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Abstract
Epstein-Barr virus (EBV) infection is a significant factor in the pathogenesis of nasopharyn-

geal carcinoma, especially in the undifferentiated carcinoma of nasopharyngeal type

(UCNT, World Health Organization type III), which is the dominant histopathological type in

high-risk areas. The major EBV oncogene is latent membrane protein 1 (LMP1). LMP1

gene shows variability with different tumorigenic and immunogenic potentials. EBV nuclear

antigen 1 (EBNA1) regulates progression of EBV-related tumors; however, the influence of

EBNA1 sequence variability on tumor pathogenesis is controversial. The aims of this study

were to characterize polymorphisms of EBV genes in non-endemic nasopharyngeal carci-

noma biopsies and to investigate potential sequence patterns that correlate with the clinical

presentation of nasopharyngeal carcinoma. In total, 116 tumor biopsies of undifferentiated

carcinoma of nasopharyngeal type (UCNT), collected from 2008 to 2014, were evaluated in

this study. The genes EBNA2, LMP1, and EBNA1 were amplified using nested-PCR.

EBNA2 genotyping was performed by visualization of PCR products using gel electrophore-

sis. Investigation of LMP1 and EBNA1 included sequence, phylogenetic, and statistical

analyses. The presence of EBV DNA was significantly distributed between TNM stages.

LMP1 variability showed six variants, with the detection of the first China1 and North Caro-

lina variants in European nasopharyngeal carcinoma biopsies. Newly discovered variants

Srb1 and Srb2 were UCNT-specific LMP1 polymorphisms. The B95-8 and North Carolina

variants are possible predictors for favorable TNM stages. In contrast, deletions in LMP1
are possible risk factors for the most disfavorable TNM stage, independent of EBNA2 or

EBNA1 variability. A newly discovered EBNA1 subvariant, P-thr-sv-5, could be a potential

diagnostic marker, as it represented a UCNT-specific EBNA1 subvariant. A particular com-

bination of EBNA2, LMP1, and EBNA1 polymorphisms, type 1/Med/P-thr was identified as

a possible risk factor for TNM stage IVB or progression to the N3 stage.
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Introduction
Nasopharyngeal carcinoma (NPC) is an aggressive human malignancy that originates from the
epithelial cells of the retronasal cavity. It is rare in most populations around the world with an
incidence below 1 per 100 000 persons per year in Europe and the USA; however, in southern
China and southeast Asia, NPC is endemic, with an incidence rate of 20–30 per 100 000 per-
sons per year [1]. The undifferentiated carcinoma of nasopharyngeal type (UCNT, World
Health Organization type III) is the dominant histopathological type in high-risk areas. The
remarkable geographic variations in NPC prevalence are the result of the complex develop-
ment of this carcinoma [2]. It includes interaction between environmental carcinogens (food,
tobacco smoke, alcohol consumption, inhalant, and Epstein-Barr virus infection) and genetic
predisposition based on HLA (human leukocyte antigen) polymorphisms and chromosomal
3p LOH (loss of heterozygosity) [3]. This theory is supported by NPC clustering in families
from diverse populations [4].

Epstein-Barr virus (EBV) infection is a key environmental factor of UCNT, and is classified
as a group 1 carcinogenic agent by the International Agency for Research and Cancer (IARC).
In endemic regions, UCNT is almost universally associated with EBV infection. NPC usually
has type 2 EBV latency with EBNA1 driven by the Qp promoter, expression of EBER (EBV
encoded RNA) and BARTs (BamHI A rightward transcripts), LMP2 and variable expression of
LMP1 [5]. The establishment of latent transforming infection in an epithelial cell together with
genetic changes that may facilitate latent infection or are synergistic with EBV transforming
proteins are likely to be the crucial steps in the development of NPC. Although EBV is highly
prevalent in the human population, there are still unidentified genome specificities that con-
tribute to pathogenesis of NPC. On the other hand, geographically associated EBV gene poly-
morphisms in endemic regions are well known.

EBV is classified as type 1 or 2, mainly based on the divergence within the EBV nuclear anti-
gen 2 (EBNA2) gene, which encodes an essential protein in the EBV transformation process of
B lymphocytes [6]. Geographical distributions of genotypes show the dominance of EBV type
1, especially in Europe, Asia, and North and South America. The association between genotype
and disease has not yet been established [7].

