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Mapping specificity, cleavage entropy, allosteric
changes and substrates of blood proteases in a
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Proteases are among the largest protein families and critical regulators of biochemical pro-

cesses like apoptosis and blood coagulation. Knowledge of proteases has been expanded by

the development of proteomic approaches, however, technology for multiplexed screening of

proteases within native environments is currently lacking behind. Here we introduce a simple

method to profile protease activity based on isolation of protease products from native

lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data

analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy

to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases

as a case study, we obtain protease substrate profiles that can be used to map specificity,

cleavage entropy and allosteric effects and to design protease probes. The data further show

that protease substrate predictions enable the selection of potential physiological substrates

for targeted validation in biochemical assays.
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Proteolytic cleavage by proteases is a common protein
posttranslational modification and a mechanism that reg-
ulates protein functions. It is crucial for cellular health and

homeostasis and is also involved in the development and pro-
gression of various diseases including cancer, inflammation,
autoimmune, cardiovascular and metabolic disorders1,2. There-
fore, it is not surprising that proteases are widely recognized as
diagnostic markers and therapeutic targets in the biomedical
field3. The knowledge of protease cellular and physiological
functions as well as their substrates and cleavage preferences is
crucial to design molecules for therapeutic modulation of pro-
tease activity4,5. In the wake of the progress achieved by bottom-
up mass-spectrometry based proteomics6, several techniques to
systematically study protease-substrate relationships have been
described. They can be grouped into two broad classes. The first
aims at concurrently generating activity profiles of numerous
proteases present in a complex sample. This is usually accom-
plished by the use of activity-based probes7–9. The second aims at
identifying, typically by mass spectrometry, the substrate(s) of
specific proteases, followed by the analysis of protease cleavage
products and substrate repertoires, often referred to as protease
degradomics4. Relevant techniques to identify protease substrates
include COFRADIC (combined fractional diagonal chromato-
graphy)10,11, ChaFraDIC (charge-based fractional diagonal
chromatography)12, PICS (proteomic identification of protease
cleavage sites)13,14 and TAILS (terminal amine isotopic labeling
of substrates)15,16 which are reviewed elsewhere17–19. More
recently, workflows like FPPS (fast profiling of protease specifi-
city)20 and especially label-free degradomic workflows like DIPPS
(direct in-gel profiling of protease specificity)21 and ChaFraTip
(ChaFraDIC performed in a pipet tip format)22 made protease
characterization easier and more accessible by describing sim-
plified workflows and omitting extensive fractionation or labeling
steps. Furthermore, DIPPS21 and ChaFraTip22 can simulta-
neously map prime and non-prime substrate sites by sequencing
the protease-generated peptides to retrieve protease specificity. In
spite of these developments, several limitations remain, which
limit the throughput, cost-effectiveness or physiological relevance
of these assays. Specifically, the above-mentioned methods suffer
from the following limitations: (i) they mostly assay protease-
substrate relationships under less- or non-physiological condi-
tions, e.g. using digested (PICS) or denatured proteins (DIPPS) as
substrates; (ii) they require chemical modifications, enrichment
or separation steps of the protease products (TAILS, COFRADIC,
FPPS, PICS, ChaFraDIC), often resulting in costly, time-
consuming and technically demanding protocols; (iii) they are
not easily multiplexed and usually limited to capturing a few
hundred protease cleavages per experiment/sample/fraction
which is often not sufficient to comprehensively cover protease-
substrate relationships. The consequences of these limitations are
well-reflected in the substrates deposited in the MEROPS protease
database, currently the most comprehensive protease-substrate
resource23. About 60% of the 4,000 proteases in MEROPS do not
have known substrates (orphan proteases), and less than 200 have
more than 30 substrates/cleavages identified to date (Fig. 1a)
(MEROPS release 12.1). Since coverage of at least 30 substrates/
cleavage events is required to calculate a reliable substrate spe-
cificity with an error rate of 5%24 such analyses are currently only
possible for less than 5% of proteases across the kingdoms of life.
The expansion of cleavage product datasets generated on proteins
with preserved native fold (near-native conditions) will improve
our understanding of protease-substrate relationships at two
levels. First, the large number of substrates will add statistical
power to the calculation of reliable protease recognition
sequences and highlight the contribution of substrate steric
information to the cleavage pattern. Second, the large number of

substrates will aid the training of algorithms to improve the
prediction of proteases involved in natural peptide generation,
exemplified by Proteasix25, PROSPER26 and SitePrediction27.

In this study, we report a streamlined method for high-
throughput parallel protease characterization, which we dub
“High-Throughput Protease Screen” (HTPS). HTPS is based on
simple isolation of protease-specific peptides from native lysates
using a 96 FASP (96 wells filter-aided sample preparation)28,29 that
are subsequently identified by data dependent acquisition (DDA)
mass spectrometry enabling a simultaneous profiling of up to 32
proteases in triplicates. We use HTPS to characterize proteases
commonly applied in proteomic workflows (Trypsin, Lys-C, Asp-N,
Glu-C and Chymotrypsin), as well as WN NS3, MMP2 and MMP3
as a benchmark. We further identify products of nine blood-
activated coagulation proteases (activated α-, β-, and γ-Thrombin,
aFVII, aFIX, aFX, aFXI, activated protein C (aPC) and plasmin
(PLG); for gene name conversion see Supplementary Data 1),
expanding the repertoire of known substrates/cleavage events by
about two orders of magnitude (Fig. 1b, Supplementary Data 2) and
map the allosteric effect of Na+ on activity, substrate specificity and
cleavage entropy. We finally use HTPS data to design fluorescent
substrates for activated α-Thrombin and aFX and develop a sta-
tistical framework to predict potential physiological substrate can-
didates of the blood cascade proteases among secreted proteins.

Hence, we describe a simple, high-throughput method for
protease product profiling that supports data-driven reconstruc-
tion of protease recognition sequences, substrate design, predic-
tion of protease substrates and an assessment of the effects of
allosteric changes on substrate specificity.

Results
A method for high-throughput screening of protease substrates
and cleavage sites on native proteins. The high-throughput
protease screen (HTPS) protocol consists of two main steps: (i)
sample preparation and data acquisition, (ii) computational
identification and analysis of protease cleavage products (Fig. 1c).
First, a native cell lysate is prepared, where endogenous proteases
are blocked with low-molecular weight inhibitors and the excess
inhibitors as well as peptides resulting from background pro-
teolysis are removed using membrane filters with a 10 kDa
MWCO. To screen the protease of interest under microscale
conditions, 50 µg aliquots of the thus prepared native lysate are
proteolyzed with the protease in question at 1:50 enzyme to
substrate ratio. This step is performed in 96FASP filter plates with
a MWCO of 10 kDa29, which retains undigested proteins and the
added protease and supports recovery of the cleavage products in
the flow-through. Four downstream sample processing steps
typical for bottom-up proteomics, namely reduction and alkyla-
tion, Trypsin digestion and C18 cleanup are bypassed. The pro-
cedure preserves native substrate fold and disulfide bridges as
these can impact substrate accessibility while performing pro-
teolysis on proteins in their native fold. The generated samples
are free from detergent and salt and the peptides collected after
FASP centrifugation are directly analyzed by DDA-MS. This
simplifies the sample preparation and the workflow eliminates
steps that can lead to peptide loss, induce bias towards a parti-
cular class of peptides or alter the protease fingerprints. While
trypsinization or an additional digestion step with a com-
plementary protease could be potentially beneficial in a double
step proteolysis, we found that the investigated proteases gener-
ated a considerable number of peptides and only a generally
minor, although variable, amount of under-digested peptides/
protein fragments was detected at the end of the reverse phase
chromatograms. This does not generally have an impact on
chromatography or MS instrument performance, as assessed by
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the stability of the retention time and stability of MS2 intensity of
the external standard iRT peptides that were used to check the
performance of the instrument after every triplicate measurement
(Supplementary Fig. 1a, b). The result of these steps are sets of
fragment ion spectra of peptides that are highly enriched for
substrates of the protease tested.

In the second step, the protease-generated peptides can be
identified with any tandem mass spectra search tool. In our
implementation the Andromeda30 search engine in MaxQuant31

