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ABSTRACT

Predicting binding sites of a transcription factor in
the genome is an important, but challenging, issue
in studying gene regulation. In the past decade, a
large number of protein–DNA co-crystallized struc-
tures available in the Protein Data Bank have
facilitated the understanding of interacting mechan-
isms between transcription factors and their binding
sites. Recent studies have shown that both physics-
based and knowledge-based potential functions
can be applied to protein–DNA complex structures
to deliver position weight matrices (PWMs) that are
consistent with the experimental data. To further
use the available structural models, the proposed
Web server, PiDNA, aims at first constructing
reliable PWMs by applying an atomic-level know-
ledge-based scoring function on numerous in silico
mutated complex structures, and then using the
PWM constructed by the structure models with
small energy changes to predict the interaction
between proteins and DNA sequences. With
PiDNA, the users can easily predict the relative pref-
erence of all the DNA sequences with limited muta-
tions from the native sequence co-crystallized in the
model in a single run. More predictions on se-
quences with unlimited mutations can be realized
by additional requests or file uploading. Three
types of information can be downloaded after pre-
diction: (i) the ranked list of mutated sequences, (ii)
the PWM constructed by the favourable mutated
structures, and (iii) any mutated protein–DNA
complex structure models specified by the user.
This study first shows that the constructed PWMs
are similar to the annotated PWMs collected from
databases or literature. Second, the prediction
accuracy of PiDNA in detecting relatively high-
specificity sites is evaluated by comparing the
ranked lists against in vitro experiments from

protein-binding microarrays. Finally, PiDNA is
shown to be able to select the experimentally
validated binding sites from 10 000 random sites
with high accuracy. With PiDNA, the users can
design biological experiments based on the pre-
dicted sequence specificity and/or request mutated
structure models for further protein design. As well,
it is expected that PiDNA can be incorporated with
chromatin immunoprecipitation data to refine large-
scale inference of in vivo protein–DNA interactions.
PiDNA is available at: http://dna.bime.ntu.edu.
tw/pidna.

INTRODUCTION

Interactions between transcription factors (TFs) and their
binding sites play important roles in many biological
processes. Many previous studies have attempted to char-
acterize the binding sequences of a TF by summarizing its
known sites as a position weight matrix (PWM), and then
using the PWM to discover more potential binding sites in
the genome. However, the number of well-characterized
PWMs is still far behind the number of known TFs. In this
regard, it is desirable to exploit other resources, such as
protein–DNA complexes in protein structure databases,
to improve the coverage of TFs on which the prediction
of binding sites can be made or improved.
In the past decade, as more protein–DNA complexes

are becoming available, researchers are able to investigate
protein–DNA interactions at an atomic level (1,2). Many
studies have developed structure-based computational
methods for predicting protein–DNA interactions (3–5).
Most of the studies focus on predicting protein functions
or DNA-binding residues based on structure models (4–8),
and the prediction of binding residues has achieved a high
degree of accuracy (6,8). Many potential functions,
including physics-based and knowledge-based (7,9–11),
have been developed for improving protein–DNA
docking (11–13). These potential functions are also being
applied to predict binding specificity and construct
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PWMs, as long as a complex structure exists (9,14–18). A
recently published approach further uses an energy
function that is uniquely trained on each structure for
recognition of TF-binding sites (19). While the prediction
of PWMs based on native structures achieves better per-
formance year after year, this success has also been
extended to synthetic protein–DNA complexes in our
recent study (15).
To further use the available structural models, the

proposed Web server, PiDNA, aims at first constructing
reliable PWMs by applying an atomic-level knowledge-
based scoring function on numerous in silico mutated
complex structures, and then predicting the interaction
between a protein and a single DNA sequence using the
PWM suggested by the structure models with small energy
changes. Given a protein–DNA complex structure, all of
the potential DNA sequences with limited mutations from
the native sequence in the co-crystallized structure are
scored by the atomic-level knowledge-based scoring
function, and a subset of relatively high-specificity se-
quences is selected to construct a PWM for re-ranking
the mutated sequences and for making more predictions.
In addition to a ranked list that reveals the relative
binding specificity of the mutated sequences, users can
also download mutated protein–DNA complex structures
of interest for other applications.
Although many Web servers exist for predicting

