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the impact of ruminant‑specific regulatory 
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Abstract 

Background:  Insights into the genetic basis of complex traits and disease in both human and livestock species 
have been achieved over the past decade through detection of genetic variants in genome-wide association stud-
ies (GWAS). A majority of such variants were found located in noncoding genomic regions, and though the involve-
ment of numerous regulatory elements (REs) has been predicted across multiple tissues in domesticated animals, 
their evolutionary conservation and effects on complex traits have not been fully elucidated, particularly in ruminants. 
Here, we systematically analyzed 137 epigenomic and transcriptomic datasets of six mammals, including cattle, sheep, 
goats, pigs, mice, and humans, and then integrated them with large-scale GWAS of complex traits.

Results:  Using 40 ChIP-seq datasets of H3K4me3 and H3K27ac, we detected 68,479, 58,562, 63,273, 97,244, 111,881, 
and 87,049 REs in the liver of cattle, sheep, goats, pigs, humans and mice, respectively. We then systematically charac-
terized the dynamic functional landscapes of these REs by integrating multi-omics datasets, including gene expres-
sion, chromatin accessibility, and DNA methylation. We identified a core set (n = 6359) of ruminant-specific REs that 
are involved in liver development, metabolism, and immune processes. Genes with more complex cis-REs exhibited 
higher gene expression levels and stronger conservation across species. Furthermore, we integrated expression quan-
titative trait loci (eQTLs) and GWAS from 44 and 52 complex traits/diseases in cattle and humans, respectively. These 
results demonstrated that REs with different degrees of evolutionary conservation across species exhibited distinct 
enrichments for GWAS signals of complex traits.

Conclusions:  We systematically annotated genome-wide functional REs in liver across six mammals and demon-
strated the evolution of REs and their associations with transcriptional output and conservation. Detecting lineage-
specific REs allows us to decipher the evolutionary and genetic basis of complex phenotypes in livestock and humans, 
which may benefit the discovery of potential biomedical models for functional variants and genes of specific human 
diseases.
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Background
Over the past decade, genome-wide association stud-
ies (GWAS) have successfully discovered hundreds of 
thousands of genetic variants associated with complex 
traits and diseases in both human and livestock spe-
cies [1–3]. As the majority of these variants are located 
in noncoding regions [4], it is challenging to understand 
how they impact complex phenotypes. Previous studies 
have illustrated that trait-associated variants are signifi-
cantly enriched in regulatory regions, such as promoters 
and enhancers, in well-studied species (e.g., humans and 
mice) [5, 6]. Currently, global efforts such as the Func-
tional Annotation of Animal Genomes (FAANG) ini-
tiative and the Farm animal Genotype-Tissue Expression 
(FarmGTEx) project are working to uncover basic knowl-
edge of genomic function and regulation in livestock spe-
cies [7–9]. However, a comprehensive atlas of regulatory 
elements (REs) is still lacking for most livestock species, 
which limits our understanding of the functional biology 
of species evolution and restricts the genetic improve-
ment of complex traits in livestock. As abundant terres-
trial herbivores [10], ruminants, such as cattle, sheep, and 
goats, have a unique history of species differentiation and 
play an important economic role in modern animal hus-
bandry. Therefore, a comprehensive comparison of REs 
between major ruminants and other species will provide 
novel insights into functional genome evolution spe-
cific to ruminants. Moreover, it will allow us to explore 
the genetic basis underlying complex traits of economic 
value in these farm animal species.

The emergence of cross-species comparative epig-
enomics has provided a new method for both elucidating 
genomic evolution and identifying potential functional 
noncoding variants associated with complex traits and 
diseases [11]. By comparing the chromatin landscape of 
primary aortic endothelial cells isolated during the acute 
NF-κB response among humans, mice, and cattle, Ali-
zada et al. found that inflammatory- and cardiovascular-
associated genetic variants discovered by GWAS were 
significantly enriched in the species-conserved regula-
tory regions nearby NF-κB target genes [12]. In addition, 
by cross-species mapping of epigenomic marks, Liu et al. 
found that the genetic control of immune and repro-
ductive traits is conserved to a certain degree between 
humans and cattle [13]. These findings indicate that 
evolutionarily conserved REs play key roles in shaping 
complex phenotypes across species [14, 15]. Although 
previous studies have investigated the evolution of the 
transcriptome (e.g., long noncoding RNAs) in ruminants 

[8, 16], a comprehensive comparison of epigenetic regu-
lation and its potential impacts on other molecular phe-
notypes and complex traits is still lacking.

Here, by using the liver as a representative tissue, we 
systematically detected and functionally characterized 
the epigenomic landscapes and explored the dynam-
ics of REs across three ruminant species (i.e., cattle, 
sheep, and goat) and three non-ruminant species (i.e., 
pig, mouse, and human). We annotated an average of 
81,081 REs (17,154 and 63,927 promoters and enhancers, 
respectively) across six species by integrating 137 multi-
omics datasets, including epigenetic data such as histone 
modifications, gene expression, chromatin accessibil-
ity, and DNA methylation (Additional file 1: Fig. S1). By 
detecting lineage-specific REs and associating them with 
expression quantitative traits loci (eQTLs) and large-
scale GWAS datasets from 44 and 52 complex traits in 
cattle and humans, respectively, we further explored how 
comparative epigenomics across species could help us 
understand the evolutionary and genetic mechanism of 
complex phenotypes. Overall, our study provides a valu-
able resource for REs in ruminants and highlights the key 
roles of conserved functional elements in complex traits 
in both human and livestock species.

Results
Overview of multi‑omics datasets
To study the epigenomic changes during ruminant evo-
lution, we performed chromatin immunoprecipitation 
sequencing (ChIP-seq) for H3K27ac and H3K4me3 in 
the liver of cattle, sheep, and goats (Fig. 1A). In total, we 
generated 17 ChIP-seq datasets, and each species had 
three biological replicates. We also generated nine RNA 
sequencing (RNA-seq) datasets and nine whole genome 
bisulfite sequencing (WGBS) datasets in the same liver 
samples. We further retrieved a total of 41 public data-
sets including ChIP-seq datasets for H3K27ac and 
H3K4me3, WGBS datasets, and RNA-seq datasets, of 
three non-ruminant (i.e., pigs, humans, and mice) liv-
ers. Each species had at least two biological replicates 
(Additional file  2: Table  S1A-C) [17, 18]. We have pro-
cessed all the data using the same data analysis pipeline 
to make human, mouse, and pig datasets (previously 
generated) comparable to those (newly generated) of 
three ruminants. Furthermore, we also collected data-
sets from seven other cattle tissues to investigate the 
dynamic epigenetic landscape across tissues [19]. Over-
all, we uniformly analyzed 35 new genome-wide omics 
datasets from three ruminant livers and integrated them 
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with 102 previously published datasets. We obtained over 
25 billion mapped reads with an average mapping rate 
of 91.24% after filtering low-quality reads (Fig.  1A and 
Additional file 2: Table S1A-D).