was used with unspecific database search parameters as described
elsewhere21. Importantly, we searched the data with a reduced
database (HTPS_DB.fasta) generated from proteins identified in
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Trypsin, Lys-C, Asp-N, Glu-C and Chymotrypsin samples. The
rationale for this strategy is that searches against large databases
with many proteins that are not present/detected in the samples
lead to a FDR (false discovery rate) inflation and a decrease in the
PSM (peptide-spectrum matches)32,33, particularly pronounced
in case of unspecific searches. In our benchmark, we used
HTPS_DB.fasta containing 2,557 protein sequences correspond-
ing to ~12% of the human UniProt database showing the same
distribution of amino acids (Supplementary Fig. 2a, b) as the
whole UniProt database. With a FDR control at the peptide level
set to 0.01, the use of HTPS_DB.fasta increased the number of
PSMs compared to a full proteome database by 19% in the case of
Trypsin and by more than 33% in the case of Chymotrypsin
(Supplementary Fig. 2c). This increased the ratio of matched MS/
MS spectra over all MS/MS spectra and the number of identified
peptides (Supplementary Fig. 2d), while decreasing analysis time
(Supplementary Data 3). Next, positional frequency of amino
acids, the cleavage entropy34 (a quantitative measure of protease
specificity) and block entropy35 (a measure of protease sub-site
cooperativity) were calculated with a series of scripts that we
developed for the study and that were extensively annotated and
deposited in GitHub (https://github.com/anfoss/HTPS_workflow,
https://doi.org/10.5281/zenodo.4484341). Protease specificity is a
direct result of analyzing the peptide pool generated in a cleavage
assay and mapping the determined termini onto the protein
sequence. In contrast, cleavage entropy is calculated as informa-
tion entropy (Shannon entropy) and ranks proteases from less
specific (i.e., higher cleavage entropy, e.g., Chymotrypsin in P1) to
more specific proteases (i.e., lower cleavage entropy, e.g., Trypsin
specificity in P1). These data can be supplemented by block
entropy analysis of sequential amino acid blocks upstream/
downstream the cleavage site to investigate potential sub-site
cooperativity. Briefly, after filtering the MaxQuant peptide results
(contaminants, decoys and low-score peptides), the cleavage
sequences of the identified peptides were converted to a frequency
matrix covering 8 amino acids upstream and 8 downstream the
cleavage site (P8-P1 and P1’-P8’, respectively). Protease cleavage
specificity was inferred by comparing the observed frequency
with a random (null) distribution generated from the database
and computing a two-side paired t-test. The cleavage sequences
from peptides identified after proteolysis were directly used as
input for the protease characterization, as we did not introduce a
bias from the original protein termini (Supplementary Fig. 3a–d).
Furthermore, we observed that the protease specificity profile was
not influenced by background peptides present in absence of a
protease (Supplementary Fig. 4a) because they were present in
low numbers and no significant positional enrichment of amino
acid frequencies compared to a random (null distribution) was
observed (Supplementary Fig. 4b). Importantly, the number of
peptides identified by HTPS provides a good proxy for
monitoring protease activity as demonstrated by the global
proteolysis kinetics of Chymotrypsin (Supplementary Fig. 5a) and
α-Thrombin (Supplementary Fig. 5c). Of note, while the number
of detected cleavage products increased over time, the specificity

inferred from the detected cleavage products was mostly time-
independent for Chymotrypsin (Supplementary Fig. 5b) and α-
Thrombin (Supplementary Fig. 5d). Overall, the combined
experimental and data analysis HTPS workflow supports, in a
single operation, the identification of thousands of cleavage
events, outperforming for almost all proteases the number of
reported substrates/cleavages in MEROPS database. This is
particularly noteworthy in the case of aFXI, aPC and aFVII
proteases for which, so far, less than 30 substrates/cleavages were
identified (Fig. 1b, Supplementary Data 2).

Benchmarking the performance of the HTPS screen. To test the
performance of HTPS we conducted three distinct benchmarking
experiments. First, we applied our protocol to the proteases
Trypsin, Lys-C, Asp-N, Glu-C and Chymotrypsin which are
specific, well characterized36 and commonly used in proteomic
workflows. Protease characterization was performed in triplicates
using the test proteases at a [E]/[S] ratio of 1:50 and the lysates as
substrate sample. Using the workflow described above we iden-
tified a higher number of cleavage events for proteases specific for
basic amino acids compared to proteases with other cleavage
specificities: we identified around 16,600 and 14,000 peptides with
Trypsin and Lys-C, respectively, with an overlap of 91.6% and
86.8% between the triplicates (Fig. 2a). For proteases recognizing
amino acids with acidic side chains (Glu-C and Asp-N) and for
proteases with lower specificity like Chymotrypsin, we recovered
between 8,800 and 9,400 peptides, with similar levels of repro-
ducibility (average overlap of 88%) between triplicates (Fig. 2a).
Non-tryptic peptides often have worse chromatographic separa-
tion, ionization and fragmentation properties than Trypsin pro-
ducts and it is estimated that only 4% of all proteomic data sets
are generated with proteases other than Trypsin37. Nevertheless,
the fraction of matched MS/MS spectra over all MS/MS spectra
range between 14–27% for all analyzed proteases (Supplementary
Data 3). From the list of identified cleavages we generated spe-
cificity profiles via iceLogos38 with a p-value cutoff of 0.01
(Fig. 2b, Supplementary Data 4 and 5, for heat maps see Sup-
plementary Fig. 7) in agreement with data from the MEROPS
database23 and in-line with their well characterized cleavage
specificity profiles36.

Second, to further benchmark the performance of HTPS against
established methods, we used it to characterize the substrate
specificity of a viral protease. WN NS3 is a serine protease from a
pathogenic West Nile flavivirus that mostly causes flu-like
symptoms. While viral proteases are promising therapeutic targets,
their characterization is difficult due to lack of structural
information and a rather high degree of substrate specificity (they
usually process a large viral polyprotein)39 and to date only
16 substrates are reported in MEROPS. Recently, the WN NS3
protease specificity was extensively characterized by the use of
fluorescent combinatorial libraries, reporting a strong preference for
basic residues like Arg and Lys at P1, and a preference for Lys at P2
and P3 position40. While this study included more than 100 natural

Fig. 1 The protease characterization challenge and the HTPS workflow. a Distribution of identified substrates per protease annotated in the MEROPS
database (release 12.1). From 4,021 proteases reported across the kingdom of life, 2,451 are orphan proteases (protease without known substrates) and
only around 200 proteases have a sufficient number of known cleavages (i.e., 30 or more) to calculate their specificity with an error rate of 5% (red line on
the chart). b Bar plot showing the number of reported protease substrates/cleavages annotated in MEROPS (red) and the number of potential protease
substrates/cleavages identified in this study in single (n= 3 independent samples, green) or in multiple conditions (n= 3 independent samples per
condition, blue). c High-throughput native microscale protease screen (HTPS). In the screen, a standardized native cell lysate is proteolyzed with the
studied protease. The protease-generated peptides are collected, analyzed by MS, and the identified substrate peptides are analyzed to retrieve activity,
specificity and cleavage entropy data. This data can be used to (i) design synthetic substrates, (ii) characterize allosteric conformational changes and (iii)
infer physiological protease substrates. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21754-8

4 NATURE COMMUNICATIONS |         (2021) 12:1693 | https://doi.org/10.1038/s41467-021-21754-8 | www.nature.com/naturecommunications

https://github.com/anfoss/HTPS_workflow
https://doi.org/10.5281/zenodo.4484341
www.nature.com/naturecommunications


and unnatural amino acids in the combinatorial libraries, the
positional preferences identified with our screen for the natural
amino acids are in good agreement, revealing a trypsin-like
specificity of the WN NS3 protease (Fig. 2b).

As the third benchmarking step we characterized MMP2 and
MMP3 from MMPs family which have been extensively studied

by multiple proteomics techniques41 because of their involvement
in development and progression of different pathologies,
especially cancer42. Over the last few years, the substrate
specificity of MMPs was characterized using different methods,
including PICS43,44, TAILS45 and DIPPS21. For the comparison,
we used the cleavages identified in the studies and analyzed them
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with the HTPS workflow to generate the frequency matrices as
the basis for the respective positional specificities. In three out of
four comparisons, our approach resulted in a higher number of
cleavages (Fig. 2c), 3,614 for MMP2 and 2,464 for MMP3 and an
overlap of almost 90% between triplicates (Fig. 2a, Supplementary
Data 4). We determined all positional amino acid (AA)
enrichments in comparison to the natural AA distribution in
the database, reporting only significant values (adjusted p-value
<0.01, Fig. 2d, Supplementary Data 5). HTPS data indicated that
MMP2 and MMP3 both have similar specificities (Fig. 2d), with
preference for Pro, Ala, Val and Ile at P3 position. Further, at P2
position, we observed a preference for Ala, Ser, Gly for MMP2
and Ala, Gly for MMP3. At P1 position Ala, Asn and Pro was
observed for MMP2 and Glu, Ala, Gln and Asn for MMP3.
Additionally, we observed a preference for Leu, Met, Tyr, Ile at
P1’ and Lys, Arg, Met, Thr at P2’ for both proteases and a
different specificity in position P3’ for Ala (in case of MMP3) and
for Ala, Gly and Ser (in case of MMP2), which is mostly in
agreement with the proteases preference reported in other
aforementioned studies21,43–45. The comparison of the methods
in terms of reported positional amino acid enrichments showed a
good overall correlation between PICS, TAILS, DIPPS and HTPS
with the R2 ranging from 0.52 for PICS to 0.77 for DIPPS
(Fig. 2e). Taken together, these observations corroborate the
validity of HTPS as an alternative method for protease profiling.

High-throughput screening of blood coagulation cascade proteases.
We then applied the method to comprehensively characterize the
blood cascade serine proteases. The group of enzymes tested consists
of blood coagulation proteases aFVII, aFIX, aFX, aFXI, activated α-
Thrombin, PLG and aPC as well as β- and γ-Thrombin. We chose
these proteases because they (i) are biologically and chemically related;
(ii) have a substantial therapeutic potential; (iii) have been to some
extent structurally characterized and (iv) their repertoire of substrates
is not yet fully characterized. Moreover, we extended the screening to
β- and γ-Thrombin, two proteolytic proteoforms of α-Thrombin.
Albeit not physiologically relevant in the coagulation cascade, they are
a good example to test the sensitivity of HTPS with protease pro-
teoforms. In blood cascade, the concerted action of serine proteases
regulates blood clot formation through activation of Thrombin which
converts fibrinogen to insoluble fibrin and activates platelets via PAR1
proteolytic activation46. Besides the nine blood coagulation proteases
we also included Chymotrypsin to the screen because it has the
archetypal protease structure for the S1 chymotrypsin-like family47.

