-VSP.

Computational Intelligence and Neuroscience 5



more opportunities to be preserved. Concurrently, it takes
the relative fitness value as the criterion for selecting, rather
than directly using the proportion of fitness. It not only
avoids the influence of “super individual,” but also avoids the
premature convergence [33].

4.6. Crossover Operation. Being a basic operation of GA,
crossover operation plays a vital role in the optimization
process of GA. )e basic concept of the operation is that
different chromosomes exchange some genes with each
other, and then generate new chromosomes. Based on the
double-layer chromosome structure introduced in Section
4.1, we design two different crossover operations, respec-
tively, for OS and MS part.

In order to avoid generating invalid chromosomes and
satisfy scheduling constraints of OS, we use precedence
operation crossover (POX) [34] method. Take the five op-
erations in Table 1 as an example to illustrate the process of
generating two child individuals with POX. )e imple-
mentation of POX is shown in Figure 4, and the detailed
steps are as follows:

(i) Step 1: divide job set randomly into two sub-job sets
J1 and J2 and select two individuals randomly as
parent chromosomes P1 and P2

(ii) Step 2: copy genes that belong to J1 from P1 and J2
from P2 to child individuals C1 and C2, keeping their
position unchanged in C1 and C2

(iii) Step 3: copy genes that belong to J1 from P1 and J2
from P2, then sequentially store in C2 and C1

)e MS part is a sequence of processing machines
corresponding to each operation.)e crossover operation in
the MS section is machine re-selection, by swapping genes at
two positions on the chromosome to generate two new
sequences of MS. )e number appearing in the same po-
sition on each chromosome indicates that this machine
exists in the set of alternative machines. )e new chro-
mosomes generated by allele crossover will not change the
previous constraints conditions. )erefore, the individual
produced after the crossover operation is also a feasible
scheme. In this article, the two-point crossover [35] method
is adopted. )e crossover process in the MS part is shown in
Figure 5.

4.7. Mutation Operation. After the crossover operation, the
newly generated chromosomes need to conduct a mutation
operation, which is a popular phenomenon in the evolu-
tionary process of species. When performing the mutation
operation, one or more genes in a chromosome will be
changed with a probability. )e main objective of the
mutation operation is to enhance the population diversity
and to avoid the premature convergence of algorithm [36].

When performing the mutation operation in the OS part
of a chromosome, two mutate positions need to be selected
according to probability (pm). After that, the genes of the
chromosome between the two positions are swapped. Hence,
a new chromosome can be obtained. Note that, the new

chromosome does not change the genes, but just repositions
the genes, so the new scheme is also feasible.

)e probability of mutation in the MS part is the same as
in the OS part. If there is a mutation in the MS part of the
chromosome, the new processing machine is randomly
selected from the candidate machine set. )e mutation steps
of the MS part are as follows:

(i) Step 1: select individuals from the population in
order

(ii) Step 2: generate a probability value randomly, if the
value is less or equal to the Pm, go to Step 3;
otherwise, go to Step 1

(iii) Step 3: determine a mutation point of MS part of the
chromosome randomly

(iv) Step 4: pick another machine from the set of can-
didate machines randomly at the mutation position
to replace the original processing machine

4.8. Reinitialization of Part Population. Premature conver-
gence is a popular phenomenon in GA. How to deal with the
phenomenon is crucial for the exploration ability of GA. In
this study, when the population falls into a local optimum, a
small part of the population is reinitialized, and then, the
diversity of the population can be improved. During this
process, the new chromosomes generated by the reinitiali-
zation strategy randomly replace the same number of
original individuals except for the best one that has been
obtained. )e newly formed population participates in
subsequent evolution.

)e number of times of reinitialization is completely
adaptively adjusted according to the situation of current
evolution. )e more times the population gets trapped in a
local optimum, the more times the strategy is executed. )e
evolution will not stop until the constraint conditions are
reached, or the output has obtained the optimal solution.

After the reinitialization, many chromosomes trapped in
local optima are replaced by some new randomly generated
chromosomes, and then the population diversity can be

C1

J1={1},J2={2,3}

C1C2

C2

P1 P1

P2 P2

2

2

2

1

1

1

2 13

2

2

1

1

3 2 1 2 13

3

2 2

1

1

22 1

1

3

32 1 2 13

2 1 2 13

Figure 4: )e process of POX.

2 21

2 2

2

2

3 1 13

33

4 4

1 1 144

P1

C1

P2

C2

Figure 5: Machine selection crossover operation.