Through signal saturation analysis, we found that 20 
million reads were required to reach the saturation of 
consistent peak detection for H3K27ac and H3K4me3 
in single-end ChIP-seq samples, while 37.5 million reads 

were required for paired-end ChIP-seq samples (Addi-
tional file  1: Fig. S2A and S2B). We detected 66,000–
108,000 (mean = 83,338) H3K27ac-enriched regions 
and 18,000–29,000 (mean = 23,576) H3K4me3-enriched 
regions in liver (q < 0.01, Additional file 1: Fig. S2C and 
S2D). Furthermore, we defined two categories of REs, 
(1) promoters, which were simultaneously marked by 
H3K4me3 and H3K27ac, and (2) enhancers, which were 

Fig. 1  Summary and characterization of 137 epigenetic and gene expression data in six mammals. A Datasets analyzed by this study. B The 
number of regulatory regions (promoters and enhancers) identified in the liver of each species. C Fold enrichments of regulatory elements (REs) 
for 14 chromatin states previously predicted in cattle and pig liver [19]. These chromatin states mainly represented enhancers (CTCF/Enhancer, 
Active_Enhancer, and Primed_Enhancer), promoters (CTCF/Promoter, Active_Promoter, Promoter, Poised_Promoter), repressed regions (Insulator, 
Low_Signal, and Polycomb_Repressed), open regions (Active_Element), and TSS-proximal regions (CTCF/TSS, Active_TSS, and Flanking TSS). D The 
percentages of REs overlapped with public data in cattle liver (blue) and newly annotated in this study (orange). E The sample clustering based on 
pairwise Spearman correlation of gene expression. F Similarity of sample clustering patterns across different omics data types using Rand index
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only enriched for H3K27ac. We identified an average of 
81,081 REs per species, including 63,927 enhancers and 
17,154 promoters (Fig. 1B and Additional file 3: Table S2). 
Moreover, we found that enhancers exhibited higher tis-
sue specificity compared to promoters. For example, we 
found that a majority of (85.94%) enhancers in the liver 
exhibited tissue specificity, while only 22.92% of promot-
ers did (Additional file  1: Fig. S2E). We observed that 
78.09% of all promoters were located around (distance ≤ 
5kb) transcriptional start sites (TSSs), whereas the major-
ity (77.88%) of enhancers were distal to TSSs (distance > 
5kb) (Additional file  1: Fig. S3A), which was consistent 
with previous findings [17]. We calculated the enrich-
ment fold of REs for 14 chromatin states previously pre-
dicted by ChromHMM [19] and observed that these REs 
were significantly enriched for the corresponding chro-
matin states (Fig. 1C and Additional file 1: Fig. S3B and 
S3C). For instance, enhancers were significantly enriched 
for “Active_Enhancer” and “CTCF/Enhancer” (enrich-
ment fold = 21.78 and 16.61, respectively). We further 
validated that over 70% and 45% of our newly detected 
promoters and enhancers overlapped with REs identified 
using publicly available datasets in the liver (Fig. 1D and 
Additional file  1: Fig. S3D and S3E) of cattle, pigs, and 
mice [17, 19, 20]. Overall, these results indicate the high 
reliability of the REs identified in this study. Notably, we 
also newly identified REs in the liver that had not been 
annotated in previous studies. For example, 7.23% and 
45.89% of all cattle promoters and enhancers were newly 
identified in this study, respectively (Fig. 1D).

To evaluate the evolution of epigenomic marks and 
gene expression across these six species, we performed 
hierarchical clustering based on epigenomic mark sig-
nal intensities and expression levels of 9796 one-to-one 
orthologous genes. As expected, we observed that the 
three ruminants were clustered together, consistent 
across all six omics data types (Fig.  1E and Additional 
file  1: Fig. S4). This relationship pattern across species 
was consistent in terms of gene expression and epig-
enomic marks, which were measured by the pairwise 
Rand index (Fig.  1F). These observations reflected the 
consistent effects of epigenomic marks, gene expression, 
and genome during species divergence.

Co‑evolution of epigenomic regulatory and gene 
expression
To obtain a global view of the evolution of REs and 
gene expression, we constructed phylogenetic trees for 
five distinct omics data types, including ChIP-seq for 
H3K27ac and H3K4me3, RNA-seq (gene expression), 
WGBS (DNA methylation), and ATAC (chromatin acces-
sibility) (Fig.  2A–E). All eight phylogenetic trees were 
in agreement with the known genome phylogeny across 

six species [21]. We observed two major mammalian 
lineages (ruminants and non-ruminants), followed by 
the separation among the ruminant lineages (Bovidae 
and Caprinae). This implies co-evolution and interplay 
among different functional genome elements and DNA 
sequences during mammalian evolution.

According to bootstrapping analysis, the total length of 
the phylogenetic trees varied widely across these omics 
data types (Fig.  2F), reflecting their differences in evo-
lution rates. Notably, the branch of the gene expression 
tree was significantly (P<0.0001)  shorter than those of 
another seven epigenomic phylogenetic trees, indicating 
that gene expression levels were more conserved than 
their regulatory elements during mammalian evolution. 
Furthermore, promoters were highly conserved com-
pared to distal enhancers [17, 22]. Compared to histone 
modifications (H3K27ac and H3K4me3) and chroma-
tin accessibility, DNA methylation in REs evolved faster 
(Fig. 2F) [23].

Dynamic landscape of hepatic REs during ruminant 
evolution
To further investigate the epigenomic molecular mecha-
nisms underlying ruminant evolution, particularly in cat-
tle, we divided cattle REs into three main categories using 
cattle as the “anchor” species based on their absence/
presence among six species, i.e., highly conserved (AC), 
ruminant-specific (RS), and cattle-specific (CS) REs 
(Additional file  1: Fig. S5A). We identified 772 AC-REs 
across six mammals, including 183 enhancers and 589 
promoters (Fig.  3A and Additional file  1: Fig. S5B-F). 
Consistent with the previous observation that promot-
ers had a high conservation level than enhancers in the 
liver across primates [17], we observed that ~4.27% of 
promoters were AC-Promoters, whereas only ~0.33% of 
enhancers were AC-Enhancers. By comparing with the 
REs detected in another seven  bovine tissues [19], we 
observed that REs in the liver with higher lineage-spec-
ificity exhibited higher tissue specificity, which was con-
sistent for both enhancers and promoters. For instance, 
by comparing with the other seven tissues, we found that 
47.54% and 89.61% of highly conserved enhancers (AC-
Enhancers) and cattle-specific enhancers (CS-Enhancers) 
were specific in the liver, respectively (Fig.  3B). In gen-
eral, we found that enhancers are more tissue-specific 
than promoters, consistent with the hypothesis that 
enhancers are important regulators of tissue-specific 
gene expression and are highly related to the function of 
the respective tissues [15, 24]. In addition, liver-specific 
REs exhibited hypomethylation and high expression of 
their target genes specifically in the liver (Fig.  3C and 
Additional file 1: Fig. S6 and S7) [25, 26].
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Based on gene ontology (GO) enrichment analysis, 
we found that the putative target genes of different line-
age-specific REs were significantly (FDR<0.01) enriched 
for distinct biological processes (Fig. 3D and Additional 
file 4: Table S3). Genes linked to AC-REs were signifi-
cantly involved in fundamental and developmental 
biological functions (e.g., regulation of RNA stability 
and liver morphogenesis), whereas those linked to RS- 
and CS-REs were enriched in metabolic and immune 
processes (e.g., steroid metabolic processes and posi-
tive regulation of immune system processes). For 
instance, a liver-specific ruminant-specific enhancer 
(RS-Enhancer) located within the PON1 gene was 
shared across three ruminants (Fig.  3E), which plays 
an important role in inhibiting low-density lipoprotein 
oxidation and has rapidly evolved in the ancestor of 
ruminants [27, 28]. Moreover, PON1 had high expres-
sion levels specifically in adult livers of cattle (Fig. 3E) 
[25]. To investigate potential transcription factors (TFs) 
change during ruminant evolution, we performed TF 