The respective proteases were analyzed using the HTPS
workflow. The activities of all coagulation proteases included in
the screen were determined by active site titration (Supplemen-
tary Data 1) in order to standardize the activity of proteases used
in the assay. The detected specificity features are summarized in
Fig. 3a. For each protease we identified from 1,800 for aFVII and
up to more than 10,000 peptides for PLG (Fig. 3b). This
represents an increase in the number of identified cleavages by
about two orders of magnitude compared to MEROPS database
(Figs. 1c and 3b, Supplementary Data 2). While most of these
substrates are not likely to be processed during blood coagulation

due to the nature of the substrate sample, they are nevertheless
very useful to determine the cleavage specificity, cleavage entropy,
allostery and other functional/structural properties of the
proteases. The heat maps shown in Fig. 3a and Supplementary
Fig. 7 report significant (corrected p-value < 0.01, Supplementary
Data 5) enrichment of amino acids around the cleavage site for
positions P4-P4’, in comparison to the amino acid distribution in
HTPS_DB.fasta. To gain a more structured insight into the
cleavage specificity relationships among the tested proteases, we
performed an unsupervised hierarchical clustering according to
their substrate preferences (Fig. 3c). This analysis revealed the
existence of 4 clusters. Cluster 1 included PLG, aFXI and γ-
Thrombin, proteases with a strict specificity limited to position P1
for Arg and Lys. Cluster 2 included α- and β-Thrombin, and
aFVII and showed specificity in P1 for Arg and a contribution to
the specificity of all positions close to the cleavage site (P3-P2’).
Cluster 3 contained aFX, aPC and aFIX and showed an
intermediate specificity between the first two clusters, but
generally closer to cluster 1. As expected, Chymotrypsin clustered
separately from the clotting proteases as it shows a cleavage
specificity for hydrophobic amino acids (Phe, Trp and Tyr at P1
position and Leu, Met to a lesser extent).

Both, specificity profiles and clustering are in-line with the
prior knowledge about these proteases from MEROPS and other
specificity studies48,49. All coagulation proteases have a defined
trypsin-like specificity in position P1. There is also a strong
preference for substrates with Arg and to a lesser extent for Lys in
P1 position where specificity is tightly regulated by the ionic
interaction between the negative carboxylate group of Asp 189
and the positive charged group of the substrate50,51. While the
detected enrichment of Arg at P1 position was similar for all
proteases, the level of enrichment of Lys was highest for the
members of cluster 1. All profiles are characterized by higher
specificity in P1 position and lower specificity in other extended
positions, indicating that, similar to Trypsin and Chymotrypsin,
the protease specificity is determined mainly by the P1 position.
This is also evident from the sub-pocket resolved cleavage
entropy profiles (Fig. 3d), which show the substrate preference
per position for each protease. Proteases from cluster 1 are
promiscuous proteases, their specificity is essentially determined
by the amino acid in position P1 and, as consequence, they cleave
more frequently compared to other coagulation proteases
(Fig. 3b).

Coagulation proteases differ from Chymotrypsin structurally by
the presence of two insertion loops (loop 60 and loop 148)46. These
loops form a rigid lid-like structure which regulates accessibility to
the catalytic pocket, generates a more extended specificity for
coagulation proteases (from P3 to P2’) and thus a distinct substrate
fingerprint. As an example, the preference of aFX for Gly in
position P2 (Fig. 3a) is generated by bulky residues in the insertion
loop which accepts small amino acids at the corresponding
substrate positions52. In α-Thrombin, the 60-loop generates the
preference in position P2 for Pro, hydrophobic and planar residues
and a preference in position P1’ for small residues like Ala (Fig. 3a).
The key role of the steric hindrance of the 60-loop in the selectivity

Fig. 2 Benchmark of HTPS performance with different proteases. a Peptides generated from benchmark measurements using well-characterized
proteases, WN NS3 protease and MMPs; each protease is characterized by the average number of peptides identified from three independent replicate
experiments (left) and by the overlap across triplicates (right). For all proteases except WN NS3 (n= 1) three independent replicates were analyzed. Data
are presented as mean values±SD. b Specificity benchmark with proteases commonly used in proteomics workflows as well as WN NS3 protease and
MMPs presented as iceLogos. The protease specificity preferences are shown for P3-P3’ positions. c Identified cleavages for MMP2 and MMP3 using
different protease characterization approaches (PICS43,44, TAILS45, DIPPS21 and HTPS). HTPS analysis was performed with three independent replicates.
dMMP2, MMP3 substrate specificity presented as iceLogos covering P3-P3’ positions. e Correlation of the reported specificity enrichment per position for
MMP2 and MMP3 between HTPS and other protease workflows (DIPPS21, PICS43,44 and TAILS45). Source data are provided as a Source Data file.
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of α-Thrombin was shown by mutagenesis experiments53 and by
the promiscuous specificity of γ-Thrombin generated by autopro-
teolysis of α-Thrombin. These cleavages generate an extensive
disorder region in the 60-loop which provides an explanation for
the observed loss of specificity54.

So far, different techniques have been applied for in-depth
characterization of the substrate specificity of α-Thrombin,
including combinatorial peptide libraries55–57 and phage dis-
play libraries58. In this study, we accurately recapitulated the
well characterized α-Thrombin specificity and compared it in
the so far most comprehensive fashion with the other blood
coagulation proteases included in the study. Notably, we
increased the knowledge about their substrates/cleavages by a
large margin (Supplementary Data 2 and 4), defined their
specificities (Supplementary Fig. 7, Supplementary Data 5),
cleavage entropies (Supplementary Fig. 8, Supplementary
Data 6), and block cleavage entropies (Supplementary Figs. 9
and 10, Supplementary Data 7) to show that this unique dataset
could recapitulate and extend the knowledge on blood
proteases.

Detection of effects of modulators on activity and specificity of
blood cascade proteases. In the previous section, we found that

specificity profiles generated with our method were sensitive
enough to detect subtle differences between the investigated
proteases. We next asked whether HTPS could detect changes of
activity and specificity profiles after the binding of modulators,
which can influence the catalytic activity of an enzyme (cofactor)
or induce allosteric rearrangements of the protease catalytic
pocket. We investigated the effect of Tissue Factor, a cofactor that
binds to FVII to form a protein complex that activates the pro-
tease and thus initiates the extrinsic pathway of coagulation59. We
observed that the presence of Tissue Factor boosted the activity of
aFVII resulting in a 3-fold increase in FVII generated peptides
(from an average of 2,814 to 6,912) (Fig. 4a). Next, we applied
HTPS to study the effects of Na+ binding on the activity of
coagulation proteases and to investigate protease specificity
changes as consequence of the allosteric mechanism. Allostery is a
crucial regulatory mechanism of proteins where the binding of an
allosteric effector modulates conformational and consequently
functional changes of a protein. Allosteric effects have been
extensively studied in the case of α-Thrombin60,61, but a sys-
tematic proteomic approach has not been applied to study the
effect of Na+ on coagulation proteases. To investigate the effects
of Na+ on the reorganization of the hydrophobic pocket in the
active site of blood coagulation proteases and the ensuing effects
on activity and specificity, we generated protease fingerprints of

Fig. 3 High-throughput screening of coagulation proteases. a Positional substrate preferences of coagulation proteases from the chymotrypsin-like family
(Chymotrypsin, activated α-, β-, γ-Thrombin, aFVII, aFIX, aFX, aFXI, aPC and PLG). The heat map includes positions P4-P4’. The AAs are grouped according
to their physicochemical properties. The enrichments are reported as log2 FC compared to a random AA distribution generated from HTPS database.
b Peptides generated by the coagulation proteases included in the study; each protease is characterized by the average number of peptides identified from
three independent replicate experiments (n= 3). Data are presented as mean values±SD. c Unsupervised hierarchical cluster of coagulation proteases. The
color scale describes the Pearson correlation coefficient value calculated for the respective protease samples. d Unsupervised hierarchical cluster of
coagulation proteases according to the positional cleavage entropy. The color scale describes the cleavage entropy (S) values for positions P8-P8’ for all
respective proteases included in the assay. Source data are provided as a Source Data file.
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tested coagulation proteases in the presence of 0.2 M NaCl and
choline chloride (ChCl). As the latter was reported to be a weak
competitive inhibitor of protease activity of aFX62, we measured
the allosteric effect of Na+ using double controls with 0.2 M ChCl
or LiCl to keep the ionic strength constant without exerting an
allosteric effect63. While Ch+ is a bulk monovalent cation, which

cannot be coordinated in the Na+ binding site, Li+ is too small to
generate a productive allosteric effect. Before assaying the effect of
Na+ allostery on protease activity and specificity at 20 °C (at this
conditions, α-Thrombin exists predominantly in Na+-bound or
Na+-free form63), we evaluated the effect of lower temperature on
activity and specificity of Chymotrypsin and α-Thrombin. While
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we observed around 20% reduced number of cleavage products
(Supplementary Fig. 6a, c) we did not detect a significant change
in protease specificity (Supplementary Fig. 6b, d), thus confirming
that HTPS can be efficiently applied to study coagulation pro-
teases under optimal allostery conditions. We first tested whether
the experimental conditions recapitulated the well-known activity
patterns of α-Thrombin towards Fibrinogen (FGA) and Protein C
(PC). Previous studies have shown that α-Thrombin, when bound
to Na+ (Fast form) has an enhanced activity towards the pro-
teolysis of fibrinogen to fibrin, crucial for clot formation (pro
coagulant activity). When α-Thrombin is in the Na+-free form,
and co-adjuvated by Thrombomodulin, it can cleave and activate
PC, a protease that influences α-Thrombin generation via a
negative feedback mechanism64–66 (anticoagulant activity). This
equilibrium is particularly relevant at 37 °C, as the dissociation
constant of α-Thrombin with bound Na+ is close to the con-
centration of the ion in blood64 and a subtle deviation of Na+