6 Computational Intelligence and Neuroscience



improved.)us, the exploration ability of the population can
be further enhanced.

)e GLRe terminates the evolution when the maximum
number of generations is reached. )e fitness of the best
individual and the corresponding scheduling scheme is
output.

4.9. Framework of the Improved GA. Based on the above
discussions, the framework of the proposed algorithm can be
demonstrated in Figure 6 and explained in Algorithm 1.

5. Experimental Results and Analyses

In this section, a series of comparison experiments are
conducted to analyze the performance of GLRe in solving
FJSP. In order to demonstrate the experimental results
better, we use two sets of benchmark data for testing. )e
first is five small-scale Kacem [18] F-FJSP instances. )e
second data set is more complex instances from Brandimarte
[37].

)e proposed GLRe in this article is implemented in
Matlab 2020a on Intel Core i5 with 8GB main memory
under Windows 10 system. Each instance will be run 20
times, other parameters of GLRe are as follows:

Population size (Pop): 5×m× n.

Maximum number of generations (Num): 10×m× n.
Rate of global selection: 0.6.
Rate of local selection: 0.3.
Rate of random selection: 0.1.
Rate of 6D-VSP: 0.9.
Tournament approach: k� 2.
Number of reinitializations:

T �

􏽐
x+100
it�x bestfit

100
� 1, x ∈ Num,

K + 1, K ∈ N.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(9)

Generations limit before reinitialization:

lim �

it>
Num

3
, it ∈ Num,

􏽐
x+100
it�x bestfit

100
� 1, x ∈ Num.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

5.1. Effectiveness of Improvement Strategies. In this part, we
use 10 instances of Brandimarte date for testing. )e

Start Parameter input

Encode chromosome
Population Initialization

Evaluate Population

Genetic Operation

Evaluation offsprings

New Generation

Reinitialize
Chromosomes

Add to Mating Pool

it ≥ Iteration ?

Solution improved?

LimRe Reached?

End

Best Solution

Decode Chromosome
Yes

Yes

Yes

No

No

No

Figure 6: Flow chart of GLRe.

Computational Intelligence and Neuroscience 7



algorithm combining the three strategies of CRO, 6D-VSP,
and Reinitialization is called Re. GA-GS (Global selection
combined with GA), GA-GSRe (Global selection and Re
combined with GA), GA-GL (Global and Local selection
combined with GA), and conventional GA and proposed
algorithm GLRe (GL combined with Re) are compared to
prove the effectiveness of the improved strategy.

We compare the optimal solutions and average values of
these five algorithms and their respective deviations. )e
degree of dispersion is expressed by the relative percentage
deviation (RPD) [38]. Tables 2 and 3, show all the experi-
mental results. )e first column of the two tables contains 10
different data instances. Best and average represent the
optimal and average values of makespan obtained by al-
gorithms, respectively. LB denotes the lower bounds of
Brandimarte instances, which are obtained from the cur-
rently known literature [11]. )e best RPD (RPDB) values of
all instances are calculated by the five algorithms according

to formula (11) shown in columns 3–7 of Table 2. Columns
8–12 in Table 3 are the average RPD (RPDA) values cal-
culated by formula (12) for each instance in Table 2. )e best
result for each instance is shown in bold.

RPDB �
Cm − LB

LB
× 100, (11)

RPDA �
AV − LB

LB
× 100. (12)

For the best and RPDB from Tables 2 and 3, GLRe is
superior to GA-GS, GA-GSRe, GA-GL, and conventional
GA. For average and RPDA, GLRe achieves an over-
whelming advantage over its competing algorithms from the
smaller scale MK01 to the larger scale MK10. By controlling
the fusion of different algorithms, the experimental result
proves that the GLRe consistently gives high-quality solu-
tions for FJSP.

Input: population size (Pop), Number of generations (Num), crossover probability (Pc), mutation probability (Pm), rate of CRO, rate
of 6D-VSP;
Output: a near-optimal scheduling scheme
1 initialization
2 While not meet termination condition do
3 calculate the fitness of chromosomes
4 the current best fitness value (bestp)
5 perform crossover and mutation operation
6 evaluate individuals
7 find the optimal value (bestf );
8 If bestf< bestp then
9 update bestp
10 update generation array
11 else
12 keep current bestp
13 update generation array
14 end If
15 If bestp has not been updated for several generations then
16 reinitialize a small set of chromosomes
17 form a new population chromosomes
18 end If
19 generations ++
20 end While

ALGORITHM 1: GLRe.