motif enrichment analysis for lineage-specific REs. 
The enriched TFs had similar biological functions as 
genes linked to the corresponding lineage-specific REs 
and exhibited matched expression levels and chroma-
tin accessibility across species (Fig.  3F and Additional 
file  5: Table  S4). For example, RBPJ and MAZ, which 
are involved in intrahepatic bile duct development 
and transcription initiation [29–32], were significantly 
enriched in AC-REs, whereas HNF4A, PPARA​, and 
FOKA1 which are associated with hepatocyte prolifera-
tion, glucagon biosynthesis, and lipid metabolism [33–
35] were enriched in RS-Enhancers and CS-Enhancers. 
We further observed that RS-Enhancers contained 
more liver-related motifs than CS-Enhancers, as exem-
plified by the fraction of motif for the PPARA tran-
scription factor (Fig. 3G). Moreover, we found specific 
enrichment of IRF motif families in ruminant-specific 
promoters (RS-Promoters) and cattle-specific pro-
moters (CS-Promoters). Overall, we provide a valu-
able resource for lineage-specific REs, which play an 

Fig. 2  Evolutionary changes of regulatory elements (REs) and gene expression across mammals. Phylogenetic trees were built using the 
neighbor-joining method for gene expression of 9796 one-to-one orthologous genes (A), H3K27ac signals (B), H3K4me3 signals (C), chromatin 
accessibility (D), and DNA methylation level (E) in REs (enhancers and promoters) of orthologous genes. F Comparisons of total branch lengths of 
the phylogenetic trees across five omics data types using 1000 bootstrapping test. “****” indicates P < 0.0001
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important role in multiple fat metabolism processes, 
immune function, and hepatocyte development.

The number of REs contributes to gene expression 
conservation across species
To detect how the evolution of enhancers and promoters 
regulates interspecies changes in gene expression during 
ruminant evolution, we generated RNA-seq datasets to 

quantify gene expression levels from a total of six spe-
cies. We then grouped genes into four categories: (1) 
genes with both enhancers and promoters (Both); (2) 
genes with only promoters (Promoter); (3) genes with 
only enhancers (Enhancer), and (4) genes with none of 
the defined REs (None). Firstly, we found that “Both” and 
“Promoter” genes had the highest conservation, followed 
by “Enhancer” genes, while “None” genes showed the 

Fig. 3  The dynamic of regulatory elements (REs) in the liver during ruminant evolution. A The fractions of REs that are highly conserved (AC), 
ruminant-specific (RS), and cattle-specific (CS) in cattle. B Specificity of liver REs determined by comparing to the other seven cattle tissues-adipose, 
cortex, cerebellum, hypothalamus, lung, spleen, and muscle. C Histone mark signals (H3K4me3 for cattle-specific promoters (CSP), H3K27ac for 
cattle-specific enhancers (CSE)), DNA methylation levels, and chromatin accessibility of tissue-specific CSE and CSP across eight cattle tissues. D 
GREAT Gene Ontology (GO) terms enrichment for six lineage-specific REs (FDR <0.01). E H3K27ac and H3K4me3 ChIP-seq profiles of PON1 gene 
(right) for six species, cattle, sheep, goat, pig, human, and mouse, at the loci of ruminant-specific enhancers (RSE). The expression levels of the PON1 
gene (left) in the 28 organ systems of cattle. TPM, transcripts per kilobase million. F Transcription factor (TF) motifs enriched in six lineage-specific 
REs. The bubble plot shows the enrichment of TF motifs in six lineage-specific REs, and the heatmap shows the chromatin accessibility of TF 
promoters across five mammals. G The fraction of RE peaks harboring canonical PPARA motif (JASPAR – MA1148.1) as a function of distance from RE 
peaks to the summits
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lowest conservation (Fig.  4A and Additional file  1: Fig. 
S8). The phyloP sequence conservation score (Fig.  4B) 
and probability of loss-of-function intolerance (pLI) 
score (Fig. 4C) of “Both” and “Promoter” genes were also 
higher than that of the other two gene sets. Next, we 
tested the relationship between the number of REs and 
gene expression levels. Consistent with previous stud-
ies [36, 37], genes with more REs tended to have higher 
gene expression levels (Additional file 1: Fig. S9 and S10), 
illustrating that the majority of the REs identified in this 
study showed an additive effect on gene expression lev-
els. Moreover, we observed that the number of REs of a 
gene could also influence interspecies conservation of 
gene expression. Genes associated with multiple REs (i.e., 
enhancers ≥ 3; promoters ≥ 2) exhibited significant tran-
scriptional conservation, compared to those with no or 
fewer REs (i.e., enhancers ≤ 2; promoters ≤ 1) (Wilcoxon 
signed-rank test: enhancers P = 0.0354 and promoters 
P = 6.104e−05; Fig.  4D). Overall, these results further 
support that the redundancy of REs may contribute to 
buffering in transcriptional evolution and regulatory 
innovation [36–38].

To determine whether the conserved REs contribute to 
the evolutionary stability of gene expression across spe-
cies, we compared the evolutionary stability of genes with 
similar expression levels, but differing in the absence or 
presence of conserved REs. Genes with AC-REs exhib-
ited higher conservation than those without (Wilcoxon 
signed-rank test: AC-Enhancers P = 0.04126 and AC-
Promoters P = 1.221e−04, respectively; Fig.  4E). These 
results indicate that conserved REs contribute to the evo-
lutionary conservation of gene expression.