protein–DNA interactions based on structure models,
most of them are designed to predict whether a
protein binds to DNA such as iDBPs (20) or to predict
DNA-binding residues such as DISPLAR (21),
DNABINDPROT (22) and PreDNA (8). Moreover, the
Robetta server allows for residue design on DNA-binding
proteins by modelling the changes in binding-free energy
associated with amino acid and base substitutions, given
a protein–DNA complex (23). On the other hand, Web
servers that use protein–DNA complexes to predict
PWMs or sequence specificity of TFs are still limited.
Our previous work, DBD2BS, was developed for predict-
ing PWMs from protein unbound structures (24). A more
similar work to PiDNA is a recently published Web
server, 3DTF, which also uses knowledge-based potential
on mutated structures to produce PWMs (25). The 3D-
footprint database also provides pre-calculated PWMs for
all protein–DNA complexes in the RCSB Protein Data
Bank (PDB) (26), where the PWMs are constructed by
using a hybrid approach that combines contact and
readout models (27). In this regard, both 3DTF and 3D-
footprint are included in this study for comparison when
evaluating the performance of PiDNA.

WEB INTERFACE

Input

Step 1. Provide a structure
A protein–DNA complex is expected as the input to
PiDNA. For the user’s convenience, PiDNA has collected
all of the existing protein–DNA complexes deposited in
PDB on the local site. In the 28 November 2012 release,
there are 2589 structures that contain both protein and

DNA molecules. The four-character PDB identifiers can
be specified in this step. Alternatively, users can upload
their own structures for analysis.

Step 2. Select a double-stranded DNA
After a structure is given, PiDNA automatically detects the
chain identifiers of double-stranded DNA (dsDNA) mol-
ecules present in the structure. If only one dsDNA is found,
PiDNA will use it by default for mutation analysis. On the
other hand, if more than one dsDNA is detected, PiDNA
will provide relevant information and wait for the user to
select one dsDNA to make predictions. For example, the
PDB structure ‘1RUN’ contains two dsDNA units, where
chain C is paired with chain F (denoted as ‘C <-> F’) and
chain D is paired with chain E. As long as the dsDNA for
analysis has been determined, PiDNA will provide the in-
formation about the paired complementary bases. Bases
within 4.5 Å with respect to any heavy atoms of a protein
chain are highlighted in red, where the threshold of 4.5
follows the suggestion from previous studies (5,9). The
contact residues along with the protein chain identifiers
appear when the mouse moves over a contact base. At
this stage, the user is allowed to specify the range of base
pairs to mutate as well as the maximum number of muta-
tions. Users are suggested to start with a small value on the
setting of the maximal number of mutations, especially for
a small binding site. If the number of mutations is large
with respect to the site length, the assumption of the rigidity
of the DNA backbone might not hold anymore.

Output

After clicking the ‘submit’ button in Step 2, PiDNA syn-
thesizes the structures for all sequence combinations with
limited mutations from the native sequence. As
exemplified in Supplementary Table S1, a position has
three potential bases to mutate to. In this regard, a
DNA sequence of length six can be mutated into 153
mutant forms when up to two mutations are allowed.
For each mutated sequence, the corresponding synthetic
structure is generated (see Materials and Methods) and the
change in binding free energy is estimated (see Materials
and Methods). In the result panel, only partial mutated
sequences are listed, whereas the complete list can be
downloaded as a text file. The list can be ranked by
different columns: the number of mutated positions, the
estimated change in binding free energy, the final predic-
tion score (see Materials and Methods) and the root-
mean-square deviation (RMSD) with respect to the
native structure. In addition to the ranked list of the
sequences with limited mutations, PiDNA also reports a
position frequency matrix (PFM) constructed from struc-
tural models with small energy changes. With the reported
PFM, the following three steps can be selected for
execution:

Step 3a (optional). More predictions on manually
modified sequences
More predictions can be made based on the PFM con-
structed previously. At this stage, the user can also select
a mutated sequence to generate the structure for visual-
ization and downloading. The mutated sequence can be
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further modified manually. Users will need the JAVA
Runtime Environment to activate the Jmol applet
(http://jmol.sourceforge.net/).

Step 3b (optional). More predictions on sequences set by
uploading
At this stage, the user can make more predictions by up-
loading files. The sequence file can be prepared according
to an example file provided by the server.

Step 3c (optional). More predictions on random sequences
generated by the server
At this stage, the user can make more predictions on a
larger set of sequences generated by PiDNA.

MATERIALS AND METHODS

Base mutation

To perform base-pair mutations on a given structure, struc-
ture models for different base types are required in advance.
The atom coordinates of a particular base (A, T, C or G)
are collected from the available PDB structures that
contain dsDNA. The coordinates retrieved from a single
base are considered as a rigid body and structurally
aligned with the others. In total, 10 000 structure models
are collected for each of the base types, and the averaged
atom coordinates are stored as the template model for each
base type. Whenever a base pair, e.g. A <-> T, is requested
to mutate into another one, e.g. C <-> G, the base ‘A’ is
replaced by the template model of ‘C’ and the base ‘T’ is
replaced by the template model of ‘G’ without affecting the
backbone structure of the dsDNA. For example, the re-
placement of base ‘A’ by base ‘C’ is performed by the fol-
lowing procedures: (i) consider the template model of ‘C’ as
a rigid body and superimpose the coordinates of the atom
‘N1’ in ‘C’ onto the corresponding atom ‘N9’ in ‘A’, (ii)
align the normal vector of the new base plane with that of
the original base plane, (iii) align the interior bisector of a
specified angle in ‘C’ with that of ‘A’, and (iv) remove the
atom coordinates of base ‘A’ from the complex structure.
The information regarding the atom names and the atoms
selected to construct the base planes and angle bisectors is
provided in Supplementary Figure S1.

All-atom scoring function

PiDNA uses an all-atom distance-dependant knowledge-
based scoring function to evaluate the preference of the
synthetic complexes with respect to the native structure.
Let atom i be an atom from the protein chains in a
complex structure, and atom j be an atom from the
DNA chains. An atom pair i and j, with a distance of r,
is scored by the following equation:

uði, j, rÞ ¼ �ln
Pði, j, rÞ

PrefðrÞ
;

where P(i, j, r)=Nobs(i, j, r)/�rNobs(i, j, r) and Pref(r) is a
weight function that reduces the influence of a long
distance, as a longer distance covers more atom pairs.
All the combinations of the frequency Nobs(i, j, r) are
derived from a pre-collected protein–DNA complex set,

where i can be any atom type from amino acids and j
can be any atom type from nucleotides. The a-carbon
in amino acid cysteine is an atom type different from the
a-carbon of alanine. In total, there are 167 atom types
from proteins and 82 atom types from DNA. More
details about the weight function Pref(r) and how the
table entries Nobs(i, j, r) are constructed based on the
protein–DNA complex database can be found in our
previous study (15).
For a given complex, the binding free energy, �G, is

defined as the sum of all the statistical potential of the
observed atom pairs (9):

�G ¼
X
i, j

uði, j, rÞ:

Whenever a mutated structure is generated, PiDNA re-
calculates the �G and denotes it as �G0. Afterwards, all
mutated structures along with the native one are sorted by
the change of �G, i.e. �G0 ��Gnative, in ascending order.
The minimum value of �G0 suggests acceptable flexibility
on the structure change. In this regard, PiDNA discards
the mutated structures with a change of �G larger than
the absolute value of �G0minimum��Gnative. In other
words, although a negative change on �G is preferred, a
positive change that falls in the range of acceptable flexi-
bility is still favourable.
With the mutated structures that satisfy the flexibility

criterion, PiDNA uses the corresponding mutated se-
quences to construct a PFM. PiDNA will then use the
derived PFM to re-rank the binding sites by the procedure
described in the following section. The analyses shown in
this study reveal that the PFM scoring is, in general,
superior to the scoring based on the estimated energy
change when the number of mutations is getting larger.
This might be owing to the fact that PiDNA assumes that
the backbone of the dsDNA molecule does not suffer con-
formational change when base-pair mutations are per-
formed, but this assumption loses its validity when the
number of mutations increases. PiDNA also provides
the information regarding potential structural change by
calculating the RMSD of the mutated structure against
the native complex as follows:

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�2i

vuut ,

where � is the distance between N pairs of equivalent
atoms.

PFM scoring

Given a PFM, P, with a width of w, a particular sequence
S is scored with the following equation after proper align-
ment (given that the k-th position of S, denoted as Sk, is
aligned with the first position of the PFM without inser-
tions or deletions and assuming that the length of S is
larger than or equal to w):

ScorePFMðSk::: k+w�1, PÞ ¼
1

w

Xw
i¼1

P½i, Sk+i�1�;
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where the first dimension of the PFM, P, is the position
identifier and the second dimension specifies the type of
bases: A, T, C or G. In case the length of the substring
starting from Sk is smaller than w, the value of w is
adjusted to a proper value before calculating the scores.
The ScorePFM is assigned as the final score to reflect the

relative sequence specificity of the mutated sequences. The
performance of PiDNA in distinguishing the high-specifi-
city sites from the lower ones is evaluated in the following
section. In PiDNA, the PFM is calculated from aligned
mutated sequences with equal length. Therefore, k is
always set to 1 when calculating ScorePFM. On the other
hand, to generate ScorePFM from an annotated PFM or
from the PFM predicted by existing Web servers for com-
parison, the value of k is set to a proper value after
sequence alignment with consideration for the reverse
complementary form.

EVALUATION AND DISCUSSION

Validation sets

This study first evaluates whether the PFMs constructed
using the highly reliable structures with limited mutations
are consistent with the known binding sites of the query
protein. Mouse and yeast TFs with structure models avail-
able in PDB are examined to see if annotated PFMs can
be found in literature or databases. In this study, PFMs
are collected from the study of Morozov et al. (9),
TRANSFAC 7.0 Public 2005 database (28) and MYBS
(29). This results in 30 proteins for evaluating the PFM
quality, denoted as validation set 1 (Supplementary
Table S2).
To further evaluate the performance of PiDNA in dis-

tinguishing high-specificity sites from lower ones, this
study uses in vitro protein-binding microarrays (PBMs)
to retrieve relative specificity information of a DNA-
binding protein against different dsDNA sequences. The
PBM data provide information regarding how strongly a
given protein binds to a probe relative to the others. The
mouse and yeast proteins in the UniPROBE database (30)
are examined against validation set 1 for available struc-
tures. The available PDB structures are further examined
to remove structures in which the binding sites are bound
by hetero-multimeric proteins. Because not all lengths of
sequences can find a copy in a PBM array, a structure with
a binding site larger than 10 is avoided in the validation
set. In total, there are 11 proteins (validation set 2) that
satisfy all the aforementioned criteria, as shown in
Supplementary Table S3.
Finally, to evaluate the performance of PiDNA in se-

lecting real binding sequences from a set of random se-
quences, we used the binding sequences collected in the
study by Morozov et al. (9) as positive samples and
randomly generated 10 000 sequences as negative
samples to construct validation set 3. This set includes
15 proteins.