Latent membrane protein 1 (LMP1) is a crucial EBV oncogene, which has been shown to
transform rodent fibroblasts in vitro and induce tumors in nude mice [8,9]. The transformation
and immortalization of B lymphocytes occur by inducing B-cell activation markers and expres-
sion of the anti-apoptotic A20 and bcl-2 genes [10]. The oncogenic potential of LMP1, which
results in B cell transformation, is suggested by its high functional similarity to the tumor
necrosis factor receptor (TNFR) family members, CD40 and TNFR1 [11].

The C-terminal region of LMP1 is significantly heterogeneous. Seven LMP1 strains have
been defined based on nucleotide sequence variations: Alaskan (AL), China1, China2, China3,
Mediterranean with (Med+) or without (Med−) deletions, and North Carolina (NC) [12,13].
These variants are distinguished by the presence or absence of a 30-bp deletion, the number of
characteristic 11-amino acid (33-bp) repeats, and defined nucleotide and amino acid changes
in comparison with the prototype sequence, B95-8 [13]. It has been suggested that some LMP1
variants have potentially higher tumorigenic activity and lower immunogenic potential of EBV
[14]. This concept refers to the presence of the 30-bp deletion [15], which also has the capabil-
ity to prolong the half-life of the LMP1 protein [3,16]. In addition, a geographically specific dis-
tribution of LMP1 variants has been described [17].

EBNA1 is the only EBV gene expressed in all infected cells. Thus, it may play a critical role
in the onset, progression, and persistency of EBV-related tumors. There have been reports
about the anti-apoptotic properties of EBNA1 in Burkitt’s lymphoma, inhibiting
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p53-dependent apoptosis [18]. It is also known that EBNA1 is essential for virus replication,
maintenance of extrachromosomal episomes, and transcriptional control of the viral latency
programs, through sequence-specific binding to its replication origin, OriP. The Gly-Ala
repeats in the sequence were initially reported to prevent the presentation of EBNA1 on major
histocompatibility complex (MHC) class I molecules and preclude recognition by CD8+ cyto-
toxic T lymphocytes [19]. More recent studies indicate that the dominant role of the mentioned
repeats is to reduce the translational efficiency of EBNA1 and to inhibit the initiation of trans-
lation. Those mechanisms result in fewer EBNA1 peptides expressed on the cell surface and in
less efficient recognition by EBV-specific CD8+ T cells [5].

EBNA1 sequence variability is classified into five subtypes: two prototype sequences P-ala
(B95-8 prototype) and P-thr, and three variant sequences V-val, V-leu, and V-pro. The subtype
V-ala has been added afterwards [17]. Subtypes are identified according to the amino acid pres-
ent in locus 487 [20], and sub-variants based on amino acid substitutions on loci other than
locus 487. The literature data about the association between tumor status and EBNA1 sequence
variability are controversial [21,22]. However, the geographically specific distribution of
EBNA1 subtypes is unambiguous.

Serbia and the countries in Southeast Europe are considered non-endemic regions for NPC
with a dominance of the UCNT type. Reports about EBV variability are very rare [23]. How-
ever, thus far, no data are available on the association between EBV gene polymorphisms and
clinical characteristics of cancer. The aims of the present study are to characterize EBV gene
polymorphisms circulating in NPC isolates from this geographic region and to investigate
potential sequence patterns that correlate with NPC clinical presentation. According to pro-
posed, the results of EBV variability also demonstrated newly variants. In addition, risk factors
for favorable and disfavorable TNM stages were identified. The majority of them were identi-
fied for the first time.

Materials and Methods

Patients and samples
This study consists of tumor biopsies collected from 116 patients between 2008 and 2014 with
histologically confirmed UCNT. Each tissue sample was obtained by incisional biopsy during
endoscopy of nasopharynx. Archived tissue blocks fixed in formalin and embedded in paraffin
were retrieved from the Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Cen-
ter of Serbia. Sample collection and research were approved by the Ethics Committee of the
Faculty of Medicine, University of Belgrade, No.29/VI-12. As sample collection was retrospec-
tive, both institutions waived the need for written informed consent from the donors (review
board of the Clinic of Otorhinolaryngology and Maxillofacial Surgery, Clinical Center of Ser-
bia, number No.1419 and Ethics Committee of the Faculty of Medicine, University of Belgrade,
number No.29/XI-8).