REs are enriched for genomic variants and QTLs of complex 
traits
To further investigate the relationship between charac-
terized REs and genomic mutations, we calculated the 
enrichment of REs for single-nucleotide polymorphisms 
(SNPs) and copy number variable regions (CNVRs) in 
cattle obtained from the NCBI database of SNP (dbSNP) 
and Animal Omics Database (AOD) [39]. We found that 
promoters had higher enrichment for CNVRs and SNPs 
than enhancers, while lineage-specific REs had a lower 
enrichment for CNVRs than conserved ones (Fig.  5A). 
These observations were consistent with previous CNV 
annotation in humans that CNVRs prefer to be near 

promoters and away from enhancers [40, 41]. Moreo-
ver, the density of SNPs increased in the proximity of 
REs (Additional file  1: Fig. S11A), particularly for CS-
Promoters. We performed enrichment analyses using 
eQTLs in cattle livers with lineage-specific REs [9]. All 
six types of REs were significantly enriched for eQTLs, 
with the enrichment fold ranging from 1.41 to 2.03 (P < 
0.05, 1000 bootstrapping test). These eQTLs exhibited 
higher enrichment in promoters of matching lineage-
specific types than in enhancers, as previously reported 
in humans (Fig. 5B) [42]. This result indicates that line-
age-specific REs may have played important roles in reg-
ulating gene expression during mammalian evolution.

By overlapping REs with QTLs of 489 different cat-
tle traits from the cattle QTL database (QTLdb), we 
observed that all six types of REs showed enrichments 
for QTLs of six trait categories (Fig.  5C and Additional 
file 6: Table S5A-F). The top enriched complex traits were 
associated with liver function, such as milk alpha-S1-ca-
sein content and milk cis-fatty acid content. Body condi-
tion score and body weight (24 months) were enriched 
for AC-Promoters, which was consistent with a previous 
study on beef cattle that suggested the liver is the rele-
vant tissue of feed efficiency and is associated with daily 
weight gain through regulating metabolism processes 
[44]. Moreover, SNPs inside REs showed significantly 
stronger associations (as represented by the P-value) than 
those outside REs for both cattle and human traits, such 
as protein percentage in cattle and alkaline phosphatase 
in humans (Fig.  5D and Additional file  1: Fig. S11B). In 
summary, these observations further illustrate that line-
age-specific REs are hotspots of causative mutations for 
complex traits.

Enrichment analysis of REs for GWAS signals of complex 
traits in cattle and humans
To further investigate how the conservation of REs 
shapes the genetics of complex traits in cattle and 
humans, we conducted GWAS signal enrichment 
analyses of the characterized REs using GWAS sum-
mary statistics from 44 and 52 complex traits in cattle 
and humans, respectively (Fig.  6A, B, Additional file  7: 
Table  S6, and Additional file  8: Table  S7). For human 
traits, we also conducted the heritability enrichment 
analysis using the stratified linkage disequilibrium score 
regression (LDSC) [45], and found that the results from 

Fig. 4  Regulatory elements (REs) drive interspecies transcriptional conservation during evolution. A Comparison of total branch lengths for the 
phylogenetic trees across four categories of one-to-one orthologues genes based on the 1000 bootstrapping test. Enhancer, Promoter, Both, and 
None indicate genes with only enhancers, only promoters, both enhancers, and promoters, without REs, respectively. Box plots showing the median 
phastCons scores (B) and pLI score (C) for four categories of one-to-one orthologues genes. D The number of associated enhancers and promoters 
contributes to interspecies transcriptional stability. E The association of gene stability and conserved REs, including highly conserved enhancers 
(ACE) and highly conserved promoters (ACP). “**” indicates P < 0.01; “***” indicates P < 0.001; “****” indicates P < 0.0001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Regulatory elements (REs) are enriched for genomic variants of gene expression and complex traits. The fold enrichment of REs for genomic 
variants [39] (A), expression QTLs (eQTLs) detected from cattle liver [9] (B), and six categories of QTLs (including 489 complex traits) downloaded 
from the cattle QTL database [43] (C), based on 1000 bootstrapping test. D The P values of SNPs inside and outside of REs from GWAS summary 
datasets for protein percentage in cattle [3]. “*” indicates P < 0.05; “**” indicates P < 0.01; “****” indicates P < 0.0001; “ns” indicates P >0.05
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LDSC were significantly and positively correlated with 
those from the count-based test (Fig. 6C, D). We did not 
conduct the similar analysis as the matched linkage dis-
equilibrium (LD) and minor allele frequency (MAF) were 
not available for the Holstein population being analyzed. 
It would be of interest to consider the LD and genetic 

relatedness of individuals when conducting the heritabil-
ity enrichment analysis in livestock, once the individual 
genotypes and phenotypes are available.

In general, CS-/RS-REs showed a higher enrichment 
for many cattle complex traits than conserved ones, 
whereas the opposite trends were observed for human 

Fig. 6  GWAS signal enrichment analysis of regulatory elements (REs) for complex traits and diseases. GWAS signals enrichment analysis of the 
characterized REs for 44 and 52 complex traits in cattle (A) and humans (B), respectively. “Blue” represents traits that were only significantly enriched 
in cattle-specific REs (CS-REs) in A. “*” indicates P < 1.0e−5. ACE, ACP, RSE, RSP, CSE, CSP, HMPSP, HMPSE, HSE, and HSP stand for all-conserved 
enhancers, all-conserved promoters, ruminant-specific enhancers, ruminant-specific promoters, cattle-specific enhancers, cattle-specific promoters, 
human-pig-mouse-specific enhancers, human-pig-mouse-specific promoters, human-pig-specific enhancers, human-pig-specific promoters, 
human-specific enhancers, human-specific promoters, respectively. C, D Pearson’s correlations of enrichment degrees (−log10P) across 52 human 
traits calculated by using the stratified linkage disequilibrium score regression (LDSC) and the count-based marker-set test
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complex traits, where human-specific REs showed a 
lower enrichment for human complex traits than con-
served ones. Notably, we found that highly conserved 
REs were enriched for similar complex traits in humans 
and cattle. For instance, AC-Promoters were significantly 
enriched for somatic cell score (SCS) (P < 1.00e−15) in 
cattle and primary biliary cirrhosis (P < 3.51e−08) in 
humans (Fig. 6A, B). This was consistent with a previous 
study, which reported that conserved regulatory regions 
enriched for SNPs associated with inflammatory traits in 
humans [12]. Furthermore, we noted that GWAS signals 
for some complex traits were regulated by both AC- and 
RS-/CS- specific REs (Fig. 6A), such as protein percent-
age in cattle. These results suggest that for some com-
plex traits, cross-species comparison of the functional 
genome may help us interpret the biological mechanisms 
underlying complex traits, and then enhance genetic 
improvement in livestock species. We also found that 
GWAS signals for 16 out of 44 complex traits were only 
significantly enriched in CS-REs, including five body type 
traits, eight reproductive traits, one production trait, 
and two healthy traits (Fig. 6A). This may be due to the 

strong artificial selection of complex traits of economic 
value in cattle. Interestingly, we noted that lineage-spe-
cific enhancers were enriched for GWAS signals of both 
protein percentage and ketosis in cattle (Fig.  6A). For 
instance, a liver-specific CS-Enhancer within DGAT1 
harbored risk SNPs associated with protein percent-
age (rs384957047, P < 1.80e−18), which is located in the 
upstream of DGAT1 [3, 46] (Fig. 7A, B). DGAT1 is neces-
sary for triacylglycerol synthesis and has been reported to 
be associated with milk production, milk fat composition, 
metabolizability, and N efficiency in cattle [47–49]. The 
expression level of DGAT1 was significantly regulated by 
rs384957047 in cattle liver, which is a fine-mapped cis-
eQTL (P < 1.14e−11, Fig.  7C). Moreover, transcription 
factor binding prediction analysis showed that TFs were 
changed before and after the SNP rs384957047 muta-
tion in the upstream of DGAT1 (Additional file 9: Table. 
S8). We further constructed a luciferase reporter experi-
ment and found that luciferase activity was significantly 
changed with different alleles of rs384957047 (T > C) in 
DGAT1 (t-test: P < 0.01, Fig.  7D and Additional file  10: 
Table. S9). Overall, these observations suggest that 