concentration, e.g., around platelet thrombi in vivo, generates a
different substrate selectivity with an important implication for
the pro- vs. anti-coagulant activity of α-Thrombin. The number
of identified peptides confirmed a higher activity for α-Thrombin
in the Na+-bound form (Fast form) compared to the Na+-free
form (Slow form) (Fig. 4b). The cleavage patterns observed in our
data were used to calculate the sum of significant positional
enrichment of each AA against a random distribution (HTPS
Motif Score) for physiological substrate motifs of FGA
(LAEGGGVR-GPRVVERH) and PC (QEDQVDPR-
LIDGKMTR)58. In presence of NaCl, we observed a clear pre-
ference for FGA in comparison to PC substrate; while in presence
of ChCl we did not observe such a preference (Fig. 4c). This is in
agreement with previous studies, which showed that 0.2 M Na+

led to an increase in the specificity towards FGA, but not towards
PC64. This effect, together with boosted activity of α-Thrombin in
the presence of Na+ (Fig. 4b) results also in a higher rate of FGA
cleavages.

Other proteases, similar to α-Thrombin, exhibited an increase
in proteolytic activity and these patterns reflected well the
requirements for allosteric regulation of blood cascade proteases,
where Na+ can be coordinated only if Phe or Tyr are at position
22562,67,68 (Fig. 4d). Indeed, we observed the strongest fold
change of activity (Fig. 4e) between NaCl and ChCl/LiCl in case
of aFVII (Phe at position 225), followed by aFIX, aFX, activated
β-, α- and γ-Thrombin (all having Tyr at position 225). In
contrast, for Trypsin, aFXI, Chymotrypsin and PLG, proteases
with a Pro in position 225, we observed no significant differences
between NaCl and ChCl (Fig. 4e). Interestingly, we observed that
γ-Thrombin, which contains a Tyr in position 225 showed a

somewhat intermediate pattern between the two groups,
presumably due to the flexibility of the 60-loop which generates
a reduced selectivity in the catalytic pocket (Figs. 3a and 4e).

We next performed an unsupervised hierarchical clustering to
investigate the impact of allostery on the specificity of blood
coagulation proteases included in the study. We clustered the
significant specificity changes detected in presence of NaCl vs.
ChCl/LiCl (Fig. 4f). We observed that i) the cleavage events
detected in ChCl and LiCl controls clustered closely together,
indicating the effects observed on protease activity are a direct
consequence of Na+ and ii) proteases regulated allosterically by
Na+ clustered closely together and showed significant changes in
their substrate specificity. In contrast, no significant changes were
observed for proteases that cannot bind Na+ and thus cluster
separately. The specificity differences observed in case of aFVII,
aFIX, aFX, β- and α-Thrombin suggest, that Na+ had an impact
not only on the number of cleavages, but also on substrate
specificity (Supplementary Figs. 7 and 11). Importantly, this is
also evident from the correlation between activity changes and
the changes detected at the level of substrate preference with a R2

value of 0.84 (Fig. 4g). These results demonstrate that Na+

binding to the allosteric site of coagulation cascade proteases
regulates their activity in a way that reflects on protease substrate
preference (Fig. 4h) and cleavage entropy (Fig. 4i) with strong
changes observed, for example, for aFIX, moderate changes for
activated α-Thrombin and no changes observed for aFXI (for
other proteases, see also Supplementary Figs. 7, 8, 9, 10 and 11).

Overall, we characterized the effect of Na+, a critical and well-
known allosteric binder and regulator, on coagulation proteases
included in the study, and showed that HTPS has the capacity to
detect the functional consequences of allosteric changes with
remarkable sensitivity. We found that differential activity,
specificity and entropy correlated exactly with the presence or
absence of residues that enable Na+ coordination. This highlights
the potential of this approach as a tool for systematic screening of
the effects of drugs or peptide-mimetic molecules as modulators
of therapeutically relevant proteases.

Designing fluorescent substrates for blood cascade proteases.
To demonstrate the translational value of HTPS, we used the
protease specificity data generated above to design fluorescent
substrates to detect and discriminate the activity α-Thrombin and
aFX. The design of fluorescently or otherwise labeled substrates is
important to characterize proteases in kinetic cleavage assays and
to use this knowledge to support the design of new activity-based
probes and inhibitors. After characterizing the specificity of the
proteases, we selected for each position amino acids with most

Fig. 4 HTPS detects activity and specificity changes induced by allosteric modulators. a The effect of Tissue factor on the number of identified peptides
with aFVII (n= 3 independent replicates). Data are presented as mean values±SD. b The effect of Na+ on the number of identified peptides with α-
Thrombin (n= 3 independent replicates). Data are presented as mean values±SD. c The effect of Na+ on amino acid specificity enrichment of α-Thrombin
towards its known physiological substrates (FGA and PC). The specificity change was calculated from the sum of significant fold change of amino acid
enrichment per position (HTPS Motif Score). This value reflects the preference of α-Thrombin forms towards the respective substrates. d Chymotrypsin-
like family protease primary sequence alignment in correspondence of the sites which regulate the coordination of Na+ (220–226), adapted from67.
Residue 225 is crucial for Na+-induced allosteric regulation of serine proteases. Proteases with Tyr (blue) or Phe (orange) in position 225 can coordinate
the Na+ ion while proteases with Pro (green) in position 225 cannot bind it. e Relative log2FC of identified cleavages in presence and absence of Na+ (n= 3
independent replicates). Data are presented as mean values±SE. The color code corresponds to the allosteric requirements reported in 4d, while the bar
colors correspond to the control used (ChCl - red, LiCl - blue). f Unsupervised hierarchical cluster of protease specificity changes as result of allosteric
effects (NaCl-ChCl/LiCl). The color code corresponds to the allosteric requirements reported in 4d. g Correlation plot between the changes of identified
cleavages and changes of substrate specificity observed as result of Na+ allosteric interaction. The color code corresponds to the allosteric requirements
reported in 4d. h Heat maps of specificity changes generated by Na+ allostery: aFXI, activated α-Thrombin and aFIX are ordered based on the magnitude of
allosteric effects at the specificity level. While aFXI does not show any changes, aFIX shows significant changes on the level of specificity. i Positional
entropy changes generated by Na+ allostery: aFXI, activated α-Thrombin and aFIX are ordered based on the magnitude of entropy changes (S) observed at
the positional entropy level. Source data are provided as a Source Data file.
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significant positional enrichment (Fig. 5a, b). We designed two
synthetic peptides that represent the best match according to the
detected specificity for activated α-Thrombin (NH2-
GIPR↓AAGD-COOH) and aFX (NH2-GIGR↓RIAE-COOH). As
our analysis investigated the positional specificity but did not take
into account possible sub-site cooperativity57, we confirmed that

these peptides were cleaved effectively by the respective proteases.
We monitored the intensity of the cleavage products by mass
spectrometry, using MS1 signal integration (Fig. 5c). The results
showed the expected patterns and thus confirmed that both
synthetic peptides represent a good entry point for development
of substrates.
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To evaluate the exact mode of binding of these peptides to the
protease active site (AS), we performed a molecular docking
analysis. The structural data for α-Thrombin (1ppb) and aFX
(1g2l) showed strong similarities of the S1 specific pockets (Asp
189), whereas the S2 and S4 subsites were characterized by
distinct topologies. While S2 is covered by the 60-insertion loop
in α-Thrombin, it is smaller and solvent accessible in aFX.
Further, the aryl-binding site S4 of α-Thrombin, located above
the conserved residue Trp 215, is lined by residues Leu 99 and Ile
174. In aFX, the S4 subsite is built by the corresponding residues
Tyr 99 and Phe 174, which together with the indole ring system of
Trp 215 form the walls of an aromatic box. Our docking models
(Fig. 5d) showed how the residue P1 (Arg) can be effectively
oriented inside the S1 pocket, while the different P2 residues (i.e.,
Pro in the case of α-Thrombin and Gly in the case of aFX) can fit
specifically in the correspondence of S2 subsites, thus ensuring
the interaction with the AS. These results indicate that the
substrate-design based on HTPS results produces structurally
plausible solutions.

