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Although there is a significant amount of literature that deals

with the identification of plant viral proteins involved in

membrane remodeling and vesicle production in infected cells,

there are very few investigations that report on the impact that

infection has on the overall architecture and dynamics of the

early secretory endomembranes. Recent investigations have

shown that for some viruses the endoplasmic reticulum, Golgi

bodies and other organelles are heavily recruited into virus-

induced perinuclear structures. These structures are not

isolated organelles and are dynamically connected to the bulk

of non-modified endomembranes. They also have a functional

link with peripheral motile vesicles involved in virus intracellular

movement. The full molecular events that consubstantiate with

this endomembrane recruitment in virus-induced structures

remain to be elucidated but viral genome replication and virion

assembly are probably taking place within these structures.
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Introduction
Recent advances in cell fluorescent imaging and tom-

ography coupled to electron microscopy are bringing

growing interest in understanding the architecture and

role of the cellular remodeling that is taking place upon

infection by viruses (for extensive reviews on the sub-

ject, refer to [1,2]). Because most investigations on

cellular remodeling in plant cells have been conducted

using positive-sense (+)RNA viruses, this review will

mainly focus on this class of viruses. Replication by

plant (+)RNA viruses, like their vertebrate  homologs,

leads to the formation in the infected cell of elaborate

membranous, organelle-like, platforms that sustain viral

RNA synthesis and cell-to-cell movement. These

membrane modifications are believed to increase the

local concentrations of viral and host proteins needed to
www.sciencedirect.com 
produce new genomes, which probably enhance repli-

cation efficiency, and possibly to provide protection

from host defense response [3]. They also act as

vehicles for the egress of viral RNA for systemic in-

fection throughout the plant (for a review on the sub-

ject, refer to [4]).

Different plant virus groups induce the formation of

diverse structures from host endomembranes, both in

terms of architecture and membrane/organelle origin.

Endomembranes are defined here as a system of inter-

connected membranes that fills the cell interior and con-

nects the cell boundary with the double membraned

organelles – nucleus, plastids and mitochondria. Essen-

tially, every single organelle found in a plant cell is targeted

by one virus or another. For example, Tomato bushy stunt

virus (TBSV) replicates in peroxisomes [5], Carnation

Italian ringspot virus in mitochondria [6] and Turnip

yellow mosaic virus in chloroplasts [7]. The significance

of this organellar diversity is unknown, but specific mem-

brane targeting appears not to be a strict requirement for

efficient viral infection as replication complexes can be

redirected to an alternate subcellular localization [8,9].

There are also many examples indicating that membrane

remodeling is the consequence of plant viruses replicating

or moving on endoplasmic reticulum (ER)-derived mem-

branes. This results in the formation of mini-organelles

referred to as spherules, vesicles or multivesicular bodies

[10,11,12,13�,14,15�,16,17]. These vesicles may be single

or double membrane structures that are often connected to

the cytosol by a narrow neck, allowing exchange of com-

ponents needed for replication [18]. The ER is a major

component of the cell’s secretory pathway, which is a series

of steps a cell uses to move host components to their final

functional location. The secretory pathway was thus shown

to be used for intracellular and intercellular viral move-

ment [19�,20�,21�,22,23��,24,25]. Virus use of the secretory

pathway not only has a morphological impact on ER, it also

leads to an inhibition of protein secretion [26] and may

promote specific lipid synthesis [27]. Although there is a

significant amount of literature that deals with the identi-

fication of the viral proteins involved in membrane remo-

deling and vesicle production, there are very few

investigations that report on the impact that plant virus

infection has on the overall architecture and dynamics of

the early secretory endomembranes. This review will look

at recent works that show that Potato virus X (PVX) and

Turnip mosaic virus (TuMV) infections lead to endomem-

brane recruitment into large perinuclear globular struc-

tures that are functionally linked to smaller peripherally

located motile vesicles that ultimately become associated

with plasmodesmata. This connection would provide an
Current Opinion in Virology 2012, 2:683–690
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assembly line for viral genome replication and virus egress

into neighboring cells.

Plant cell biology
Before looking at endomembrane recruitment during

plant virus infections, it may be important to provide

an overview of the general morphology of plant cells. For

those interested in a more detailed account of plant cell

morphology, they are invited to consult The Illuminated

Plant Cell website (http://www.illuminatedcell.com/

Home.html). First, it must be realized that for many

plant cells there is limited free cytosolic space, which

is restricted by the presence of large central vacuoles and

by the sheer number of chloroplasts. Within this con-

stricted space, the ER pervades the cell and has an

extremely dynamic, multifunctional and pleomorphic

nature [28,29]. Morphologically, it is characterized by a

nuclear envelope-connected ER and a peripheral (corti-

cal) tubular and cisternal ER juxtaposing the plasma

membrane. Transvacuolar ER strands provide a direct

link between the perinuclear and the cortical ER and act

as distribution routes for metabolites, organelles [30] and

are also thought to be involved in anchoring the nucleus

within the cell [31�]. The plant Golgi apparatus is present

in the form of several motile bodies that are distributed

throughout the cytoplasm and are associated with micro-

filaments [32]. Golgi bodies also move in close association

with ER tubules and traffic rapidly within transvacuolar

strands [33], whereas in animal cells the Golgi apparatus

occupies a rather stationary perinuclear position [34].