Fig. 7  A cattle-specific enhancer of DGAT1 was associated with protein percentage in cattle. A The top panel is the Manhattan plot of protein 
percentage in cattle [3]. The bottom panel shows H3K27ac (green) and H3K4me3 (purple) profiles within the DGAT1 locus across six species. B 
H3K27ac (green) and H3K4me3 (purple) profiles within the DGAT1 locus across eight tissues in cattle. C The PEER-corrected expression level of 
DGAT1 is significantly associated with three genotypes of rs384957047 in cattle liver [9]. D The relative luciferase activity of the recombinant plasmids 
constructed with DGAT1_T and DGAT1_C of rs384957047. “**” indicates P < 0.01; “***” indicates P < 0.001
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classifying REs by evolutionary conservation can improve 
our understanding of the genetic mechanisms underlying 
complex traits and target causal variants in both livestock 
and humans.

Discussion
Gene regulatory divergence and its associations with 
complex traits have been extensively studied in humans 
[50]. However, little is known about the mechanisms 
underlying the regulatory roles of epigenetic variation 
in gene expression patterns and phenotypic divergence 
during ruminant evolution. Here, we provide a compre-
hensive insight into the comparative epigenomics of the 
liver across three ruminants (cattle, sheep, and goats) 
and three non-ruminants (pigs, humans, and mice). By 
integrating histone signals (HK4me3 and H3K27ac), 
transcriptomes, chromatin accessibility, and DNA meth-
ylation, we found that genes linked to RS-REs were signif-
icantly enriched in immune processes, including immune 
effector processes and positive regulation of the immune 
system processes. Moreover, we found specific enrich-
ment of IRF motif families in RS-REs. The liver plays an 
essential role in many immune processes. For example, 
hepatocytes are responsible for the production of 80%–
90% of the circulating innate immunity proteins in the 
body, and the liver contains a large number of resident 
immune cells. Therefore, we inferred that RS-REs may 
be important for the ruminant inflammatory process. 
However, further functional experiments are required to 
validate the immune functions of these RS-REs [51, 52]. 
By combining with large-scale GWAS summary datasets 
for humans and cattle, we further demonstrated the rela-
tionships between complex traits and conserved/lineage-
specific REs, and provided an important resource for 
narrowing down the range of causative mutations. Col-
lectively, our results provide insight into the ruminant 
regulatory landscape and evolution. Our study also dem-
onstrates that the datasets used for this study from public 
databases provide valuable functional information for the 
genetic breeding of livestock. Moreover, we found that 
70%–90% and 9%–45% of the currently detected promot-
ers and enhancers in humans and mice overlapped with 
those previously reported (Additional file 1: Fig. S12) [17, 
53, 54], implying a high concordance between the cur-
rent study and previous reports, especially for promoters. 
However, further functional validation of those enhanc-
ers required experimental validations (e.g., enhancer 
reporter vectors [55]) either in vivo or in vitro.

Cross-species epigenomic comparison has been widely 
used to investigate the evolutionary basis of REs and their 
impacts on species-specific complex traits (e.g., cogni-
tive traits in humans) [11, 56]. Fang et al. observed that 
conserved hypomethylated regions between humans and 

cattle play an important role in immune response and 
are significantly enriched for GWAS signals of immune-
related traits in both species [56], indicating that cross-
species comparison of epigenome could contribute to 
narrowing down genetic variants of complex traits and 
diseases. Castelijns et al. demonstrated that human-spe-
cific REs were involved in oligodendrocyte function post-
natally and were changed in the brain of autism patients, 
by comparing the H3K27ac mark in the brain across 
humans, chimpanzee, marmoset, macaque, and mice 
[11]. Here, through integrating with large-scale eQTLs 
and GWAS in both humans and cattle, we demonstrated 
how cross-species comparison of functional genomes can 
help us understand the evolutionary and genetic basis of 
complex traits/diseases. Overall, these observations sug-
gest the importance of using cross-species datasets to 
decipher the mechanisms of GWAS loci.

Our integrative analysis of histone modification marks, 
DNA methylation, gene expression, and chromatin 
accessibility shed light on the regulatory patterns of co-
evolution during ruminant evolution. We observed that 
the phylogenetic relationships of species based on epig-
enomic signal intensity and gene expression levels were 
consistent with that inferred from the DNA sequence, 
reflecting a co-evolution pattern of the functional 
genome and DNA sequence across species. Previous 
studies have proposed the notion that changes in regu-
latory elements affect gene expression levels and then 
lead to phenotypic diversity across species [36]. Zhou 
et al. reported that 40% of the variance in gene expression 
of lymphoblastoid cell lines could be explained jointly 
by evolutionary changes of five marks (i.e., H3K4me1, 
H3K4me3, H3K27ac, and H3K27me3, and RNA poly-
merase II) across primates [57]. These observations 
imply a synergistic effect of epigenomic marks on gene 
expression during mammalian evolution. However, such 
interaction effects among different types of epigenomic 
marks need to be further explored. We observed higher 
conservation of gene expression than regulatory marks. 
This may due to (1) REs found in this study could still 
contain false positives and there are still missing REs, (2) 
RNA-seq only measures gene expression changes at the 
gene level but not transcript level, as REs changes might 
be contributing to more varied transcript-level expres-
sion changes. Overall, a better understanding of buffer-
ing mechanisms underlying gene expression might help 
us interpret how evolutionary changes in epigenetic 
regulation contribute to gene expression variation across 
species.

In this study, we observed significant enrichment of 
GWAS signals in AC-REs across six mammals, which 
is consistent with the findings of Liu et  al. [13]. For 
instance, AC-Enhancers were significantly enriched 
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for immune-related traits in both cattle (i.e., SCS) and 
humans (i.e., primary biliary cirrhosis). Notably, the 
majority of complex traits were enriched in AC-REs in 
humans, especially for metabolic diseases, such as non-
alcoholic fatty liver disease and alanine aminotransferase. 
The strong association between metabolic diseases and 
AC-REs suggests that important metabolism-related 
mutations may exist in ancient REs and also imply that 
cattle may serve as a biomedical model for studying 
human metabolic diseases.