Next, we designed small fluorescent tetrapeptide substrates
corresponding to the P4-P1 active site preferences to monitor the
activity of activated α-Thrombin (zGIPR-AMC) and aFX
(zGIGR-AMC). While some selectivity is lost because of placing
the fluorophore at P1’-P4’ positions, we tested the substrates
against a panel of proteases in a standard assay69 and observed
that both substrates had selectivity for the target proteases
(Fig. 5e). Accordingly, zGIPR-AMC was most efficiently cleaved
by α-Thrombin and also by γ- and β-Thrombin, while other
proteases included in the assay did not cleave zGIPR-AMC. The
zGIGR-AMC was less selective because it was cleaved by aFX and
also by α-, β- and γ-Thrombin. We further calculated the kcat/KM

and demonstrated that zGIPR-AMC had good selectivity for α-
Thrombin over aFX (380-fold higher kcat/KM). Selectivity in case
of zGIGR-AMC was substantially lower with kcat/KM 3.5-fold
higher values for aFX in comparison with α-Thrombin (Fig. 5f).
The measured kinetic parameters of the Thrombin substrate were
in the same range as commercially available70 and other reported
substrates71. Accordingly, the α-Thrombin substrate had a 1,000-
fold higher kcat/KM values compared to H‐β‐AGR‐pNA and a
180-fold higher kcat/KM value compared to zGGR‐AMC, two
commercial substrates used in Thrombin generation assays70.
The chromogenic Thrombin substrate S2238 (H-(D)-Phe-Pip-
Arg-pNA), which has physicochemical properties similar to
zGIPR-AMC, is 23-fold more selective than our zGIPR-AMC72,
because it contains in position P3 a non-natural amino acid (D-
Phe) and Pip (Pipecolic acid, i.e. homoproline) at P2 position that
provide additional selectivity in the hydrophobic pocket. This
example demonstrated the translational value of HTPS screen,
where it is possible to generate a substrate with reasonable
selectivity towards the investigated protease in a simple and
straightforward way, and without extensive testing or large
peptide libraries.

Using HTPS data to predict physiological substrates. For the
extensive characterization of the selected target proteases in this
study, a full native lysate from HEK293 cells was used. Since
coagulation cascade proteases are known to be secreted and their
relevant substrates are primarily found in blood, our character-
ization is likely to have captured a large number of biochemically
plausible, but physiologically irrelevant substrates/cleavages. As a
final validation step of our protocol, we therefore asked whether
we could use the protease specificity information derived from a
native lysate to generate hypotheses on proteins known to be
secreted into the blood. To pursue this aim, we developed a three-
step filtering framework to single out, from a large initial search
space, substrate candidates for specific proteases (Fig. 6a). We
used as a reference the 718 proteins reported as secreted to the
blood (human blood secretome from ProteinAtlas73,74) which
contain ~0.3 million 8-residue sequence combinations (from P4-
P4’). In the first step of the analysis, we used a filtering strategy
based on the HTPS-generated protease data. Specifically, we
calculated positional enrichment of each AA against a random
distribution generated from the database and scored each of the
potential target sequences using the sum of the significant fold
changes associated with the respective residues (HTPS Motif
Score) as shown on Fig. 6b. This step correctly identified 13 well-
known Thrombin natural targets (PC, FVIII, IGFBP5, FV, FXI,
FGA and FGB)58,66 (Fig. 6c) in the top 1% of candidate sub-
strates. We observed that the distribution of Motif Score was
bimodal for promiscuous proteases with high specificity in P1
position (i.e. lower cleavage entropy at the cleavage site) such as
Trypsin and PLG (Supplementary Fig. 12b, c), and much less
discrete for those showing less promiscuous specificity features,
e.g. α-Thrombin (Fig. 6b) and aFVII (Supplementary Fig. 12a).
This indicated that for the latter class, there was not a discrete
population of preferred substrates, but broader specificities
modulated by the combination of all amino acids (cooperativity
effects). Using MEROPS (release 12.1) substrates23 identified in
the secretome as true positives, we constructed receiver-operator
curves and filtered the data to match a false positive rate of 1%
(Fig. 6d). By this means, we could reduce the search space of
potential physiological substrates by about 100 times. The eva-
luation of the sensitivity and specificity indicated a good pre-
diction power for all proteases included in the analysis (average
AUC~0.97, Supplementary Fig. 12d–j). In a second step, we used
the JPred475 software tool to predict the solvent accessible regions
of (nearly) all 718 secretome proteins and removed all the
sequences that were predicted to be buried, thus eliminating
structurally implausible targets. This step further reduced the
number of potential targets by about a half, from 2,695 to 1,385
(in case of α-Thrombin substrates). Finally, in a third step, we
used loose protein-level filters to further refine the target selec-
tion: proteins for which no expression was measured as well as
those for which no co-citation with the target protein was
reported were removed. A good proxy for physiological substrates

Fig. 5 Design of octapeptides and fluorescent substrates. a Determination of best-matched substrates from the positional amino acid preferences using
positional substrate preferences (log2FC enrichment compared to random distribution). The best-matched positions selected for the substrate design are
highlighted in bold squares. b Representation of -log10 p-values of AA selected for the octapeptide design to assay protease activity of α-Thrombin and aFX.
c The MS1 intensity integrated area for targeted octapeptide substrates and the corresponding cleavage fragments after incubation with activated α-
Thrombin and aFX over time (0–240min). d In silico docking of activated α-Thrombin and aFX with the two model octapeptides obtained by HPEPDOCK
software. The docked peptides are shown in stick mode and proteases (α-Thrombin 1ppb; aFX 1g2l) in surface representation. The location of active site
(AS) and specific active pocket sites (S1–S4) are indicated in different colors (green, orange, red and purple). e Determination of substrate selectivity
measured by the relative reaction velocities (RFU/s) of fluorescent substrate processing for activated α-Thrombin and aFX tested with a panel of closely
related coagulation proteases (n= 3 independent replicates). Data are presented as mean values±SD. f The calculated kcat/KM values (M−1s−1) for
activated α Thrombin and aFX. Source data are provided as a Source Data file.
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was calculated from the ranking of the frequency of co-citation,
protein abundance and the number of potential cleavage sites.
These steps significantly reduced the search space (we identified
for Thrombin 878 potential physiological cleavages), while having
a negligible effect on the recall of previously known substrates
(Supplementary Fig. 12k). As expected, the final score generated

from our filtering strategy was highly skewed towards known
substrates reported in MEROPS, indicating that it correctly
reports potential substrate candidates (Supplementary Fig. 12m,
Supplementary Data 8). To demonstrate the predictive power of
HTPS, we selected the α-Thrombin predicted cleavage sites on C3
protein. C3 protein, already reported to be α-Thrombin substrate
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and important for crosstalk between the coagulation and com-
plement systems76, was identified in the top 5 rank as potential
physiological substrate of α-Thrombin. To validate the predicted
cleavage sites, we performed a cleavage assay of C3 with α-
Thrombin and identified the cleavage sites using a simplified
reductive di-methylation TAILS workflow16. Subsequently, the
thus identified cleavage sites were matched with the predicted
sites (Fig. 6e, Supplementary Data 9). Remarkably, we could
confirm 5 out of 11 predicted cleavage sites and show how HTPS
filtering approach based on residual exposition and protein fea-
tures (abundance, co-citation, number of cleavages detected) can
be applied to the protease specificity data obtained from a native
cell lysate to predict cleavage events in an extra-cellular envir-
onment. Moreover, all identified cleavage sites for C3 protein (17
in total) were predicted with an HTPS Motif Score > 2 (the
median value for the protein was negative), indicating that it can
successfully map cleavages product in the top 5% hits (Fig. 6f).

Of note, we also found that using this filtering strategy, most
target sequences were unique to specific proteases and only a few
were shared among all six (Fig. 6g). Interestingly, the protein
substrates displayed an opposite trend: only a few proteins were
targeted by a single protease, and the large majority was
potentially a target of several or even all of them. The high
number of target sequences carried on average by each target
protein seems to explain to a significant extent this observation
(Fig. 6h).

Next, we asked which processes and functions were enriched
among the proteins targeted by the blood cascade proteases. We
used DAVID77 to calculate the enrichment against the secretome
background and found that, in line with our expectations,
proteins involved in complement activation and fibrinolysis were
enriched among the potential targets, with the class of serine-type
proteases being most significantly represented in this subset
(Supplementary Fig. 12l). A Sankey diagram (Fig. 6i) shows
indeed that serine proteases were the main substrates of the
investigated blood cascade proteases, which displayed generally
similar connectivity also with other proteases and protease

inhibitor classes. By plotting the number of target sequences for
all 41 serine proteases found in blood, a number of additional
trends emerged. All proteases that were part of the complement
and coagulation pathways were among potential candidates, while
about a third of the proteases, especially kallikrein-like and
tryptase-like, had no target sequence identified after filtering
(Fig. 6j). Collectively, the observations about the correctness of
scoring and recall of known substrates as well as enrichment of
relevant biological processes and functions, indicate that this
strategy is able to recover potentially relevant physiological
substrates of investigated proteases.

Finally, we combined the knowledge about protease substrate
relationships deposited in MEROPS and the information about
protein-protein interactions deposited in BioGRID78 (v.3.6.1.8.2)
in a single network and overlaid it with the data retrieved with
our method. Remarkably, as shown in Fig. 6k, our analysis was
able to capture the large majority of previously known protease-
substrate relationships and protein-protein interactions in an
entirely data-driven way. We thus defined a strategy to generate
context-relevant substrate predictions from HTPS-experimental
results obtained in generic systems. This strategy allowed the
reduction of the sequence search space by more than 3 orders of
magnitude and was able to isolate biochemically, structurally and
biologically plausible and thus likely relevant protease-substrates
relationships.