Table 2: Makespan of best and average for each algorithm.

Dataset instance LB
Best Average

GA-GS GA-GSRe GA-GL GA GLRe GA-GS GA-GSRe GA-GL GA GLRe
MK01 36 40 40 40 44 40 41.4 41.4 41.9 46.5 40.9
MK02 24 29 29 29 36 29 29 29.1 29.1 37.1 29.3
MK03 204 204 204 204 204 204 204 204 204 228.9 204
MK04 48 63 63 64 83 62 66.9 65.9 66 85.4 65
MK05 168 177 177 176 191 176 182.8 180.6 179.9 193.1 178.5
MK06 33 66 67 65 81 65 69.4 68.8 68.4 84.7 68
MK07 133 151 151 149 178 146 155.6 156.3 151.7 181.6 150.2
MK08 523 523 523 523 523 523 523 523 523 551.2 523
MK09 299 319 313 311 348 311 324.8 325.8 322.1 359.3 315.4
MK10 165 224 230 227 310 220 236 237.9 236 323.5 227.4

8 Computational Intelligence and Neuroscience



In order to exclude the interference of other contingent
factors and further verify the role of each strategy in the
algorithm, we select MK03 and MK08 instances where each
algorithm can converge for testing.

)rough the previous experimental verification, we have
come to the conclusion that the global selection and local
selection algorithm (GL) are effective. On the basis of the GL,
we add the strategies of CRO (GL-CRO), 6D-VSP (GL-
6DVSP), and the combination of CRO and 6D-VSP (GL-
CRO+6D-VSP). )e experimental results are shown in
Figure 7.

As can be seen from Figure 7, the initial solution obtains
a smaller initial value than the original GL after adding the
strategy CRO. Due to the small scale of the MK03 problem
instance, the graph appears as a straight line, that is, the
optimal scheduling scheme is obtained at the beginning. At
the same time, this also means that the strategy effectively
improves the search space of the algorithm.

After adding the 6D-VSP on the basis of the original GL,
it can be seen that the initial value has a certain increase
compared with GL. )e reason for this phenomenon can be
explained that the addition of the 6D-VSP increases the
disorder of sorting, which can well reduce the probability of
the population falling into the local optimum during the
evolution process.

At the same time, we can observe that after combining
the CRO and 6D-VSP strategies, not only the initial solution
space is reduced, but also the optimal scheduling sequence is
found in the first generation.

After testing an instance with a larger problem scale,
MK08, we found that the above features are preserved.
Benefiting from the feature that 6D-VSP can increase the
sequence disorder, the population can evolve more quickly
to obtain the optimal scheduling scheme while avoiding
falling into local optimum.

For the Reinitialization strategy, both MK03 and MK08
can converge, and there is no specific reference. )e
Reinitialization strategy only works in the later stages of
algorithm evolution. )erefore, we combine the
three strategies and select MK09 and MK10 with a larger
problem scale for testing. Combining the three strategies to
test the performance of Re does not affect the existing
conclusions.

From Figure 8, the above-obtained search space is
smaller and the characteristics of faster convergence are still
verified. Meanwhile, we can see that after many generations,
the diversity of the population decreases seriously, the
chromosome genes tend to be consistent, and the other two
algorithms basically stop evolving. In our GLRe, this situ-
ation has been significantly improved by introducing the
concept of reinitialization. In the later stages of the evolu-
tion, the algorithm can also approach the optimal solution
gradually. Under the same number of generations, the
convergence speed of the proposed GLRe is faster, followed
by GL. )e convergence speed of GA is relatively slow.
Meanwhile, we can observe that the final solution of our
algorithm is better.

To further verify the effectiveness of the above strategies, we
conduct independent tests on these three strategies, respec-
tively. Each instance is tested 20 times and compared with the
average data of GA-GL in Table 2. Count the number of oc-
currences of the above features for each algorithm separately,
and calculate their frequency. After the total number of tests
(Tnum) for each strategy reaches two hundred, the experi-
mental results are recorded.)e experimental results are shown
in Table 4, and the statistical results are shown in Table 5.

As can be seen from Tables 4 and 5, CRO reduces the
search space of the algorithm by 100 percent in the ini-
tialization phase. )e performance of the 6D-VSP strategy is
unstable, and the efficiency of the strategy will be affected by
different problem instances. )e number of experimental
features still appears more than half, and it can be inferred
that the 6D-VSP strategy is still effective. When the problem
size is small, the effectiveness of the Re strategy cannot be
sufficiently demonstrated. However, as the size of the
problem increases, the newly added chromosomes expand
the gene pool, preventing the population from falling into a
local optimum to a certain extent.