All samples were collected from Caucasian individuals. Eighty-five patients were male
(73.3%) and 31 were female (26.7%). The average age was 54 ± 13.1 years (18 to 78). After diag-
nosis by endoscopic biopsy, 63 patients were initially treated with chemotherapy (CT), 31 with
chemo-radiotherapy (CRT), 9 with radiotherapy (RT), 7 surgically, and 6 only symptomati-
cally. According to the accessible data, all patients were classified by five different criteria: sex
(male, female); tobacco smoking (57 smokers and 24 non-smokers); the history of any illness
(65 positive and 44 negative); TNM staging by the American Joint Committee on Cancer (15
with stage Tx, 4 at stage I, 30 at stage II, 28 at stage III, 9 at stage IVA, 27 at stage IVB, and 3 at
stage IVC); and the last known outcome of disease (4 with therapy in progress, 12 with
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complete remission, 7 with partial regression, 6 with stabilization, and 32 with progression
and/or metastasis of the tumor).

Deparaffinization and DNA isolation
Three 10-mm-thick tissue sections from each block were placed in a sterile, plastic 1.5-ml PCR
tube, deparaffinized with xylene, rehydrated in alcohol, and then air-dried. The tissue sections
were then resuspended and lysed overnight at 56°C in 180 μl digestion buffer (QIAGEN, Hil-
den, Germany) and 20 μl proteinase K (QIAGEN, Hilden, Germany). Viral DNA was isolated
using a QIAamp Mini Kit (QIAGEN, Hilden, Germany), according to the manufacturer’s
instructions.

EBV typing by EBNA2
EBV typing was performed in 32 EBNA2-positive biopsies, by nested-PCR, as previously
described, using primers that were reported by Mendes et al. [23,24]. The first reaction ampli-
fied a common 596-bp region covering almost the entire EBNA2 extent, followed by two sepa-
rate nested reactions amplifying distinctive regions of 497 bp for EBV type 1 and 150 bp for
EBV type 2. EBV types 1 and 2 were distinguished by identifying either the 497-bp fragment or
the 150-bp fragment in gel electrophoresis.

LMP1 carboxy-terminal region sequencing
Amplification of the C-terminus of the LMP1 gene was performed by nested-PCR as described
previously, using primers that were reported by Li et al. [23,25]. Thirty-five LMP1-positive
PCR products were purified using a QIAGENMinElute Purification Kit (QIAGEN, Hilden,
Germany), according to the manufacturer’s instructions. For cycle sequencing reactions, inter-
nal PCR primers and a Big Dye Terminator v 3.1 Cycle Sequencing Kit (Applied Biosystems,
Foster City, CA, USA) were used. Sequencing was carried out in an automatic sequencer (ABI
PRISM 310 Genetic Analyzer; Applied Biosystems, Foster City, CA, USA). Both sense and anti-
sense strands were sequenced and compared.

EBNA1 carboxy-terminal region sequencing
Amplification of the C terminus of the EBNA1 gene was performed by nested-PCR using prim-
ers reported by Lorenzetti et al. [26]. Both PCR reactions were carried out in 40 cycles, the first
reaction at 95°C for 1 min, 57°C for 2 min, and 72°C for 90 sec; and the second reaction at
95°C for 1 min, 60°C for 2 min, and 72°C for 90 sec. After analysis of PCR products by gel elec-
trophoresis with ethidium bromide staining, 40 EBNA1-positive products were purified, used
in cycle sequencing reactions, and sequenced based on the same principles described for LMP1
sequencing.

Sequence and phylogenetic analysis
The 506-bp and 329-bp nucleotide sequences of LMP1 and EBNA1, respectively, were sepa-
rately aligned and compared with a reference wildtype sequence in Bioedit 7.0.5.3 software
[27]. Using the same software, we searched for characteristic amino acid changes described by
Edwards et al. [13] in order to identify and classify LMP1 variants. In addition, we classified
EBNA1 subtypes and sub-variants after inspecting signature amino acid changes at the follow-
ing positions: 471, 475, 476, 479, 487, 492, 499, 500, 502, 517, 520, 524, 525, 528, and 533.