Discussion
Here we describe and benchmark a high-throughput protease
screen (HTPS) and demonstrate its performance with selected
applications for protease research. We characterized 15 proteases
under physiologically relevant conditions and, excluding results
from proteases used for standard proteomic workflows such as
Trypsin and Lys-C, identified more than 160,000 unique substrate
cleavages, thus substantially expanding the currently available
protease knowledge base. The protocol is simple, scalable, robust,
easy to parallelize for multiple conditions (reduces batch effects),
avoids any chemical modifications or labeling and, as few

Fig. 6 Identification of physiological substrate candidates from HTPS data. a Three step-filtering framework to identify candidate substrates in the blood
secretome. All proteins annotated in ProteomeAtlas as part of the secretome are scored based on the HTPS Motif Score. The distribution of HTPS Motif
Score is filtered using a cut-off of 0.1 FPR using as true positive the cleavages deposited in MEROPS. In the second filtering step, the prediction of amino
acid accessibility is used to identify proteases-accessible substrates. In the third step a protein level filter is applied to exclude proteins, for which the
concentration in the secretome was not determined (ProteinAtlas database) and/or are not co-cited with the investigated protease. In the final matrix, all
proteins are ranked based on the number of identified substrates, protein co-citation and protein abundance. In the right part of the panel, the search space
reduction across the three filtering steps (expressed as number of potential substrate sequences for α-Thrombin) is shown. b α-Thrombin HTPS Motif
Score distribution (light red) and true positive distribution (light blue) calculated from the positional enrichment of each amino acid of all secretome
proteins against the HTPS Motif Score. c Distribution of the HTPS Motif Score of α-Thrombin generated for all proteins of the secretome. Annotated α-
Thrombin physiological substrates are depicted in blue. The HTPS Motif Score cut-off is highlighted by a dashed red line. d A Receiver-Operator Curve
(ROC) of α-Thrombin to evaluate the performance of the filtering step. eMatching of predicted and detected cleavage events in case of α-Thrombin acting
on C3 (Complement component 3). Identification of α-Thrombin cleavage sites in C3 was performed with a simplified di-methylation reaction from TAILS
protocol and the detected cleavages are shown on the upper part of the picture. The lower part shows the positional HTPS Motif Score distribution along
the C3 protein sequence. Only the positive HTPS Motif Scores are shown in the plot. f The distribution of HTPS Motif Score for validated C3 cleavages (red,
median = 2.86, n= 17) and for all positions (gray, median=−1.95, n= 1,663). The boundaries of the box plot correspond to the quantiles Q1 (25%) and
Q3 (75%). Lower and upper whiskers are defined by Q1 −1.5IQR and Q3+ 1.5IQR. The calculated p-value (paired Wilcoxon test) corroborates the validity
of HTPS Motif Score as a proxy to select potential protease substrates for further biochemical validation. g The distribution of the number of proteins
identified by the filtering strategy generated by unique proteases or shared by multiple proteases. h The distribution of the number of proteases predicted
to cleave the corresponding protein substrates demonstrates that coagulation cascade proteases are generally highly promiscuous proteases. i Sankey
diagram showing the distribution of proteases and protease inhibitor classes across the identified candidate substrates. j Bar plot of the number of
candidate substrate sequences identified for the 41 serine proteases included in the final filtered target list. Proteases associated with complement and
coagulation are shown in blue and red, respectively, and main represented families (based on Panther database) are reported as colored squares for
Tryptase-like (yellow), Kallikrein-like (green) and Trypsin-like (red) proteases. k The network of coagulation proteases and their substrates generated from
protein-protein interaction database (simple connection) (BioGRID v.3.6.1.8.2) and MEROPS substrates database (arrow). Protein substrate information
generated from the HTPS data by the previously described filtering steps was superimposed onto the network (black edges) demonstrating that HTPS data
can comprehensively recapitulate protease-substrate relationships of the coagulation cascade. Source data are provided as a Source Data file.
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biochemical steps are required (no enrichment or depletion), it
reduces sample loss. Importantly, the simplicity of the FASP-
based HTPS protocol is also suited to incorporate parallel or
sequential digestion steps, which might be beneficial for studying
proteases that generate lower cleavage numbers. A suite of pub-
licly accessible scripts that support the analysis of the generated
data complement the wet lab protocol. As an example, the
screening of nine coagulation proteases in triplicates under three
different conditions (with NaCl, ChCl and LiCl) required typi-
cally 2–5 µg of individual tested protease, the native cell lysate of a
single 15 cm dish (5 mg of total proteins) as substrate sample, and
could be carried out in only half day of bench work and 2 h of MS
acquisition time per sample. The benchmarking of the method
with standard proteomic proteases, WN NS3 protease and
metalloproteases has produced two main conclusions. First,
HTPS is able to recapitulate accurately protease specificity with a
performance comparable to other methods. Second, HTPS does
generally lead to the identification of vastly larger numbers of
substrate peptides identified per protease, in comparison with
most of the other methods so far used for protease character-
ization. Furthermore, the highly parallel setup reduces batch
effects and increases the method throughput. It can also simul-
taneously recover prime and non-prime substrate specificity
(besides of DIPPS21, PICS79 and ChaFraTip22), but does so in
native conditions.

We demonstrated the microscale and high-throughput cap-
abilities of HTPS by applying the workflow to a set of coagulation
cascade proteases and detect specificity features for activated α-,
β-, γ-Thrombin, aFVII, aFIX, aFX, aFXI, aPC and PLG. Here, the
high numbers of detected cleavages allowed us to characterize the
minor distinguishing features between these closely related pro-
teases and group them according to their cleavage specificity and
cleavage entropy. Furthermore, we were able to recapitulate from
our proteomic data the known specificity differences between two
isoforms of Thrombin (α- and γ-), which further demonstrated
the sensitivity of the screen. The large number of cleavage events
identified per measurement allowed us to investigate the effect of
cofactors on protease activity and the allosteric effect of Na+ on
their activity and specificity with great sensitivity. We obtained
results that confirm the mechanisms of allosteric regulation for α-
Thrombin57,64 and aFX62 and expand our knowledge to other
blood proteases for which so far mechanisms of allosteric reg-
ulation with Na+ were not extensively described. This demon-
strated that differential specificity and entropy profiling can be
used to identify restraints to model conformational changes. It is
also important to note that allosteric effects are typically inves-
tigated with fluorescence anisotropy, biochemical or structural
studies, which often require high amounts of proteases (e.g. in mg
range for protein crystallography). In contrast, in its current
implementation HTPS analyses are performed with proteins in
their native fold, require less than 1 µg of protease per assay, and
further downscaling can be envisioned.

The translational value of HTPS is perhaps best illustrated in
the context of designing sensitive tools for detection of protease
activity. We used HTPS data to design synthetic peptides and
show that they were cleaved by their respective proteases,
demonstrating that positional substrate preferences detected with
the protocol can translate into tools for detecting protease
activity. This is useful, especially in case of poorly characterized
proteases where a fast and simple design of a substrate can assist
further protease characterization steps. An exemplary application
of this concept could be the design of test substrates to char-
acterize proteases of a newly emerging virus as exemplified by the
profiling of WN NS3 viral protease. Moreover, large protease
datasets could possibly serve as a hypothesis-generator for tar-
geted assays80 and for spike-in assays used for detection of

protease activity81 as recently demonstrated for asparaginyl
endopepdidase82. Furthermore, protease datasets could support
the development of assays that serve as sentinels to follow bio-
logical processes in a high-throughput fashion83. It must be borne
in mind, however, that HTPS is limited to amino acids that
naturally occur in proteins in comparison to synthetic peptide
libraries. When designing specific substrates for proteases, espe-
cially if the target group are closely related proteases, including
non-natural amino acids to protease screens is beneficial and can
provide another level of selectivity84.

As a final, highly relevant application, we show that the large
number of identified protease cleavages in near-native conditions
can be exploited to predict relevant substrates in systems ortho-
gonal to those experimentally used. Here, a simple computational
filtering framework, largely based on HTPS-results, combined
with readily available orthogonal information, was capable to
retrieve a large number of physiologically relevant relationships.
Among these, we validated with an orthogonal technique the
predicted α-Thrombin cleavages on the C3 complement protein
demonstrating that HTPS cleavage motifs obtained from a native
cell lysate can be used to generate hypotheses on physiological
substrates. While HTPS is not intended to directly study in vivo
proteolysis, the method can be employed to generate hypotheses
on as yet unexplored connections. The substantial pool of sub-
strates/cleavage events identified with HTPS may play in the mid-
term also an important role in bringing machine learning
approaches to protease research and improve the performance of
tools readily used for prediction of protease substrates. Recent
developments of tools like iProt-Sub, that can predict cleavages in
protein substrates, demonstrated the importance of having a
detailed and representative cleavage dataset for the investigated
proteases to retrieve their specificity features and thus construct
better models that could enable proteome-wide prediction of
protease substrates85.

To conclude, we introduce a proteomic tool for protease
research, which we dub HTPS. We believe it could be readily
applied for large-scale de-orphaning of proteases, systematic
comparison of their specificity and cleavage entropy, identifica-
tion of potential physiological substrate candidates for validation
in biochemical assays, as well as generation of substrate reporters
to investigate protease activity and structural rearrangements.
Further improvements, including adoption of more sensitive MS,
shorter LC gradients and scaling down of the starting material,
will make profiling of the entire human protease repertoire across
different conditions a goal within reach, as only ~9 sets of
experiments would, in principle, be sufficient to profile it in tri-
plicates on a 384-well format.