Combining the results of the above experiments, we can
affirm that the three strategies play an active role in the
algorithm.

5.2. Comparison with Other Algorithms. In this part, to
testify the comprehensive performance of GLRe, five state-
of-art algorithms are selected as peer algorithms, that is,

230
225
220
215
210
205
200

FI
TN

ES
S

0 50 100 150 200 250 300
GENERATIONS

GL
GL-CRO

GL-6DVSP
GL-CRO+6DVSP

(a)

FI
TN

ES
S

620

600

580

560

540

520
0 50 100 150 200 250 300

GENERATIONS

GL
GL-CRO

GL-6DVSP
GL-CRO+6DVSP

(b)

Figure 7: Comparison between four algorithms on MK03 and MK08 instances. (a) MK03. (b) MK08.

Computational Intelligence and Neuroscience 9



SLGA [23], edPSO [10], GWO [11], HA [38], andMACROG
[39]. )e experimental parameter settings are the same as
those described in the previous section.

In SLGA, the author innovatively combines reinforce-
ment learning with a genetic algorithm, and uses Q-learning
as a self-learning model. edPSO is a neighborhood-based
genetic algorithm that proposes a hybrid clustering model.
GWO is a new swarm intelligence algorithm inspired by
social hierarchy and the hunting behavior of gray wolves.
HA generates and evaluates different solutions by changing
the weights of his strategies. A new decentralization model is
proposed in MACROG. MACROG−FJSP is an improved
version of the greedy algorithm.

)e above algorithms combined machine learning,
unsupervised learning, new swarm intelligence algorithm,
variable weighting method, decentralized model, and greedy
strategy to propose effective algorithms, respectively. Each

algorithm is representative of the field, which is the reason
why these algorithms are chosen for comparison in this
article.

Experimental results of the two sets of benchmark data,
in terms of makespan, are shown in Tables 6 and 7, re-
spectively. )e best results for each instance are shown in
bold. )e symbol “—” in the table indicates that the instance
is not solved in the literature.

From the comparison results on the Kacem data set
demonstrated in Table 6, we can see that both GLRe and
GWO can get the best results on 4 out of the 5 instances.
Moreover, GLRe obtains LB results on 3 instances, while
GWO yields 4 LB results. )e comparison results indicate
that our algorithm performs well on small-scale problems.

In order to verify the algorithm’s ability to address
medium to large-scale problems, we used 10 more complex
Brandimarte instances to test the performance of GLRe.

FI
TN

ES
S

600

550

500

450

400

350

300
0 200 400 600 800 1000

GENERATIONS

GA
GL
GL-Re

(a)

FI
TN

ES
S

500

450

400

350

250

300

200
0 200 400 600 800 1000

GENERATIONS

GA
GL
GL-Re

(b)

Figure 8: Comparison between GA, GL, and GLRe on MK09 and MK10 data instances. (a) MK09. (b) MK10.

Table 3: Comparison of RPDB and RPDA for each algorithm.

Dataset instance
RPDB RPDA

GA-GS GA-GSRe GA-GL GA GLRe GA-GS GA-GSRe GA-GL GA GLRe
MK01 11.1 11.1 11.1 22.2 11.1 15 15 16.4 29.2 13.6
MK02 20.8 20.8 20.8 50 20.8 20.8 21.3 21.3 54.6 22.1
MK03 0 0 0 0 0 0 0 0 12.2 0
MK04 31.3 31.3 33.3 72.9 29.2 39.4 37.3 37.5 77.9 35.4
MK05 5.4 5.4 4.8 13.7 4.8 8.8 7.5 7.1 14.9 6.3
MK06 100 103 96.9 145.5 96.9 110.3 108.5 107.2 156.7 106.1
MK07 13.5 13.5 12 33.8 9.8 16.9 17.5 14.1 36.5 12.9
MK08 0 0 0 0 0 0 0 0 5.4 0
MK09 6.7 4.7 4 16.4 4 8.6 8.9 7.7 20.2 5.5
MK10 35.8 39.4 37.6 87.9 33.3 43 44.2 43 96.1 37.8

Table 4: Statistics of occurrences of each feature.