Another important difference is the absence in plant cells

of an intermediate compartment between ER and the

Golgi apparatus, which is present in mammalian cells and

known as the ER-Golgi intermediate compartment

(ERGIC) [35]. Finally, plant cells have plasmodesmata

that provide cytoplasmic continuity between neighboring

cells that supports the cell-to-cell and long-distance traf-

ficking of small molecules as well as of a wide spectrum of

endogenous proteins and ribonucleoprotein complexes.

These plasma membrane lined channels contain ER-

derived desmotubules and actin filaments and are used

for virus cell-to-cell spread (for a review on the topic see

[4,36]). These distinctive features may explain the

relationship between ER-associated virus replication cen-

ters and virus egress through plasmodesmata [37].

Recruitment of endomembranes into virus-
induced structures
Membrane-associated replication complexes contain

viral RNA as well as viral and host replication factors

but not much is known about their host endomembrane

composition. This question has recently been

addressed in the case of potato virus X (PVX, genus

potexvirus). At late infection stages, PVX induces the

formation of large inclusion bodies often localized next

to the nucleus, which have historically been termed ‘X-

bodies’, that contain viral RNA [38], PVX replication
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proteins, virions and ribosomes [12,39]. Very recently,

Tilsner et al. [40��] have analyzed the contribution of

endomembranes to these X-bodies. First, they found

that the triple gene block protein 1 (TGBp1) forms the

core of the X-bodies, which have a layered structure

with TGBp1 aggregates at the center, vRNA in the

middle and virions at the cytoplasmic periphery

(Figure 1). They found that the ER and Golgi (as well

as actin filaments) are heavily recruited into these

structures, apparently reorganized into densely stacked

membranes (Figure 1). Since TGB proteins are not

needed for PVX replication, the authors propose that

this elaborate structure provides a restricted environ-

ment that would link replication with movement and

possibly encapsidation.

Grangeon et al. [41��] have reported that turnip mosaic

virus (TuMV, genus potyvirus) infection also leads to the

formation of perinuclear globular structures similar to X-

bodies. The 6K2-VPg-Pro precursor protein of poty-

viruses has been shown to be a scaffold protein around

which the viral replication complex assembles [15�,42–
46]. VPg binds several viral and host proteins, in particular

translation factors (for a review, refer to [47]) while the

6K2 is responsible for membrane recruitment [47]. They

examined the distribution of well characterized ER and

Golgi organelle markers in TuMV-infected cells by con-

focal microscopy. In TuMV-infected cells, the cortical

ER does not show any apparent modification but is

speckled with 6K2-tagged vesicles (from now on desig-

nated as peripheral vesicles). On the contrary, the peri-

nuclear ER is enlarged into a large irregular shaped

globular-like structure that contained 6K2 and is linked

to the cortical ER by transvacuolar strands. The ER is

compacted within this structure and does not show a

polygonal tubular pattern. Golgi bodies, COPII coatamers

and chloroplasts are also recruited into this perinuclear

globular structure (Figure 1). Disruption of the early

secretory pathway by Brefeldin A (BFA) or by co-expres-

sion of a dominant-negative mutant of Arf1, which

regulates membrane traffic between the Golgi and ER,

does not affect the formation of the globular structure.

Similarly, BFA does not affect replication of Melon

necrotic spot virus whereas it has a negative impact on

cell-to-cell movement [19�]. This situation is also

observed during coronavirus infection where virus-

induced remodeling of endoplasmic reticulum mem-

branes and viral replication, albeit reduced, still take

place in the presence of BFA [48].

However, despite their close association, ER and Golgi

recruitment may not take place in tandem for all plant

viruses. For instance, cowpea mosaic virus infection

induces massive proliferation of ER and its recruitment

into virus-induced vesicles, but not of Golgi membranes

[14]. A similar situation is found for Grapevine fanleaf

virus [11]. This noticeable dissimilarity suggests the
www.sciencedirect.com
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Figure 1
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(a)–(f) Distribution of viral and host components in the PVX X-body. (a) GFP-CP expressed from a green overcoat virus construct labels virions that

form cages around the X-body. (b) Aggregates of TGB1-mCherry localize within the cage formed by GFP-CP-decorated virions in green overcoat PVX-

infected tissue. (c) TGB1-mCherry is located within PUM-BiFC-labeled vRNA whorls. (d) Recruitment of ER by perinuclear TGBp1-mCherry aggregates

in uninfected tissue. The ER is wrapped tightly around the aggregates. (e) Recruitment of Golgi membranes and disassembly of Golgi stacks by TGB1-

mCherry. Similar to the ER, Golgi membranes are wrapped tightly around the perinuclear aggregates. A few individual Golgi stacks are visible (arrows).