Methods
Proteases used in the study. All proteases used in this study were purchased from
commercial vendors, Trypsin (V5111), Glu-C (V1651), Asp-N (V1621) and
Chymotrypsin (V1091) from Promega (USA) and Lys-C (125-05061) from Wako
(Japan). The blood cascade proteases α-Thrombin (HCT-0020), β-Thrombin
(HCBT-0022), γ-Thrombin (HCGT-0021), Factor VIIa (HCVIIA-0031), IXa
(HCIXA-0050), Xa (HCXA-0060), XIa (HCXIA-0160), Plasmin (HCPM-0140) and
activated Protein C (HCAPC-0080) were purchased from Hematologic Technol-
ogies, Inc., (USA). Recombinant human MMP2 (902-MP-010) and recombinant
West Nile Virus NS3 Protease Protein (2907-SE) were purchased from R&D sys-
tems (USA). Recombinant human MMP3 (SRP7783) was purchased from Sigma
Aldrich (Germany). The active concentration of coagulation proteases used in this
study was determined by active site titration using the irreversible stoichiometric
inhibitors TPCK (Sigma Aldrich), PPACK (Hematologic Technologies) and
GGACK (Hematologic Technologies), according to standard active site titration
protocols86.

Cell culture and preparation of native cell lysates. Human Embryonic Kidney
293 cells (HEK293, ATCC CRL-1573) were grown under standard conditions in
DMEM (Gibco) supplemented with 10% FBS (BioConcept), 1% glutamine (Gibco),
and 1% penicillin/streptomycin (Gibco) at 37 °C in a humid incubator at 5% CO2.
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When the cells reached 90% confluence, they were detached from the plate with a
jet of PBS (Gibco) and washed twice with PBS. For lysis, we used mild lysis
conditions with HNN buffer (50 mM HEPES, 150 mM NaCl, 50 mM NaF, pH 7.8)
supplemented with 0.5% NP-40 and protease inhibitor cocktail according to
manufacturer’s recommendations (Sigma Aldrich) as described elsewhere87.
Afterwards, the lysate was centrifuged at 14,000 g for 15 min to remove any non-
soluble material and the buffer was exchanged for 20 mM Ammonium Bicarbonate
pH 7.8 using a filter device with molecular weight cutoff of 10 kDa. Standard BCA
protein assay was used to determine the total protein concentration (Thermo
Fischer Scientific), the concentration of the standardized lysate was set to 1 mg/ml
and stored at −80 °C until used for the digestion assays.

Protease digestions and sample preparation. All protease digestions were per-
formed in 96FASP plates with MWCO 10 kDa (Acroprep AdvanceTM) by adapting
a 96FASP sample preparation protocol for protease digestion under native
conditions28,29. The first step was to wash the filter units to remove any residuals.
For this 100 µl of 20 mM Ammonium bicarbonate pH 7.8 were added to the wells
and the plate was centrifuged at 1,300 g for 10 min before repeating this step once
more. Afterwards, native cell lysate standardized in 20 mM Ammonium bicarbo-
nate pH 7.8 was added at a final 50 µg of total protein per well and mixed with the
investigated proteases at 1/50 [E]/[S] ratio. The samples were incubated at 37 °C for
4 h and collected by a 15 min centrifugation at 1,300 g in a low binding 96-well
conical plate. The collection step was repeated by adding 100 µl of MS-grade water.
The fractions were transferred to low-binding tubes (Eppendorf) and concentrated
on the SpeedVac to complete dryness. The samples were stored at −80 °C until
analysis. Before analysis, the samples were re-suspended in 20 µl of MS-grade water
with 0.1% formic acid and the peptide concentration was determined with
Nanodrop UV spectrometer. The sample concentration was adjusted to 1 µg/µl
with water containing 0.1% formic acid.

Allosteric effects of Na+ on blood cascade proteases. To investigate the effect
of Na+ on the proteases of the blood cascade we performed the assay in presence of
0.2 M of NaCl or choline chloride (ChCl) as previously reported60. In some of the
assays, LiCl was used as a control at 0.2 M. In selected assays we also included
Tissue Factor (Recombinant Tissue Factor, RTF-0300) or Thrombomodulin
(Rabbit Thrombomodulin, RABTM-4202), both purchased from Hematologic
Technologies (USA). In case of cofactors, we incubated the cofactor and the pro-
tease for 30 min at 10 °C using a 10-fold excess of the respective cofactors, before
using the protease for the HTPS screen. We performed the digestion experiments
with blood cascade proteases under both conditions for 2 h at 20 °C in 96-well
plates and collected the peptides as previously described. Importantly, all allostery
assays were performed at pH 7.4. Additionally, before the LC-MS/MS analysis we
performed a desalting step of the samples with C18 UltraMicroSpin columns
according to the manufacturer’s protocol (The Nest group, USA). The dried
peptide samples were re-suspended in 0.1% FA water at a concentration of
approximately 1 µg/µl.

LC–MS/MS analysis. The LC–MS/MS analysis of the protease-digested samples
was performed on an Orbitrap Elite (Thermo Fischer Scientific) interfaced with an
Easy 1000 nano-LC unit (Thermo Fischer Scientific), coupled online with the
nano-electrospray. The LC–MS/MS was operated with the Xcalibur software
package (Thermo Fischer Scientific). For the analysis, 1 µg of sample was loaded
directly on the analytical column (Acclaim PepMapTM RSLC, 75 µm × 15 cm,
nanoViper C18, 2 µm, 100 A, Thermo Fischer Scientific). The flow rate on the
nano-LC was set to 300 nl/min and the peptides were chromatographically sepa-
rated with a 5–35% 120 min linear acetonitrile/water gradient in 0.1% formic acid.
During the entire run, the MS spectra were acquired in the Orbitrap in positive ion
mode with 2.0 kV voltage in the mass range of 350 to 1,600 m/z, set to the profile
mode and a resolution of 120,000 at 400 m/z. For peptide fragmentation, a CID
fragmentation method with normalized collision energy 35 was used and the MS/
MS spectra were obtained from the 15 most intense precursor ions from the full
MS spectra. During the entire run, precursors with repeat count of 1 were dyna-
mically excluded for 30 s. Precursors with charges +2, +3 and +4 were considered
and the MS/MS spectra were recorded in the ion trap analyzer in the centroid
mode with normal scan rate and standard settings.

The analysis of the allostery samples was performed on an Orbitrap Fusion
(Thermo Fischer Scientific) interfaced with an Easy 1000 nano-LC unit (Thermo
Fischer Scientific) and operated as described previously. 1 µg of sample was loaded
directly on the analytical column made in house (75-μm inner diameter; New
Objective) with ReproSil-Pur 120 A C18 1.9 µm (Dr. Maisch GmbH) as stationary
phase. The flow rate was set to 200 nl/min and the peptides were
chromatographically separated with a 5–25% 90 min acetonitrile/water gradient in
0.1% formic acid. The data acquisition mode (data-dependent acquisition) was set
to perform a cycle of 3 s with high resolution MS (R= 30,000, AGC= 50 ms) and
MS/MS (R= 60,000, AGC= 54 ms) in the Orbitrap analyzer. During the entire
run, the MS/MS spectra were acquired in the Orbitrap analyzer in the mass range
of 350 to 1,650 m/z; precursors with charges 2–7 and intensity higher than 2*104

were selected for fragmentation (HCD, NCE= 28). The dynamic exclusion
window was set to 30 s. For quality control a standard sample of iRT peptides

(Biognosys AG, Switzerland) was injected after each analyzed HTPS sample
triplicate. The retention times of iRT peptides and the corresponding MS2
intensities were compared with Skyline88.

Database searches and abundance-focused library generation. The raw data
was searched with MaxQuant31 (version 1.5.2.8) using the human UniProt data-
base (Homo sapiens, UniProt release October 2018, 20,382 entries) and the in-
house generated abundance-focused HTPS_DB.fasta database (2,557 entries). For
generation of the HTPS_DB.fasta abundance-focused database, we combined the
lists of proteins that were identified in the samples after treatment with Trypsin,
Lys-C, Asp-N, Glu-C and Chymotrypsin. For specific database searches we used
standard MaxQuant settings89, for searches without a defined enzyme specificity
we set the digestion mode to unspecific and the maximal peptide length to 40 AA
as described elsewhere21. Our searches considered only two natural PTMs, acet-
ylation of N-termini (+42.0106 Da) and the oxidation of methionine (+15.9949
Da) as variable modifications. First search peptide mass tolerance was 20 p.p.m.
and main search peptide mass tolerance was 4.5 p.p.m., as set by default. MS/MS
match tolerance was set to 0.5 Da. For the peptide identification via peptide-
spectrum matching the FDR was controlled with a standard target-decoy
approach89. A 1% peptide FDR was applied at PSM level and only peptide hits with
a PEP score ≤0.05 and a score >40 were retained for further analysis.

The final list of proteins was the union of proteins identified in the respective
samples and we included only proteins with a global protein PEP ≤ 0.01 into the
final database. Potential contaminants were excluded from the subsequent data
analysis.