Strategy
Instance

MK01 MK02 MK03 MK04 MK05 MK06 MK07 MK08 MK09 MK10
CRO 20 20 20 20 20 20 20 20 20 20
6D-VSP 5 10 20 14 17 11 9 20 12 14
Re 5 7 0 8 4 9 12 0 16 18

10 Computational Intelligence and Neuroscience



Experimental results measured by makespan are shown in
Table 7. From the table, we can observe that GLRe, edPSO,
and SLGA display the best performance on 5 out of the 10
large-scale instances. On the contrary, GWO only attains the
best result on two instances though it offers the most out-
standing performance on the Kacem instances. Further-
more, HA also cannot exhibit favorable performance on the
Bandimarte instances though it offers very promising per-
formance on the Kacem instances. )e results manifest that
GLRe is more suitable for large-scale problems than small-
scale problems.

Table 8 gives the RPD values (%) of Table 7. In terms of
RPD, it can be observed from the table that GLRe can figure
out the best solutions on MK01, MK03, MK07, MK08, and
MK10. Also, it can provide the second best results measured
by RPD on 3 out of the 5 remaining instances. Furthermore,
regarding the mean value of RPD, GLRe is the lowest among
all algorithms, which indicates that our algorithm performs
better on medium and large FJSPs.

)e RPD boxplot of the six algorithms in Table 8 is
shown in Figure 9, which can further verify the perfor-
mance of our algorithm. From the results in the figure, we
can clearly observe that the median and range of RPD
values of GLRe are smaller. Meanwhile, besides SLGA, the
results obtained by GLRe are relatively concentrated,
which indicates that GLRe has good performance in
solving FJSP. )e results are consistent with our previous
conclusions.

Table 9 shows the actual number of instances solved (AS)
for all compared algorithms and the amended-RPD (aRPD)
for each algorithm. )e value of aRPD is calculated as
follows:

aRPD �
􏽐

AS
i�1(Best − LB) × 100/LB􏽮 􏽯

AS
, (13)

where Best represents the best result after 20 runs for each
instance of these algorithms. )e column defined as “im-
provement” in the table represents the reduced value of
aRPD obtained by GLRe relative to other algorithms of two
groups of benchmarks. Except for the SLGA, GLRe has
different degrees of improvement compared to others.
However, the aRPD of our algorithm is slightly better than
SLGA. According to the comparison results of the above
experiments, we can come to a conclusion that GLRe has
better performance and efficiency in minimizing the
makespan of FJSP.

Friedman test is a statistical test method proposed by
Friedman in 1973 for the homogeneity of multiple (corre-
lated) samples [40]. To better compare the performance of
our GLRe with other algorithms, we divide the test into three
parts. Take the smaller MK01-05, Kacem01, and Kacem02 as
a group, the larger problem scale MK06-10 as a group, and
finally the entire 12 datasets as a large group. )e results of
the Friedman test are shown in Table 10. From the table, we
can observe that GLRe has a gap with other algorithms in

Table 5: )e probability of each feature of the three strategies.

Strategy Tnum Count Frequency (%)
CRO 200 200 100
6D-VSP 200 134 67
Re 200 79 39.5

Table 6: )e makespan of Kacem instance.

Dataset
instance LB edPSO GWO MACROG SLGA HA GLRe

Kcaem01 11 11 11 11 11 11 11
Kcaem02 14 17 14 20 14 15 14
Kcaem03 11 — 11 14 11 13 11
Kcaem04 7 8 7 — — 7 8
Kcaem05 11 — 13 19 — 12 12

Table 7: )e makespan of Bandimarte instance.

Dataset
instance LB edPSO GWO MACROG SLGA HA GLRe

MK01 36 41 40 40 40 42 40
MK02 24 26 29 32 27 28 29
MK03 204 207 204 204 204 204 204
MK04 48 65 64 64 60 75 62
MK05 168 171 175 179 172 179 176
MK06 33 61 69 85 69 69 67
MK07 133 173 147 172 144 149 144
MK08 523 523 523 552 523 555 523
MK09 299 307 322 421 320 342 311
MK10 165 312 249 358 254 242 220

0

20

40

60

80

100

120

140

160

RP
D

B 
(%

)

GWO MACROG SLGA HA GLReedPSO

Figure 9: Boxplot of RPDB for each algorithm in Table 8.

Table 8: )e RPDB values (%) of Table 7.