A previous study on humans also found that human-
specific regulatory gains were significantly enriched 
for REs depleted in autism spectrum disorder and were 
associated with susceptibility to neural diseases [11]. 
We also found that CS-REs were significantly enriched 
for GWAS signals of many complex traits in cattle. This 
may be because that most of these analyzed pheno-
types (e.g., milk, protein, and fat yield) in cattle are eco-
nomic traits that are under intensive artificial selection 
[58], while most analyzed phenotypes in humans are 
complex diseases that are more likely to be under natu-
ral selection [59]. Moreover, all the GWAS traits being 
analyzed here are somehow related to milk production 
in Holsten dairy cattle. The enrichment of GWAS sig-
nals of cattle traits in CS-REs may also imply the impor-
tance of studying cattle functional genomes to enhance 
their genetic improvement. In particular, we identified a 
potential causative variant for the protein percentage of 
milk, which is located in CS-Enhancer. It might influ-
ence the protein percentage of milk might by regulating 
the expression of DGAT1 (the upstream of 1444bp away). 
The liver plays an important role in the synthesis and 
secretion of lipoproteins to provide the mammary gland 
with cholesterol and triglycerides for milk production 
during lactation in cows. Previous studies also observed 
that inhibition of DGAT1 expression in bovine hepato-
cytes reduced triacylglycerol accumulation and signifi-
cant effects of DGAT1 on milk production traits [60, 61]. 
Moreover, the expression of DGAT1 in the liver was sig-
nificantly associated with milk production according to 
transcriptome-wide association studies in cattle [9, 62]. 
We found that the allele T of rs384957047 increased the 
expression level and transcriptional activity of DGAT1 
compared with allele C, which implied that the allele T of 
rs384957047 was associated with increased milk produc-
tion. However, further analysis is needed to determine 
the functional impact of rs384957047 on milk produc-
tion traits. Of note, the limitation of the current study is 
that only three ruminants were examined. In the future, 
other Bovidae species (e.g., yak and water buffalo) will 
be required to further explore whether this enhancer of 
DGAT1 only exists in cattle. Overall, the link between 
cattle functional genome evolution and complex traits 

may reflect cattle-specific transcriptional programs and 
provide priority candidate regions for identifying causa-
tive variants of complex traits.

Conclusions
Collectively, our study systematically annotated and com-
pared regulatory elements in the liver across three eco-
nomically important ruminants (i.e., cattle, sheep, and 
goats) and three non-ruminant mammals (i.e., pigs, mice, 
and humans). By integrating large-scale GWAS sum-
mary datasets in cattle and humans, we demonstrated the 
importance of cross-species comparison of REs in under-
standing the evolution of the functional genome, and 
genetic mechanisms underlying complex traits/diseases 
in livestock and humans.

Methods
Animal and tissue collection
In this study, a total of nine liver samples were collected 
from adult healthy individuals, including three cat-
tle (3–4 years old; Holstein, healthy), three sheep (2–3 
years old; Texel, healthy), and three goats (2–3 years old; 
Yunnan black goat, healthy). All samples were collected 
immediately postmortem and stored in liquid nitro-
gen. All animal procedures were performed according 
to protocols of the Institutional Animal Care and Use 
Committee (IACUC) at China Agricultural University. 
The ChIP-seq, WGBS, and RNA-seq liver assays were 
constructed from the same samples. For pig, mouse, and 
human data, only samples from adult and healthy indi-
viduals were considered.

ChIP‑seq datasets
We conducted ChIP according to published protocols 
[63]. The frozen liver samples were first powdered and 
washed with phosphate-buffered saline (PBS) buffer 
solution, and it was then vigorously shaken with 1% for-
maldehyde solution for 20 min at room temperature 
to cross-linking. Next, the samples were incubated at 
room temperature for 10 min by adding 250 mM gly-
cine. The cross-linked liver samples were homogenized 
in a Dounce homogenizer and rinsed twice with PBS to 
solubilize DNA-protein complexes. The chromatin was 
sheared to an average size of 300 bp with sonication and 
centrifuged at 4 °C for 10 min to remove the pellet. Chro-
matin extracts were used to perform ChIP experiments 
using antibodies against H3K27ac (Abcam ab4729) and 
H3K4me3 (Abcam ab85850). We also constructed con-
trol experiments (input libraries) to assess potential arti-
facts related to the shearing of DNA and amplification, 
where DNA has been cross-linked and sonicated chro-
matin without immunoprecipitation. ChIP sequencing 
libraries were prepared from input or ChIP-input DNA 
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in 96-well plates and sequenced on an Illumina HiSeq 
2500 with paired-end 150 bp reads by Novogene (Beijing, 
China).

The public liver ChIP-seq (H3K27ac and H3K4me3) 
datasets were obtained from the National Center for 
Biotechnology Sequence Read Archive (NCBI SRA) 
database, including human (PRJEB6906) [17], mouse 
(PRJEB28147), and pig (PRJEB28147) datasets [18].

ChIP‑seq data mapping and quality evaluation
We used Trim Galore v0.4.0 and FastQC v0.11.2 soft-
ware to trim the raw reads and obtain sequence quality 
reports. The clean reads were mapped to the correspond-
ing reference genome of each species using BWA-MEM 
software v0.7.17 [64] with the default parameters: ARS-
UCD1.2, Oar_rambouillet_v1.0, ARS1, Sscrofa11.1, 
GRCh38, GRCm39. Mapped reads were further filtered 
using SAMtools view utilities (1.10) [65] with the param-
eters “-q 1.” Duplicated alignment reads were removed 
using the Picard Tools v2.25.0 (https://​github.​com/​broad​
insti​tute/​picard) with the parameter “REMOVE_DUPLI-
CATES = true.” To evaluate the enrichment efficiency of 
ChIP-seq, we examined all libraries of the relative strand 
cross-correlation coefficient (RSC) and normalized 
strand cross-correlation coefficient (NSC) with phan-
tompeakqualtools v1.2.2 [66], where an RSC >1 and NSC 
>1.1 indicate that the effect of antibody enrichment was 
acceptable in ChIP-seq. Detailed ChIP-seq quality statis-
tics are shown in Additional file 2: Table S1A.

ChIP‑seq signal saturation and peak calling
To exclude the influence of sequencing depth and ensure 
that the ChIP-seq signal was saturated in all librar-
ies, we subsampled mapped the reads from each library 
(H3K27ac, H3K4me3, and input libraries), starting with 5 
million reads and a step of 2.5million. For the single-end 
sequencing data of public ChIP-seq data, we have a maxi-
mum subsample of 30 million reads. We subsampled a 
maximum of 40 million reads from our paired-end ChIP-
seq datasets. For each subsample, we identified narrow 
peaks using MACS2 v2.1.1 [67] with options “-q 0.01.” 
Reproducible peaks were detected in at least two bio-
logical replicates and at least 50% overlap of their length 
using intersectBed from bedtools v2.30.0 [68]. Consen-
sus peaks were obtained by merging all reproducible 
peaks of all biological replicates for further analysis. The 
sequencing results revealed that H3K27ac and H3K4me3 
reached saturation of consistent peak detection at 20 mil-
lion reads in the single-end ChIP-seq, while H3K27ac 
and H3K4me3 reached saturation at 37.5 million reads 
in the paired-end ChIP-seq (Additional file  1: Fig. S2). 
Subsequently, we used the subsample of H3K27ac 
and H3K4me3 with 20 million reads in the single-end 

ChIP-seq and with 37.5 million reads in the paired-end 
ChIP-seq for all further analyses. For one H3K4me3 
library in pigs and one input library in humans, we used 
all the reads instead of subsampled, as their deduplicated 
read counts were less than 20 million.