For representative and reference LMP1 sequences, 13 sequences obtained from the Gen-
Bank/EMBL7DDBJ database under the accession numbers V01555, AY493742, AY493743,
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AY337721, AY337722, AY493810, AY337723, AY493835, AY337724, AY493799, AY337725,
AY337726, and X58140 were used. For representative and reference EBNA1 sequences, 10
sequences obtained from the GenBank/EMBL7DDBJ database under the accession numbers
V01555, GU475455, JN986939, AF192742, GU475448, AF192743, GU475431, AF192744,
JN986947, and GU475442 were used. Thirty-five LMP1 and 40 EBNA1 NPC sequences from
this study are available in the GenBank/EMBL7DDBJ database with accession numbers:
JF901794-JF901802, JN971085-JN971091, and KT820429-KT820488. The LMP1 and EBNA1
sequences identified were aligned pairwise using the ClustalW method implemented in the
MEGA 6.0 software [28]. Adequate reference sequences from the GenBank/EMBL/DDBJ data-
base were used in both alignments. The most appropriate models for evolution for C-terminal
regions of LMP1 and EBNA1 genes were inferred using jModelTest 2.1.4 [29]. Maximum-like-
lihood trees were estimated according to the defined best-fit F81+I+G evolutionary model by
using the PhyML 3.0 software [30]. Statistical significance of phylogeny was estimated by boot-
strap analysis with 1,000 pseudo-replicate datasets. Graphical presentation and edition of phy-
logenetic trees were performed with Fig Tree 1.4.0 [31] and MEGA 6.0 [28] software.

Statistical analyses
The chi-squared or Fisher's exact test and Student’s t-test were used for statistical analysis. To
investigate potential risk factors or predictors of disease, statistical testing was followed by uni-
variate logistic regression analysis. Analyses were performed by SPSS v.21 for Windows (SPSS
Inc., Chicago, IL, USA). P-value� 0.05 was considered statistically significant.

Results

EBV typing
The frequencies of EBV type 1 or type 2 were determined from 32 EBNA2 isolates. EBV type 1
was present in 93.75% of the samples (30/32) and EBV type 2 in 6.25% of the samples (2/32).

LMP1 variant characterization and sequence analysis
Thirty-five sequences of the EBV LMP1 gene were obtained, analyzed, and compared with the
B95-8 prototype sequence. Characteristic nucleotide variability including variant characteriza-
tion, detection of deletions, determination of the number of 11-amino acid repeats, and inspec-
tion of amino acid changes were investigated, followed by phylogenetic analysis.

As shown in Fig 1, the phylogenetic analysis clustered LMP1 sequences from this study,
along with other isolates from GenBank, into four groups. The groups are defined by 4 of 7
known LMP1 variants, namely B95-8, Med, China1, and NC. In addition, inspection of
variant-characteristic amino acid changes defined by Edwards et al. was used to confirm the
phylogenetic grouping of the sequences [13]. The most dominant variant was Med (34.3%)
(Table 1). However, three LMP1 isolates did not match any of the variants from the above-
mentioned classifications and were shown as two extra branches in the phylogenetic tree. In
keeping with the previous nomenclature, where the variants were named after the geographic
location where they were first isolated, the two new variants from this study were temporarily
named Serbia1 (Srb1) for isolate UCNT344, and Serbia2 (Srb2) for isolates UCNT1399 and
UCNT1621.

From nucleotide deletion analyses of LMP1 sequences, it was determined that most isolates
(71.4%) did not include deletions. However, two deletions were identified in almost one third
of all sequences (28.6%): the specific 10-amino acid/30-bp deletion (spanning codons 346–
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355), which was found in four isolates (11.4%), and a rare 23-amino acid/69-bp deletion (span-
ning codons 333–355), which was found in six isolates (17.2%) (Table 1).

It has been shown that the C-terminal domain of LMP1 could contain various numbers of
11-amino acid repeats located between amino acids 250 and 308 [32]. The B95-8 prototype
sequence has four perfect repeats with a disruption of 5 amino acids between the second and
the third repeat (4.5 11-amino acid repeats). Therefore, isolates from this study were classified
into two groups: those with 4.5 repeats or less, and those with more than 4.5 repeats (Table 1).
The number of repeats varied from two to six, and the group with 4.5 repeats or less was the
most common (62.9%).

To complete the sequence characterization of LMP1 isolates from this study, it was neces-
sary to identify the amino acid changes. In the first step, the analysis included seven character-
istic amino acid positions for variant discrimination, described by Edwards et al. (Fig 2) [13].
Moreover, 85 amino acid substitutions were identified at an additional 58 positions and some
of them were unique for specific variants (Fig 2).

EBNA1 sequence variation
Forty sequences of EBNA1 were obtained, analyzed, and compared with the B95-8 prototype
sequence. According to the amino acid substitutions and clustering of isolates in the phyloge-
netic tree, three subtypes were identified: two prototype subtypes P-ala and P-thr and one vari-
ant subtype V-ala (Fig 1). The most frequent subtype was P-thr (55%) (Table 2). Investigations
of characteristic nucleotide variability aside from subtype-specific amino acid substitutions
included subvariant characterization within the scope of each subtype. Each identified subvar-
iant (sv) (P-ala-sv-1 and -2, P-thr-sv-2, -4, -5, and -6, and V-ala-sv-1), clustered separately in
the phylogenetic tree and had representative amino acid substitutions (Table 2).