Dataset
instance edPSO GWO MACROG SLGA HA GLRe

MK01 13.9 11.1 11.1 11.1 16.7 11.1
MK02 8.3 20.8 33.3 12.5 16.7 20.8
MK03 1.5 0 0 0 0 0
MK04 35.4 33.3 33.3 25 56.3 29.2
MK05 1.8 4.2 6.5 2.4 6.5 4.8
MK06 84.8 109.1 157.6 109.1 109.1 103
MK07 30 10.5 29.3 8.3 12 8.3
MK08 0 0 5.5 0 6.1 0
MK09 2.7 7.7 40.8 7 14.4 4
MK10 89.1 50.9 117 53.9 46.7 33.3
Mean 26.8 24.8 43.4 22.9 26.8 21.5

Computational Intelligence and Neuroscience 11



solving small-scale problem instances MK01-05, Kacem01,
and Kacem02. However, as the complexity of the problem
instances increases, GLRe shows superior performance in
solving MK06-10 instances. Overall, our proposed GLRe has
the best average ranking and highest priority compared to
the RPDB values of the other five algorithms. )is test result
is consistent with the previous conclusion and further
validates GLRe’s excellent performance relative to its
competitors in solving FJSP.

6. Conclusion and Future Work

In this article, we proposed an improved hybrid algorithm
combing global and local search with reinitialization
(GLRe) with GA-based for solving the flexible job shop
scheduling problem (FJSP). Considering distinct prop-
erties of FJSP, a double-layer gene chain chromosome
representation method was proposed. Based on the
chromosome representation, genetic operations can be
independently carried out on the operation sequence and
the machine selection. Moreover, to improve search ef-
ficiency, a new initialization approach was proposed in
which a method combining choosing the job with the
most remaining operations (CRO) and 6-dimensional-
variable determination of the search position (6D-VSP)
was added to determine the initialization of operation
sequence.)is operation sequence aimed at improving the
overall quality of the initial solution and reducing the
global search space. When the population falls into local
optimum, some chromosomes are reinitialized. )us,
chromosome diversity can be improved and the gene pool
of the population is enriched.

)e algorithm had been extensively tested on the selected
benchmarks test set, and compared with other algorithms in
the literature. )e experimental results showed that GLRe
has better convergence speed and higher solution quality,
especially on large-scale FJSP.

Although GLRe performs well in solving FJSP, the
settings of some genetic parameters are not deeply con-
sidered and the performance of GLRe for solving other
scheduling problems is unknown. In future work, we will
continue to deeply study the influence of different param-
eters on GLRe for solving FJSP, and focus on the application
of GLRe to other combinatorial optimization problems.

Data Availability

)e experimental data used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)e work was partially supported by the National Natural
Science Foundation of China (Grant no. 61663009), the
National Natural Science Foundation of Fujian Province
(Grant nos. 2021J011008 and 2021J011007), and the Science
and Technology Plan Projects of Zhangzhou (Grant nos.
ZZ2020J06 and ZZ2020J24).

References

[1] M. R. Garey, D. S. Johnson, and R. Sethi, “)e complexity of
flowshop and jobshop scheduling,” Mathematics of Opera-
tions Research, vol. 1, no. 2, pp. 117–129, 1976.

[2] M. Amirghasemi and R. Zamani, “A synergetic combination
of small and large neighborhood schemes in developing an
effective procedure for solving the job shop scheduling
problem,” SpringerPlus, vol. 3, no. 1, pp. 1–15, 2014.

[3] P. Fattahi, F. Jolai, and J. Arkat, “Flexible job shop scheduling
with overlapping in operations,” Applied Mathematical
Modelling, vol. 33, no. 7, pp. 3076–3087, 2009.

Table 9: )e comparison of aRPD.

Algorithm AS aRPD (%) GLRe’s aRPD (%) Improvement (%)
edPSO 13 23.3 17.6 5.7
GWO 15 17.7 15.9 1.9
MACROG 14 41.2 16.0 25.3
SLGA 13 17.6 16.5 1.1
HA 15 21.3 15.9 5.4
GLRe 15 15.9

Table 10: Friedman test results for 6 algorithms.

Algorithm MK01-05, Kacem01, Kacem02 Priority MK06-10 Priority
Value of
the mean
rank

Final priority

edPSO 3.79 4 3.10 3 3.50 4
GWO 3.14 3 3.30 4 3.21 3
MACROG 4.29 5 5.60 5 4.83 6
SLGA 2.29 1 3.00 2 2.58 2
HA 4.43 6 4.20 6 4.33 5
GLRe 3.07 2 1.80 1 2.54 1

12 Computational Intelligence and Neuroscience



[4] N. J. Escamilla Serna, J. C. Seck-Tuoh-Mora, J. Medina-Marin,
N. Hernandez-Romero, I. Barragan-Vite, and J. R. Corona
Armenta, “A global-local neighborhood search algorithm and
tabu search for flexible job shop scheduling problem,” PeerJ
Computer Science, vol. 7, p. e574, 2021.