Comparison with annotated PFMs

The PFMs constructed by PiDNA, based on the set of
favourable structure models with limited mutations, are

compared with the annotated PFMs, and the performance
is compared with the predictions by 3DTF and 3D-foot-
print. The C-test described in Morozov et al. (9) was used
to evaluate the consistency between the predicted and
annotated weight scores. The definition of the C-test is
provided as follows:

 ðp, qÞ ¼
1

w

Xw
j¼1

X
i¼fA, C, G, Tg

qji ln
qj
i

pj
i

" #

where pji and qji are predicted and annotated weight scores,
respectively, for base type i at position j, and w is the
length of the binding site in base pairs. A smaller value
on the C-test implies a higher degree of consistency
between two PFMs. The range of mutated positions for
each test case is shown in Supplementary Table S4, and
the same range is applied to 3DTF. The results provided
in Table 1 reveal that PiDNA is able to deliver PFMs
similar to the annotated PFMs from databases or litera-
ture. Both PFMs from PiDNA and 3D-footprint are
better than that constructed by the original sequence in
the complex. It can be seen in Table 1 that, in general,
setting the maximum number of mutations to two
performs better than three and four. However, it is also
observed that a larger number is preferred for binding sites
with a large number of degenerated positions, as shown by
the sequence logos plotted in Figure 1.

Identification of binding sites with high specificity

Given a protein–DNA complex, it is of interest to know
what other sequences with limited mutations from the
native sequence can also be bound by the proteins in the
complex. The expected relative binding specificity of these
mutated sequences is retrieved from the in vitro PBM data.
A 10-mer sequence can find two copies (including the
reverse complementary form) in a PBM array constructed
based on the de Bruijn sequence that covers all 10-mer
binding sites. A site with shorter length can find more
copies. It is assumed that the relative binding specificity
of a k-mer string can be represented by the scores of the
probes that contain the string. Because there is a risk that
the binding specificity of the string of interest might be
affected by other substrings on the same probe sequence,
the average scores across all the probes that contain either
the target string or its reverse complementary form are
adopted. To evaluate the performance of PiDNA in de-
tecting the binding sites with high specificity, the mutated
sequences with relatively high binding specificity are
assigned as the positive instances. The top-k scored se-
quences from PBM are adopted as the positives, where k
is set to 10, 20, 50 and 100, respectively. Afterwards, the
receiver operating characteristic (ROC) curve for each
method is plotted based on the ranking list it produced.

The testing data first include all sequences with up to
two mutations. For the 11 proteins in validation set 2, the
number of testing sequences ranges from 153 to 435. The
ROC curves and the area under ROC (AUC) scores are
calculated using the R package ‘ROCR’. The AUC scores
of PiDNA are compared with the ranked lists generated
by the PFMs from 3DTF and 3D-footprint. The same
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ranges shown in Supplementary Table S4 are applied
when invoking the Web server 3DTF to generate PFMs
for comparison. For 3DTF, the mode ‘long (for conver-
gence of full model)’ is adopted. The average AUC scores
for different methods are provided in Figure 2, and the
AUC scores for each query protein are shown in Table 2
when the top-10 PBM scored sequences are used as

positives. It is observed both in Figure 2 and Table 2
that PiDNA with PFM scoring is superior to the other
approaches in identifying high-specificity sequences from
the lower ones, including the approach of using the change
on �G (ddG) for the ranking. This reveals that the
mutated structure models and/or the selected atomic-
level scoring function still have potential limitations.