Data analysis and visualization. Data analysis was performed in R (version 3.4.3)
using the workflow deposited on Github (https://github.com/anfoss/
HTPS_workflow, https://doi.org/10.5281/zenodo.4484341) under MIT license.
Briefly, the script recovers the cleavage sequences from the identified peptides and
transfers them into a positional matrix (amino acids upstream the cleavage site
occupy P8-P1 position and amino acids downstream P1’-P8’ position). A frequency
matrix is generated counting the abundance of amino acids per position and
normalized for all identified peptides. To harmonize the multivariate protease
specificity data, the positional occurrences of amino acids are converted into
protease frequency matrices. In parallel, a random frequency matrix of the same
size is generated by sampling the same number of amino acids as contained in the
frequency matrix from the natural distribution of amino acids in HTPS_DB.fasta.
The proteases were first compared in terms of numbers of generated cleavages
under different tested conditions. For visualization of the specificity, we used the
iceLogo program38 with the threshold of significance p-value set to 0.01, respec-
tively. To compare proteases in terms of significantly different positional features, a
two-side paired t-test was employed to evaluate similarity between frequency
matrices of different proteases or differential frequency matrices of the same
protease under different conditions and thus to evaluate the similarities/differences
between the tested proteases/conditions. The evaluation and comparison of sub-
strate specificity for MMP2 and MMP3 with PICS, TAILS and DIPPS data was
performed by adapting the workflow used for HTPS. Identified cleavages or pep-
tides reported in the studies21,43–45 were used to generate the frequency matrix and
the specificity enrichment using as a control the random distribution of amino
acids from HTPS_DB.fasta database. For conditional protease comparison, we took
the significant (p-value < 0.01) enrichment of amino acid per position compared to
the random distribution in presence of NaCl and ChCl, compared the folds of
change and report the significant changes according to p-value. The calculation of
cleavage entropy was performed as a Shannon entropy calculation34. The block
entropy calculation was performed as described elsewhere35.

Spike-in octapeptides and fluorescent substrates for α-thrombin and factor X.
The octapeptides GIPRAAGD (α-Thrombin) and GIGRRIAE (aFX) were synthe-
sized by the solid-phase method using the 9-fluorenylmethyloxycarbonyl (Fmoc)
strategy on a model PS3 automated synthesizer from Protein Technologies Inter-
national (Tucson, AZ), according to a standard protocol described elsewhere90. The
crude peptides were subsequently purified by RP-HPLC on a C18 analytical col-
umn (Grace-Vydac, Hesperia, CA) and analyzed by MS with a data-dependent
acquisition (DDA) approach. In order to determine the linear response range for
the proteases, the two peptides were tested from 100 µM to 10 pM. To confirm the
octapeptide cleavage we incubated 10 µM of the peptide with a 10 nM final con-
centration of proteases from 0–240 min. For the analysis, 1 µg of sample was loaded
directly on reverse phase column (75 µm × 15 cm, packed with Magic C18 3 µm
resin) and the peptides were separated with a 5–35% 20min linear acetonitrile/
water gradient in 0.1% formic acid with a flow rate set to 300 nl/ml, using a
Proxeon EASY‐nLC II chromatography system (Thermo Fischer Scientific). The
acquisition started with sample injection. The MS1 quantification of selected
reporters was performed on an Orbitrap XL (Thermo Fischer Scientific) in positive
mode with 2.0 kV voltage in the mass range of 150 to 1,200 m/z in the profile mode
at a resolution of 60,000 at 400 m/z. The measurement was performed using 1 µl of
the standardized sample spiked with iRT peptides (Biognosys AG) at 1:20 and
proteolyzed BSA at 0.1 mg/ml as carrier. We manually integrated the precursor
isotope peaks (M, M+ 1, M+ 2) using Skyline software88 of GIPRAAGD (378.70
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m/z), GIPR (221.64 m/z), AAGD (333.14 m/z) for α Thrombin and GIGRRIAE
(436.26 m/z), GIGR (201.63 m/z), RIAE (488.28 m/z) for aFX.

The fluorescent substrates for α-Thrombin (zGIPR-AMC) and for aFX (zGIGR-
AMC) were purchased from Biomatik (USA) and selectivity was tested in a
standard protease screen as described elsewhere69. All measurements were
performed in 20 mM Ammonium bicarbonate pH 7.8 supplemented with 200 mM
NaCl. Where applicable, we also determined the corresponding kcat/KM. The
substrate concentration range in the assays was 1 µM–200 µM, the protease
concentration range was 1–5 nM. We monitored the increase of fluorescence
intensity with a Tecan infinite 2000 Pro plate reader (Tecan, Switzerland) in
continuous mode (excitation at 370 nm, emission at 460 nm) and calculated the
corresponding kcat/KM values as earlier described69 using GraphPad (Prism).

In silico data analysis. Molecular docking was performed with HPEPDOCK web
server91, starting from the structures with the water molecules removed and
inhibitor-free for α-Thrombin (1ppb [https://doi.org/10.2210/pdb1ppb/pdb])92

and aFX (1g2l [https://doi.org/10.2210/pdb1g2l/pdb])93 and the two octapeptides.
The software generated 3D structure models for the given sequences of peptides
using the implemented MOPEP program, which considers peptide flexibility.
Simulations were run with default parameters, without introducing any geometric
or energetic constraints. One hundred poses were generated and ranked according
to the CAPRI criteria94. The most acceptable prediction was selected for the data
analysis. PyMOL software (v. 0.99rc6) was used for visualization of the docking
results.

Identification of candidate substrates. To identify physiologically relevant pro-
tease substrates for validation in biochemical assays we applied three filtering steps.
In the first filtering step, we calculated a motif score for all the combination of
amino acids (280,771) for all secretome proteins (secretome database from Protein
Atlas73,74). The motif score for each protease analyzed (Trypsin, α-Thrombin,
aFVII, aFIX, aFX, aFXI, PLG and aPC) was calculated from the sum of significant
fold changes associated with the respective residues compared to a random dis-
tribution generated from HTPS database. To evaluate the performance and to
identify a cut-off at 1% FPR we generated a receiver operator curve (ROC) using as
true positive the annotated MEROPS substrates (release 12.1)23. The identified
substrates were further filtered based on the prediction of amino acids exposition
using JPred4 tool75 (http://www.compbio.dundee.ac.uk/jpred/). For this filtering
step, we split the set of proteins in pieces of 750 amino acids with overlap fragment
of 20 amino acids, we calculated the accessibility using the intermediate score
“JNETSOL_5” and we filtered all substrates that were not buried (n= 8). In the last
step, we applied a protein-based filtering step. In this step we removed proteins for
which the concentration in blood was not reported (ProteinAtlas, Secretome73,74,
https://www.proteinatlas.org/) and/or were not co-cited with the studied individual
coagulation protease in PubMed (https://www.ncbi.nlm.nih.gov, ftp://ftp.ncbi.nlm.
nih.gov/gene/DATA/gene2pubmed.gz). Furthermore, proteins were scored by
multiplying the inverse of ranking position for (i) co-citation frequency,
(ii) number of identified protease substrates, (iii) concentration in the blood. GO
enrichment for Biological Process and for Molecular Function was performed using
DAVID tool77 (v6.8, https://david.ncifcrf.gov/) using the human secretome (Pro-
teinAtlas) as background. Protease substrate network was generated using Cytos-
cape (v.3.8.0)95,96, combining data of reported protein interaction in BioGRID
(v.3.6.1.8.2)78 and substrates from MEROPS (v.12.1)23 for all coagulation protease.

Identification of thrombin cleavages on complement factor C3. Purified human
complement protein C3 (A113, Complement Technology, Inc., USA) was used as a
substrate in a cleavage assay with α-Thrombin. 10 µg of C3 protein was exposed to
the protease at 1/100 [E]/[S] ratio and the reaction was incubated at 37 °C for 2 h in
50 mM HEPES buffer pH 7.4 supplemented with 200 mM NaCl. As a control, the
protein sample was incubated under the same conditions without the protease.
After the proteolysis, the reaction was terminated by heat-inactivation of the
protease. The sample was mixed at 1:1 ratio with 100 mM HEPES pH 6.5 and
reductive di-methylation of free N-termini was performed by adapting the steps
from the di-methylation reaction from TAILS protocol16. Briefly, formaldehyde
(Sigma–Aldrich) and NaCNBH3 (Sigma–Aldrich) were added to the post-proteo-
lysis/incubation samples in 2:1 ratio to reach a 20 mM and 10 mM final con-
centration, respectively. The reaction mixture was incubated for 16 h at 37 °C
before the reaction was stopped by diluting the reaction mix 1:5 in 50 mM
ammonium bicarbonate pH 7.8. To digest the labeled protein fragments, Trypsin
was added to the reaction at 1:50 ratio and the reaction was allowed to proceed for
16 h at 37 °C. The reaction was terminated by acidification with formic acid to a
final 0.5% and the peptides were recovered with the use of a standard C18 cleanup
procedure (The Nest group, USA). The identification of α-Thrombin cleavages on
C3 protein was performed by specific database searches with MaxQuant89 as earlier
described, where di-methylation of N-termini and Lysine side chains (+28.0313
Da) were considered as variable modifications. The labeled N-termini present in
the α-Thrombin-treated samples (PEP < 0.01) but absent from the negative con-
trols were considered as α-Thrombin cleavage events and compared to the cleavage
sites predicted with HTPS Motif Score.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data is deposited to ProteomeXchange Consortium via the PRIDE partner
repository97 with identifiers PXD018976, PXD020320, PXD022959, PXD022971,
PXD022972 and PXD022973. Source data are provided with this paper. All protein
structures referred to in this study were obtained from PDB (https://www.rcsb.org/), with
the accession codes 1ppb [https://doi.org/10.2210/pdb1ppb/pdb] and aFX (1g2l [https://
doi.org/10.2210/pdb1g2l/pdb]). The data of this study is available within the paper and
the corresponding supplementary information. Additional information or other
potentially relevant data are available upon request from the corresponding
author. Source data are provided with this paper.

Code availability
R scripts to analyze the data and reproduce the reported data analysis are available at
https://github.com/anfoss/HTPS_workflow and https://doi.org/10.5281/zenodo.4484341
under MIT license98.
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