[5] J. Xie, L. Gao, K. Peng, X. Li, and H. Li, “Review on flexible job
shop scheduling,” IET Collaborative Intelligent Manufactur-
ing, vol. 1, no. 3, pp. 67–77, 2019.

[6] P. Brucker and R. Schlie, “Job-shop scheduling with multi-
purpose machines,” Computing, vol. 45, no. 4, pp. 369–375,
1990.

[7] G. Zhang, L. Zhang, X. Song, Y. Wang, and C. Zhou, “A
variable neighborhood search based genetic algorithm for
flexible job shop scheduling problem,” Cluster Computing,
vol. 22, no. S5, Article ID 11, 2019.

[8] F. Zhao, S. Di, J. Cao, and J. Tang, “Jonrinaldi. A novel co-
operative multi-stage hyper-heuristic for combination opti-
mization problems,” Complex System Modeling and
Simulation, vol. 1, no. 2, pp. 91–108, 2021.

[9] W.-L. Liu, Y.-J. Gong, W.-N. Chen, Z. Liu, H. Wang, and
J. Zhang, “Coordinated charging scheduling of electric ve-
hicles: a mixed-variable differential evolution approach,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 12, pp. 5094–5109, 2020.

[10] H. E. Nouri, O. Belkahla Driss, and K. Ghédira, “Solving the
flexible job shop problem by hybrid metaheuristics-based
multiagent model,” Journal of Industrial Engineering Inter-
national, vol. 14, no. 1, pp. 1–14, 2018.

[11] T. Jiang and C. Zhang, “Application of grey wolf optimization
for solving combinatorial problems: job shop and flexible job
shop scheduling cases,” IEEE Access, vol. 6, Article ID 26,
2018.

[12] L. N. Xing, Y. W. Chen, P. Wang, Q. S. Zhao, and J. Xiong, “A
knowledge-based ant colony optimization for flexible job
shop scheduling problems,” Applied Soft Computing, vol. 10,
no. 3, pp. 888–896, 2010.

[13] G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid
particle swarm optimization algorithm for multi-objective
flexible job-shop scheduling problem,” Computers & Indus-
trial Engineering, vol. 56, no. 4, pp. 1309–1318, 2009.

[14] J. Gao, L. Sun, and M. Gen, “A hybrid genetic and variable
neighborhood descent algorithm for flexible job shop
scheduling problems,” Computers & Operations Research,
vol. 35, no. 9, pp. 2892–2907, 2008.

[15] X. Li and L. Gao, “An effective hybrid genetic algorithm and
tabu search for flexible job shop scheduling problem,” In-
ternational Journal of Production Economics, vol. 174,
pp. 93–110, 2016.

[16] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya
algorithm for multiobjective energy-efficient distributed no-
idle flow-shop scheduling problem in heterogeneous factory
system,” IEEE Transactions on Cybernetics, pp. 1–12, 2021.

[17] F. Zhao, X. He, and L. Wang, “A two-stage cooperative
evolutionary algorithm with problem-specific knowledge for
energy-efficient scheduling of no-wait flow-shop problem,”
IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5291–
5303, 2021.

[18] I. Kacem, S. Hammadi, and P. Borne, “Approach by locali-
zation and multiobjective evolutionary optimization for
flexible job-shop scheduling problems,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 32, no. 1, pp. 1–13, 2002.

[19] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm
for the flexible job-shop scheduling problem,” Expert Systems
with Applications, vol. 38, no. 4, pp. 3563–3573, 2011.

[20] F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic al-
gorithm for the flexible job-shop scheduling problem,”
Computers & Operations Research, vol. 35, no. 10, pp. 3202–
3212, 2008.

[21] W. F. Mahmudy, “Solving flexible job-shop scheduling
problem using improved real coded genetic algorithms,” in
Proceedings of the International Conference on Science and
Technology for Sustainability, pp. 181–188, Batam, Indonesia,
August 2014.

[22] M. K. Amjad, S. I. Butt, N. Anjum, I. A. Chaudhry, Z. Faping,
and M. Khan, “A layered genetic algorithm with iterative
diversification for optimization of flexible job shop scheduling
problems,” Advances in Production Engineering & Manage-
ment, vol. 15, no. 4, pp. 377–389, 2020.