Table 1. Comparison of predicted PFMs with annotated PFMs based on the C-test

PDB ID Ori-seq PiDNA-2mut PiDNA-3mut PiDNA-4mut 3DTF 3D-footprint

1aay 0.131 0.087 0.111 0.169 0.161 0.101
3dfv 0.184 0.104 0.141 0.193 0.619 0.122
2wty 0.421 0.225 0.246 0.271 0.706 0.558
1ig7 0.381 0.168 0.170 0.177 0.585 0.172
3u2b 0.621 0.461 0.461 0.461 0.965 0.287

3f27 0.388 0.129 0.129 0.129 0.878 0.061

1ysa 0.173 0.223 0.324 0.342 0.274 0.173

2er8 0.205 0.123 0.136 0.170 0.718 0.289
1mnn 0.182 0.105 0.119 0.123 0.158 0.151
1a0a 0.172 0.308 0.408 0.517 0.898 0.457
3ukg 0.713 0.475 0.430 0.408 0.713 0.486
3mln 0.364 0.245 0.243 0.243 0.603 0.389
1dh3 0.133 0.132 0.187 0.270 –a 0.321
1awc 0.134 0.139 0.251 0.270 –a 0.126

1puf 0.342 0.216 0.206 0.215 0.395 0.334
1h88 0.326 0.139 0.159 0.168 0.364 0.177
2ql2 0.372 0.179 0.205 0.205 0.529 0.153

3exj 0.353 0.198 0.198 0.198 0.290 0.296
1io4 0.044 0.162 0.261 0.261 0.440 0.045
3qsv 0.581 0.398 0.384 0.384 0.434 0.442
1gt0 0.307 0.168 0.154 0.157 0.566 0.167
1pue 0.205 0.167 0.185 0.215 0.355 0.194
3brg 0.101 0.135 0.196 0.282 0.833 0.134
2i9t 0.226 0.210 0.210 0.210 0.459 0.178

1d66b 0.773 0.441 0.355 0.293 0.412 –c

1yrn 0.293 0.271 0.302 0.319 0.496 0.300
1le8 0.226 0.143 0.162 0.208 0.499 0.511
1mnm 0.408 0.162 0.154 0.158 0.371 0.485
1pyib 0.513 0.173 0.127 0.104 0.476 –c

1zmeb 0.902 0.260 0.205 0.165 –a 0.297

Average 0.339 0.212 0.227 0.243 0.526 0.265
Standard deviation 0.209 0.107 0.098 0.100 0.214 0.147

A smaller number on the C-test implies a higher degree of consistency between two PFMs.
‘Ori-seq’ denotes the PFM constructed by the original (native) sequence in the protein–DNA complex.
The title ‘PiDNA-kmut’ denotes that PiDNA constructed the PFM based on selected sequences with at most k mutations.
The best performance on each row is highlighted in bold.
a(3DTF) No prediction available.
bThe sequence logos of the predicted PFMs are shown in Figure 1.
c(3D-footprint) No structural evidence for specific binding to DNA (<4 informative columns).

Figure 1. More mutations are desirable on binding sites with a large number of degenerated positions. The term ‘kmut’ denotes that the maximum
number of mutations in a single sequence is set to k when constructing the PFMs.
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Next, evaluation is performed on a larger testing test,
i.e. sequences with up to four mutations from the native
sequence. For the 11 proteins in validation set 2, the
number of testing sequences ranges from 1909 to 20 686.
In this analysis, PiDNA is executed with different settings
on the maximal number of mutations allowed when
constructing the PFMs. The results are shown in
Supplementary Figure S2. Two observations are
summarized here. First, it is observed that setting the
maximal number of mutations to two when constructing
PFMs performs better than setting it to three or four. This
is consistent with the conclusion drawn from Table 1, the
comparison of the predicted PFMs with the annotated
ones. Second, it is shown again that PiDNA with PFM
scoring is superior to the other approaches in identifying
high-specificity sequences from the lower ones.