Fig 1. Phylogenetic trees of the C-termini of LMP1 and EBNA1. (a) Thirty five 506-bp fragments of LMP1
(from coordinates 168719–168213) NPC sequences available in GenBank/EMBL7DDBJ database with
accession numbers: JF901794-JF901802, JN971085-JN971091 and KT820429-KT820448 and 13
sequences obtained from GenBank/EMBL7DDBJ database under the following accession numbers:
V01555, AY493742, AY493743, AY337721, AY337722, AY493810, AY337723, AY493835, AY337724,
AY493799, AY337725, AY337726 and X58140. (b) Forty 329-bp fragments of EBNA1 (from coordinates
109261–109590) NPC sequences available in GenBank/EMBL7DDBJ database with accession numbers
KT820449-KT820488 and 10 sequences obtained from GenBank/EMBL7DDBJ database under the
following accession numbers: V01555, GU475455, JN986939, AF192742, GU475448, AF192743,
GU475431, AF192744, JN986947 and GU475442.

doi:10.1371/journal.pone.0153498.g001
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Correlation between polymorphisms in the EBNA2, LMP1, and EBNA1
genes
Investigation of any association between three specific LMP1 sequence characteristics (variant,
deletions, and the presence of� 4.5 or> 4.5 33-bp repeats) resulted in two statistical signifi-
cances (Table 1). Significant differences were found in the distribution of the number of 33-bp
repeats (� 4.5 or> 4.5) between LMP1 variants (P = 0.004), and between non-deleted and
deleted isolates (P = 0.002) (Table 1).

Statistical analysis did not show any correlation between different LMP1 sequence variabili-
ties and EBNA2 genotypes. However, it was found that LMP1 variants had significant differ-
ences in distribution between EBNA1 subtypes (P = 0.003), and that the presence of LMP1
deletions had significant differences in distribution between EBNA1 subtypes (P = 0.024)
(Table 1).

Correlation between polymorphisms of EBV genes and clinical
parameters
Investigation of the correlation between the presence of EBV DNA and accessible anamnestic
and clinical data showed significant differences in distribution between TNM stages

Table 1. Distribution of three LMP1 characteristics and EBNA1 subtypes in EBV isolates from NPC
biopsies.

EBNA1 subtype LMP1 variant Number of
LMP1 33-bp
tandem
repeat units

LMP1 deletion

P-thr P-ala V-ala 2–4.5 5–6

5 5 - B95-8 10 - No del 10

2 - - China 1 - 2 30-bp-del 2

0 7 1 NC 6 2 No del 8

1 - - Med 1 - 30-bp-del 1

4 1 - Med 1 4 69-bp-del 5

5 1 - Med 3 3 No del 6

1 - - Srb 1 - 1 30-bp-del 1

1 - - Srb 2 - 1 69-bp-del 1

- 1 - Srb 2 1 - No del 1

P-values 0.0041

0.0022

0.0033

0.0244

1P-value denoting significant differences in the distribution of 33-bp repeats (� 4.5 or > 4.5) among LMP1
variants. In all B95-8 and in majority of the NC isolates, the number of repeats was � 4.5, in contrast to all

China1 and Srb1 isolates with > 4.5 repeats.
2P-value denoting significant differences in the distribution of 33-bp repeats (� 4.5 or > 4.5) between non-

deleted and deleted isolates. The majority of non-deleted isolates (80%) had � 4.5 repeats, in contrast to

the majority of deleted isolates (80%), which had > 4.5 repeats.
3P-value denoting significant differences in the distribution of LMP1 variants among EBNA1 subtypes.
4P-value denoting significant differences in the presence of LMP1 deletions among EBNA1 subtypes.

doi:10.1371/journal.pone.0153498.t001
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(P = 0.029). In stage Tx, where the primary tumor could not be evaluated (15/116), EBV DNA
was not detected. All combinations of TNM stages that were found in UCNT biopsies are sum-
marized in Table 3.