[23] R. Chen, B. Yang, S. Li, and S. Wang, “A self-learning genetic
algorithm based on reinforcement learning for flexible job-
shop scheduling problem,” Computers & Industrial Engi-
neering, vol. 149, Article ID 106778, 2020.

[24] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang, “A
self-adaptive differential evolution algorithm for scheduling a
single batch-processing machine with arbitrary job sizes and
release times,” IEEE Transactions on Cybernetics, vol. 51, no. 3,
pp. 1430–1442, 2021.

[25] F. Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative water
wave optimization algorithm with reinforcement learning for
the distributed assembly no-idle flowshop scheduling prob-
lem,” Computers & Industrial Engineering, vol. 153, Article ID
107082, 2021.

[26] H. Ding and X. Gu, “Improved particle swarm optimization
algorithm based novel encoding and decoding schemes for
flexible job shop scheduling problem,” Computers & Oper-
ations Research, vol. 121, Article ID 104951, 2020.

[27] G. Shao, Y. Shangguan, J. Tao, J. Zheng, T. Liu, and Y. Wen,
“An improved genetic algorithm for structural optimization
of Au–Ag bimetallic nanoparticles,” Applied Soft Computing,
vol. 73, pp. 39–49, 2018.

[28] Y. Wang, X. Liu, and L. Xiang, “GA-based membrane evo-
lutionary algorithm for ensemble clustering,” Computational
Intelligence and Neuroscience, vol. 2017, Article ID 4367342,
11 pages, 2017.

[29] W. Yi, X. Li, and B. Pan, “Solving flexible job shop scheduling
using an effective memetic algorithm,” International Journal
of Computer Applications in Technology, vol. 53, no. 2,
pp. 157–163, 2016.

[30] P. V. Paul, P. Dhavachelvan, and R. Baskaran, “A novel
population initialization technique for genetic algorithm,” in
Proceedings of the 2013 International Conference on Circuits,
Power and Computing Technologies (ICCPCT), pp. 1235–1238,
IEEE, Nagercoil, India, March 2013.

[31] H. Zhou, T. Shi, G. Liao et al., “Weighted kernel entropy
component analysis for fault diagnosis of rolling bearings,”
Sensors, vol. 17, no. 3, p. 625, 2017.

[32] C. M. Kung, W. S. Cheng, and J. H. Jeng, “Application of
genetic algorithm to hexagon-based motion estimation,” ?e
Scientific World Journal, vol. 2014, Article ID 689294,
12 pages, 2014.

[33] H. M. Pandey, A. Chaudhary, and D. Mehrotra, “A com-
parative review of approaches to prevent premature con-
vergence in GA,” Applied Soft Computing, vol. 24,
pp. 1047–1077, 2014.

Computational Intelligence and Neuroscience 13



[34] K.-M. Lee, T. Yamakawa, and K.-M. Lee, “A genetic algorithm
for general machine scheduling problems,” in Proceedings of
the 1998 Second International Conference. Knowledge-Based
Intelligent Electronic Systems, vol. 2, pp. 60–66, IEEE, Ade-
laide, Australia, April 1998.

[35] M. Watanabe, K. Ida, and M. Gen, “A genetic algorithm with
modified crossover operator and search area adaptation for
the job-shop scheduling problem,” Computers & Industrial
Engineering, vol. 48, no. 4, pp. 743–752, 2005.

[36] Y. Ma and J. Wan, “Improved hybrid adaptive genetic al-
gorithm for solving knapsack problem,” in Proceedings of the
2011 2nd International Conference on Intelligent Control and
Information Processing, vol. 2, pp. 644–647, IEEE, Harbin,
China, July 2011.

[37] P. Brandimarte, “Routing and scheduling in a flexible job shop
by tabu search,” Annals of Operations Research, vol. 41, no. 3,
pp. 157–183, 1993.

[38] M. Ziaee, “A heuristic algorithm for solving flexible job shop
scheduling problem,” International Journal of Advanced
Manufacturing Technology, vol. 71, no. 1-4, pp. 519–528, 2014.

[39] B. Marzouki, O. Belkahla Driss, and K. Ghédira, “Multi agent
model based on chemical reaction optimization with greedy
algorithm for flexible job shop scheduling problem,” Procedia
Computer Science, vol. 112, pp. 81–90, 2017.

[40] C. Armin, H. k. Mostafa, andM. P. Mohammad, “Tree growth
algorithm (tga): A novel approach for solving optimization
problems,” Engineering Applications of Artificial Intelligence,
vol. 72, pp. 393–414, 2018.

14 Computational Intelligence and Neuroscience