Identification of regulatory regions
Within each species, the consensus peaks of H3K27ac 
and H3K4me3 overlapped to define regulatory regions 
enriched for H3K27ac only or both using intersectBed 
from bedtools v2.30.0. We defined two categories of reg-
ulatory regions: (1) promoter, which was simultaneously 
marked by H3K4me3 and H3K27ac with at least 50% 
overlap of their length, and (2) enhancer, which contained 
H3K27ac peaks and did not overlap with H3K4me3 
enriched regions. Histone modifications could be used 
to identify putative REs (i.e., enhancers and promoters) 
at a genome scale. However, these REs are required for 
further functional validation, such as using enhancer 
reporter vectors either in transfected cells or transgenic 
animals (e.g., mice) [69, 70]. The statistics of regulatory 
regions are shown in Additional file 3: Table S2.

Comparison with those previously detected
To validate the accuracy of REs mapping, we down-
loaded H3K27ac/H3K4me3 ChIP-seq data for the livers 
of cattle (PRJEB6906, PRJNA665199, PRJNA665216 and 
PRJEB41939) [17, 19, 20], pigs (PRJNA597497) [15], and 
mice (PRJEB6906) [17] from the SRA database (Addi-
tional file  11: Table  S10). The REs were identified using 
the aforementioned methods. Mouse and human REs 
identified in the current study were compared to REs 
annotated in Ensembl version 103 [53] and VISTA [54] 
(downloaded July 28, 2022). The overlap of REs identified 
in the current study and those confirmed in the previ-
ous study was calculated using the intersect command 
in BEDTools v2.30.0 with parameters “-f 0.5 –F 0.5 -e.” 
Moreover, we obtained the chromatin states of cattle 
[19], pigs [19], humans [5], and mice [71] in the liver and 
performed enrichment analysis with the 1000 permuta-
tion test using the R package regioneR [72].

Whole genome alignment and cross‑species comparisons
Cross-species comparisons were performed using 46 
eutherian mammals Enredo-Pecan-Ortheus (EPO) 
multiple genome alignments available from ENSEMBL 
Compara API (v103) [73, 74]. To further identify the 
highly conserved REs across the six species, we used 
cattle as the central species and then aligned other spe-
cies to cattle in a pairwise manner. REs were consid-
ered highly conserved if they overlapped with another 
regulatory region in all species with a minimum length 
of 50%. Similarly, lineage-specific REs were defined for 

https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
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ruminants using the methods as those used to identify 
highly conserved regions. REs were compared between 
the reference species (cattle) and species in the other 
clade using EPO multiple genome alignments. Line-
age-specific REs were highly conserved across species 
within the clade (i.e., cattle, sheep, and goats for the 
ruminant branch) but not in other species.

Identification of species‑specific REs
The species-specific REs were determined as previ-
ously described [18]. The REs were defined as species-
specific (Nsi, see Eq. 2) if the DNA sequence could not 
be aligned to any other species, or if RE activity could 
not be detected in any other species with the underly-
ing DNA sequence alignable across species.

where Ni = number of REs (promoters and enhanc-
ers) in the species i (i=cattle, sheep, goats, pigs, 
humans, and mice); NNi = number of REs in species i 
without DNA sequence alignment to any other species. 
REs without DNA sequence alignment were defined as 
REs that could not be mapped to orthologous regions 
using 46 eutherian mammals Enredo-Pecan-Ortheus 
(EPO) multiple genome alignments in ENSEMBL 
(v103); NLi = number of REs in species i without shar-
ing of regulatory activity in any other species but with 
DNA sequence alignment across many species; NCi 
= number of REs in species i with shared regulatory 
activity in at least one other species; Nsi = number of 
species-specific REs in the species i.

RNA sequencing library construction
Total RNA was extracted using TRIzol method from 
frozen liver samples of three ruminant species: cattle, 
sheep, and goats. mRNA was enriched using magnetic 
beads with Oligo (dT) and sheared. The cDNA was syn-
thesized using random hexamers, end-repaired, and 
ligated to A base and sequencing adapters. Then, cDNA 
libraries were obtained by polymerase chain reaction 
(PCR) amplification and sequenced using the Illumina 
Hiseq X Ten platform with 150bp-paired reads (Novo-
gene Inc., Beijing, China). The liver RNA-seq datasets 
were obtained from the NCBI SRA database, including 
PRJEB13074 for humans [36], PRJEB33381 for mice, 
and PRJEB33381 for pigs [18].

(1)Ni = NNi + NLi + NCi

(2)Nsi = NNi + NLi

RNA sequencing mapping and gene expression 
quantification
The adapter sequences and low-quality bases were filtered 
using Trimmomatic v0.39 [75]. Detailed RNA-seq quality 
statistics are shown in Additional file  2: Table  S1B. The 
trimmed reads were mapped to the Ensembl 103 version 
of reference genomes with annotated genes using STAR 
aligner v 2.7.6 [76] with the following options: “--outFil-
terMismatchNmax 3 –outFilterType BySJout –quant-
Mode GeneCounts –outFilterMismatchNoverLmax 0.04 
–outSAMtype SAM SortedByCoordinate.” Gene expres-
sion levels were quantified as counts using featureCounts 
[77] and were normalized by Trimmed Mean of M value 
(TMM) with edgeR [78]. Genes with TMM-normalized 
counts per million (CPM) of more than 1 in 20% of the 
samples were used for further analysis.

WGBS library construction and analysis
The genomic DNA of liver samples from three ruminants 
(cattle, sheep, and goats) was extracted according to the 
TIANamp Genomic DNA Kit protocol (TIANGEN, Bei-
jing, China). The qualified DNA was fragmented to 300bp 
and subjected to terminal repairing and an addition at 
the 3′-terminus. Bisulfite conversion of DNA was per-
formed using the ZYMO EZ DNA Methylation-Gold Kit. 
DNA fragments were amplified using PCR and selected 
for library fragment size. The quantified library was 
sequenced on the Illumina HiSeq X Ten machine (PE-150 
bp FC; Annoroad, Beijing, China). The liver WGBS data-
sets were obtained from the NCBI SRA database as well, 
including PRJNA287622 for humans [79], PRJNA416505 
for mice [80], and PRJNA357500 for pigs [81]. The cattle 
WGBS datasets were obtained from the NCBI SRA data-
base under PRJNA612978 and PRJNA417285 [26, 82], 
representing five tissues, i.e., adipose, cortex, lung, mus-
cle, and spleen.