(f) X-body containing vRNA and CP near the nucleus. (g)–(i) Organelle recruitment in TuMV globular structure. TuMV-infected cells expressing 6K2-

mCherry (g, h) or 6K2-GFP (i), co-expressed with ST-GFP a Golgi marker (g), sec24-YFP (h) or with chloroplast autofluorescence (i). Bar = 10 mm. (n)

indicates nucleus position.

(a)–(F) reproduced from [40��] with permission of the American Society of Plant Biologists. (g)–(i) reproduced from [41��] with permission of the

American Society for Microbiology.
existence of different mechanisms for host endomem-

brane recruitment during plant virus infection.

Dynamics of virus-induced structures
The plant ER and Golgi bodies are dynamic secretory

organelles, constantly undergoing remodeling [49,50].

Since the perinuclear globular structure observed in

TuMV-infected cells contains an amalgam of condensed

ER and Golgi membranes, investigations have been

performed to observe if this compartment is nevertheless

functionally linked to the bulk of non-modified endo-

membranes [41]. Fluorescence recovery after photo-

bleaching (FRAP) experiments and the use of
www.sciencedirect.com 
photoactivable GFP (PAGFP) [51] indicated that the

TuMV-induced perinuclear structure is not an isolated

subcellular compartment, Golgi and ER being connected

to the bulk of the host cell endomembranes. It also

appears that this compartment is a reservoir that can hold

a large quantity of ER membranes. It has been reported

that plant viral infections stimulate de novo membrane

synthesis [14,52,53] and perhaps the bulk of newly syn-

thesized lipids accumulate in these perinuclear struc-

tures. On the contrary, the perinuclear globular

structure is not rapidly restocked in viral components

following photobleaching, with no input of viral proteins

from near-by perinuclear structures. Similarly, the
Current Opinion in Virology 2012, 2:683–690
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internal architecture of Hepatitis C virus membranous

webs appears relatively static, with limited exchange of

viral proteins within and between neighboring replication

complexes [54].

However, this apparent inactivity in restocking for viral

components does not mean that the globular structure is a

closed entity for viral proteins. PAGFP is used for fluor-

escent pulse labeling of fusion proteins at a specific

position within a cell, which allows their subsequent

cellular redistribution to be monitored [51]. When 6K2

was fused to PAGFP and expressed in infected cells and

photoactivation performed within the globular structure,

activated 6K2-PAGFP fluorescence was found to rapidly

fill up the globular structure and motile 6K2-tagged

vesicles were seen to originate and to move away from

this same structure. These experiments then provide

evidence for a functional link between the perinuclear

globular structure and peripheral vesicles. Tilsner et al.
[40��] also demonstrated that there is continuity between

the X-bodies and peripheral vesicles associated with

movement proteins and thus viral egress.

TuMV peripheral vesicles show rapid trafficking along

transvacuolar strands as if they were traveling on a high-

way out and into the perinuclear globular structure [41��]
(Figure 2). This trafficking is probably brought by re-

arrangements in the actin cytoskeleton [30]. Several

groups have looked at the contribution of the cytoskele-

ton in the intracellular trafficking of virus-induced struc-

tures (for a review on the subject, refer to [22,55]). For

example, the group of Nelson analyzed the association of
Figure 2

(a)

n

(a) TuMV-infected cells expressing 6K2-mCherry showing that transvacuolar s

periphery highlighted by brightfield. (b) TuMV-infected cells expressing 6K2-

(HDEL-GFP). n indicates nucleus position. Arrows indicate a peripheral vesi
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tobacco mosaic virus-induced bodies with microfilaments

[16]. Time-lapse imaging shows that the peripheral

bodies traffic along microfilaments with average velocities

of 1 mm/s with top speed approaching 8 mm/s. The move-

ment of these bodies has subsequently been shown to

depend on myosin motors [15�,20�,21�]. Plasmodesmata

are the ultimate destination of this trafficking.

Endomembranes are not only recruited to virus replica-

tion complexes, they are actively remodeled. For

example, TBSV recruits ESCRT (endosomal sorting

complexes required for transport) factors [3] and Brome

mosaic virus (BMV) host reticulon proteins [56,57] to

facilitate membrane curving during virus-induced struc-

ture formation.