Identification of known binding sites from random
sequences

With validation set 3, PiDNA is evaluated according to its
ability in identifying true binding sites from a set of 10 000
random sequences. The known binding sites are collected
from the study of Morozov et al. (9), and length of the
sites (the positions to mutate when constructing PFMs) is
specified accordingly. 3D-footprint was not included in
this comparison because most of the curated PFMs are
shorter than the length of the sites for prediction. The
results shown in Table 3 reveal that PiDNA can distin-
guish true binding sites from random ones with high
accuracy. This data set includes 244 known binding
sites, where 93 of the known sites contain more than
four mutations with respect to the native sequences in
the complexes used (Supplementary Figure S3). Table 3
reports the sensitivity (true-positive rate) and specificity
(true-negative rate) for each query protein when high-spe-
cificity rates are considered, resulting in 28 false-negatives.
It is summarized in Supplementary Figure S3 that most of
the false-negatives are with a large number of mutations,
although some sites with a large number of mutations can
still be identified by PiDNA successfully. Instead of using
sensitivity and specificity rates (there is a trade-off between
them), the AUC scores are adopted when different
methods are compared in Supplementary Table S5.
Although the results in Supplementary Table S5 show
that the change on �G alone does not serve as a good
indicator for identifying true binding sites, it was
observed that the change on �G usually assigns good
rankings to the known binding sites among the sequences
with the same number of mutations. In fact, the binding
site with 12 mutations has a negative change on �G, and it
is observed that more than half of the known binding sites
are with a considerably small change on �G. Similarly, the
RMSD values alone are not a good indicator, either. In
PiDNA, RMSD values are reported along with the pre-
dictions such that users can be aware of large RMSDs, as
the real conformational change might be even larger when
the backbone flexibility is allowed.

CONCLUSION

PiDNA is designed to predict PFMs of DNA-binding
proteins based on available protein–DNA complexes.
Numerous structure models are first generated with
limited mutations. Afterwards, the mutated sequences
with relatively small energy changes are used for con-
structing PFMs for more predictions. In this study,
PiDNA is shown to achieve good performance in deliver-
ing reliable PFMs and discovering binding sites with high
binding specificity among the set of sequences with limited
mutations from the native structure. The analysis shown
in this study also reveals that the PFMs reported by
PiDNA are able to distinguish true binding sites from
random ones with high accuracy. Therefore, PiDNA can
be considered as an alternative approach to predicting
binding sites of a TF in the genome when lacking well-
characterized PFMs (or PWMs). With PiDNA, the users
can design biological experiments based on the predicted

Table 2. AUC scores for different Web servers based on validation

set 2

Protein PiDNA
(PFM)

PiDNA
(ddG)

3DTF 3D-footprint

Zif268 (mouse) 0.912 0.897 0.928 0.878
Gata3 (mouse) 0.932 0.842 0.738 0.944
Mafb (mouse) 0.775 0.798 0.669 0.821
Msx1 (mouse) 0.842 0.701 0.859 0.832
Sox4 (mouse) 0.915 0.933 0.825 0.938
Sox17 (mouse) 0.959 0.958 0.773 0.929
Gcn4 (yeast) 0.687 0.548 0.744 0.776
Leu3 (yeast) 0.713 0.498 0.659 0.709
Ndt80 (yeast) 0.933 0.905 0.886 0.870
Pho4 (yeast) 0.901 0.756 0.547 0.745
Rap1 (yeast) 0.863 0.870 0.872 0.832

Average 0.857 0.791 0.773 0.843

The testing data in this table include sequences with up to two
mutations.
The top-10 high-specificity sequences are assigned as the positives.
The performance of PiDNA based on PFM scoring or based on the
change on �G (denoted as ‘ddG’) is also compared.

Figure 2. Comparison of PiDNA in predicting high-specificity sites
among all the sequence with up to two mutations using the AUC
scores. The method ‘ddG’ denotes the ranked list produced based on
the change on �G, i.e. �G0 ��Gnative.
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sequence specificity and/or request mutated structure
models for further protein design. Also, it is expected
that PiDNA can integrate with other high-throughput
data to refine large-scale inference of in vivo protein–
DNA interactions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5 and Supplementary Figures
1–3.
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