Raw reads were trimmed using Trim Galore v0.4.0 with 
default parameters. The clean reads were mapped to the 
reference genome using bismark v0.23.0 with default 
parameters and were deduplicated with the deduplicate_
bismark options [83]. CpGs with a coverage of at least 
five were used for further analysis. The methylation lev-
els of CpG sites were calculated using MethPipe v5.0.0, 
according to the number of methylated Cs in reads at the 
position corresponding to the site divided by the total 
of methylated Cs and unmethylated Ts mapping to that 
position [84].

Assay for transposase‑accessible chromatin 
with high‑throughput sequencing (ATAC‑seq) processing
We obtained 23 public ATAC-seq datasets from SRA 
databases, and the accession numbers are listed in 
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Additional file  2: Table  S1D. ATAC-seq raw reads were 
filtered using Trim Galore v0.4.0 with the following 
parameters “-q 25 -length 25 -e 0.1 --stringency 4.” The 
clean reads were mapped to the reference genome, and 
PCR duplicates were eliminated using Bowtie v2.4.2 and 
Picard Tools v 2.25.0. ATAC-seq peaks were called using 
MACS2 v 2.1.1 with the following parameters “--nomodel 
--shift 37 -B --SPMR --ext 73 --pval 1e-2 --call-summits.” 
The replicated peaks that overlapped by at least 50% in 
the two samples were identified using intersectBed from 
bedtools v2.30.0.

Assignment of REs to putative target genes 
and transcriptome divergence
Putative target genes of the REs were identified using 
methods similar to the GREAT v4.0.4 [85]. The regula-
tory association domains of genes were defined as 5kb 
upstream and 1kb downstream from their TSSs. The REs 
were then linked to their putative target genes if they 
overlapped (≥1bp) with regulatory association domains 
of genes using the intersect command in BEDTools 
v2.30.0. We divided genes into two groups according to 
the number of REs, such as single (e.g., the number of 
promoters≤1) vs. multiple (e.g., the number of promot-
ers≥2). When estimating the relative conservation of 
genes with different numbers of REs, we considered sin-
gle and multiple genes with matched expression levels 
using the MatchIt [86] library in R with the option “cali-
per=0.5.” The transcriptome evolutionary divergence 
was measured by Spearman’s correlation coefficients of 
expression levels of orthologous genes between pairs of 
species. Divergence time was obtained from Timetree 
(http://​www.​timet​ree.​org/).

Regulatory and transcriptome phylogenies
We constructed phylogenic trees based on pairwise dis-
tance matrices using the neighbor-joining method in 
the ape R library [87]. We obtained 9796 1:1 ortholo-
gous genes from Ensembl release 103 (http://​asia.​ensem​
bl.​org/​info/​genome/​compa​ra/​homol​ogy_​method.​html) 
[88], which showed CPM > 1 in more than 20% of the 
samples. We then calculated gene expression levels and 
four marker (H3K4me3, H3K27ac, chromosomal acces-
sibility, DNA methylation levels) signal intensities in 
REs (promoters and enhancers) of orthologous genes. 
Pairwise distance matrices were estimated as 1− ρ (ρ is 
Spearman’s correlation coefficient of species). The branch 
length of phylogenetic trees was accessed with 1000 
bootstrap analyses.

Gene function and TF motif analyses
Gene function enrichment analyses were performed for 
genes associated with lineage-specific REs using GREAT 

v4.0.4 for biological process ontologies. The regulatory 
domain was defined with the parameters: 5kb upstream 
and 1kb downstream from TSSs (extending up to 50kb 
in both directions for the regulatory domains of nearest 
genes). Significantly enriched terms were determined 
based on FDR< 0.05. We then performed motif enrich-
ment analysis using HOMER v4.11 with the default 
motif database [89]. To scan lineage-specific peaks (RS-
Enhancers and CS-Enhancers) for the PPARA motifs, 
we performed RSAT matrix-scan [90] with the matrix of 
PPARA (MA1148.1) from the JASPAR database (https://​
jaspar.​gener​eg.​net/) with the following parameters: 
Markov order:1, weight score ≥1.

GWAS enrichment analysis based on REs
Most complex traits are polygenic, and recent studies 
have reported some differences in the effects of different 
functional regions on traits [13, 91]. To further under-
stand the regulatory mechanism of economically impor-
tant traits and diseases in livestock and humans, we 
obtained GWAS summary datasets for 44 complex traits 
of 27,214 Holstein bulls with 3,148,506 SNPs [3, 46]. 
For the human GWAS summary datasets, we collected 
GWAS summary datasets for 52 complex traits with an 
average SNPs of 10,846,391 and an average individual of 
264,890. The details of the human GWAS summary data-
sets are summarized in Additional file 12: Table S11. We 
added 50-kb windows around REs to include the impor-
tant cis-regulatory variants. We then employed a count-
based marker-set test approach with the QGG R package 
to examine whether GWAS signals were enriched in can-
didate regulatory regions [92].

where Tcount is the summary statistics for each candi-
date regulatory region, c is the number of SNPs in the 
given region, for instance, AC-Enhancers. I is an indi-
cator function that takes value one when ti < to, and we 
choose to=0.01 as the cut-off. The significance of enrich-
ment was calculated using the hypergeometric test [93]. 
P < 1.0e−5 was set as the threshold of the significant 
enrichment. Detailed descriptions can be found in Fang 
et al. [25].

Dual‑luciferase reporter assays
Here, 293T cells were seeded in 96-well plates and 
transfected until the cell density reaches 50%–70%. 
Three recombinant plasmids were constructed, namely 
DGAT1_T, in which the SNP of DGAT1 was allele T; 
DGAT1_C, in which the SNP of DGAT1 was allele C; 
and the control plasmid pGL3-basic. MluI and XhoI were 

Tcount =

c

j=1

I(ti < to)
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identified as the restriction sites of DGAT1 (Additional 
file  1: Fig. S13). The target fragment sequence contains 
30bp upstream of rs384957047 and the sequence to the 
transcription start site of DGAT1, including enhancer 
and promoter. Six hours after transfection of 293T cells, 
fresh medium was replaced, and 48 h after transfection, 
samples were collected to detect the luciferase activi-
ties using a microplate system. The transfection test was 
repeated at least three times, and each germplasm plas-
mid was equipped with two replicates.

Other downstream bioinformatics analyses
The chromatin states of four mammal (cattle, pigs, 
humans, and mice), were obtained from previous stud-
ies [5, 19, 71]. Enrichment analysis of chromatin state 
was performed using the regioneR library in R with 1000 
times permutation tests. We conducted genomic variants 
(i.e., SNP, CNVR, QTL, and eQTL) enrichment analyses 
using regioneR library in R (Permutation test: 1000). The 
genomic variants were downloaded from public data-
bases, including NCBI dbSNP, cattle QTLdb (Release 45, 
August 23, 2021), AOD [39], and a previous study [9]. We 
calculated the histone and ATAC signal intensities using 
deepTools v3.1.1 with the following parameters “--nor-
malizeUsing CPM.”
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