Recruitment of endomembranes in
Arabidopsis thaliana mutant lines
Interestingly, defects in the early secretory pathway can

produce similar recruitment of endomembranes into peri-

nuclear structures as those observed in PVX-infected and

TuMV-infected cells. Faso et al. [58��] characterized an

Arabidopsis thaliana mutant that partially accumulates

Golgi membrane markers and a soluble secretory marker

in perinuclear globular structures entwined with actin

cables and composed of a mass of convoluted ER tubules

that maintain a connection with the bulk ER. The

mutation also leads to impaired traffic of proteins at

the ER/Golgi interface. In the same vein, Nakano et al.
[59��] isolated two A. thaliana mutants with defects in ER

morphology and designated them endoplasmic reticulum

morphology1 (ermo1) and ermo2. The cells of both
(b)
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trands provide a direct link between the perinuclear structure and the cell

mCherry showing association of peripheral vesicles with cortical ER

cle moving within a transvacuolar strand. Bar = 10 mm.
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Figure 3
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Model of perinuclear structure. Early in the infection process, the incoming viral RNA is translated and the viral gene products contribute to the

formation of the perinuclear globular structure. Following replication events (i.e., negative and positive-sense RNA transcription) that take place within

this globular structure, viral egress is initiated by vesicle budding. Vesicles then traffic along the ER/microfilaments towards the plasma membrane and

plasmodesmata for ultimate delivery of the virus into neighboring cells.

Reproduced from [41��] with permission of the American Society for Microbiology.
mutants develop a number of ER-derived spherical

bodies, approximately 1 mm in diameter, that also contain

Golgi bodies. The above lines have a defect in one of the

Sec24 isomers that causes a partial loss of function for the

binding of cargo protein intended for secretion. Faso et al.
[58��] hypothesized that if constitutive traffic is disrupted,

inappropriate fusion of vesicles between the ER and the

Golgi may occur, creating an aberrant compartment. It is

then plausible that the formation of the perinuclear

globular structure is the consequence of an interfering

event between a viral protein and Sec24 or another host

protein of that nature.

Such interfering events have been documented for

vertebrate viruses. The viral proteins involved are mem-

brane-associated and interact or interfere with cellular

membrane trafficking proteins of the early secretory path-

way [60�,61–63]. However, there is as yet no report

showing a specific interaction with a plant viral protein

and a host secretory pathway component but there is one

investigation indicating that this may be the case. The

triple gene block protein 3 (TGBp3) of bamboo mosaic

virus (genus potexvirus) induces by itself the production of

peripheral vesicles that are associated with the cortical

ER. Wu et al. [23��] showed that mutations in the C-

terminal region of the protein no longer formed vesicles in

the cortical ER but exhibited perinuclear ER localization

and concluded that C-terminal region of TGBp3 probably

contains a sorting signal specifying cortical ER localiz-

ation, implying interaction with a secretory pathway
www.sciencedirect.com 
component. The tobacco etch virus (genus potyvirus)
6K2 protein may also have an ER export signal [64]. It

will be interesting to see if these viral proteins target a

component of the early secretory pathway at the ER/

Golgi interface that leads to inhibition of protein

secretion and formation of the perinuclear globular struc-

ture.

We suggest the following model to describe the cellular

remodeling taking place during TuMV infection that

shares many features with PVX replication (Figure 3).

Early in the infection process, the incoming viral RNA is

translated and the viral gene products contribute to the

formation of the perinuclear globular structure. Replica-

tion events (i.e., negative and positive-sense RNA tran-

scription) take place within this globular structure and

these events would still happen even if the ER-Golgi

interface is disrupted during viral infection. After this

step, viral egress is initiated by the budding of 6K2

vesicles at ERES in the globular structure, which then

traffic along the ER/microfilaments towards the plasma

membrane and plasmodesmata for ultimate delivery of

the virus into neighboring cells.

Conclusion
The full molecular events that consubstantiate with this

endomembrane recruitment in virus-induced structures

remain however to be elucidated. Evidently viral genome

replication and probably virion assembly are taking place

within these structures. The fact that there is heavy
Current Opinion in Virology 2012, 2:683–690
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recruitment of organelles into these structures would also

reflect a need for sustained high synthetic activity that is

required for virus production. Future investigations will

thus aim at identifying host proteins that are involved in

the formation of the perinuclear structure. Additionally,

considering the large size of these structures, other events

may take place concomitantly. For instance, the unfolded

protein response has been proposed to be an element of

PVX infection [65]. The active role of the host endomem-

branes in other plant (+)RNA virus replication should also

be explored to broaden our understanding of general and

unique aspects of these membranes in supporting viral

processes.
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Impact on the endoplasmic reticulum and Golgi apparatus
during Turnip mosaic virus infection. Journal of Virology 2012,
86:9255-9265.

Similar to above contribution where endomembrane recruitment is shown
for a potyvirus.

42. Beauchemin C, Boutet N, Laliberté J-F: Visualization of the
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