Two types of disease outcomes were defined to ascertain eventual EBV predictors and risk
factors for UCNT pathogenesis. The first type referred to the last known clinical outcome and
the second type referred to TNM stage. Among the EBV gene sequence characteristics identi-
fied, there were no potential predictors for any clinical outcome, even when they were grouped

Fig 2. Alignment of obtained LMP1 sequences isolated from UCNT biopsies. B95-8* represents aa sequence of the prototype LMP1. Seven
characteristic aa positions for variant discrimination, described by Edwards et al. (1999) are underlined. China1 and NC isolates showed additional
representative aa changes which were not listed in known classification: China1 (position 322 and 338) and NC (position 338). Of 85 aa substitutions which
were identified at additional 58 positions, several were unique for single variant: H!R at 352 for Med-, E!Q at 328 and S at 309 for B95-8, and D!N at 250
for NC.

doi:10.1371/journal.pone.0153498.g002
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differently. Furthermore, considering TNM stages (TNM stage I to IVB), the risk factors had
not been shown either. However, when the most disfavorable UCNT stage of EBV positive
patients, TNM stage IV, was separated from stages TNM stages I-III, the LMP1 variants B95-8
and NC together have been identified as possible predictors for tumor without intracranial
extension, TNM stages I-III (P = 0.055). Moreover, when TNM stages were grouped as TNM
stages I-IVA and TNM IVB, as the most disfavorable UCNT stage of EBV positive patients, the
presence of LMP1 deletion had been identified as a possible predictor for TNM IVB
(P = 0.012) (Table 4).

According to statistical results, the most prominent and specific LMP1 amino acid substitu-
tions from Serbian isolates (212, 229, 250, 309, 317, 322, 328, and 399) had not been shown as
potential risk factors for TNM stage evolution or progression as a clinical outcome.

To assess potential associations between clinical outcome and comprehensive variability of
three EBV genes, ten different EBV polymorphisms were defined. Each polymorphism com-
prised of characteristics of two or three EBV genes. Among appearances of the major polymor-
phisms, which were defined by EBNA2 genotype, LMP1 variant, and EBNA1 subtype, the
most frequent polymorphism was type 1/Med/P-thr (26.9%). Considering the previous group-
ing of TNM stages as two pathohistological outcomes (TNM stages I-IVA and TNM stage
IVB), type 1/Med/P-thr was identified as possible risk factor for TNM stage IVB (P = 0.013)
(Table 4). Statistical analyses also showed significant differences in distribution of diverse
appearances of three defined polymorphisms between the two groups of TNM stages: EBNA2
genotype/LMP1 variant (P = 0.016), LMP1 variant/EBNA1 subtype (P = 0.042), and deleted or
non-deleted LMP1/EBNA1 subtype (P = 0.049) (Table 4).

Discussion
Although the role of the variability of EBV genes in pathogenesis of nasopharyngeal carcinoma
was widely investigated in non-endemic and endemic regions, the literature data concerning
the correlation between the genetic variability of EBV genes and clinical aspects of NPC were
provided only by researchers from endemic regions such as Malaysia and Thailand [33,34].

The presence of EBV DNA in UCNT tissue did not correlate with any anamnestic or clinical
data, except for TNM stages. Particularly, the frequency of EBV DNA-positive biopsies slightly

Table 2. EBNA1 C-terminal nucleotide and amino acid changes found in three subtypes and seven subvariants identified in this study.

B95-81 (P-ala) P-ala- sv-1 P-ala- sv-2 P-thr P-thr-sv-22 P-thr-sv-42 P-thr-sv-52 P-thr-sv-62 V-ala- sv-12

Locus

476 CCG (Pro) CAG (Gln) CAG (Gln) CAG (Gln)

483 GAA (Glu) GAC (Asp) GAC (Asp) GAC (Asp) GAC (Asp)

487 GCT (Ala) ACT (Thr) ACT (Thr) ACT (Thr) ACT (Thr) ACT (Thr)

492 AGT (Ser) TGT (Cys) TGT (Cys) TGT (Cys) TGT (Cys)

499 GAC (Asp) GAA (Glu) GAA (Glu) GAT (Asp) GAT (Asp) GAT (Asp) GAT (Asp) GAT (Asp) GAG (Glu)

502 ACT (Thr) ATT (Ile) AAT (Asn)

520 CTA (Leu) CTC (Leu) CTC (Leu) CTC (Leu) CTC (Leu) CTC (Leu)

524 ACT (Thr) ATT (Ile) GTT (Val) ATT (Ile) ATT (Ile) ATT (Ile) ATT (Ile) ATT (Ile)

529 CCA (Pro) CAA (Gln)

Number of isolates - 2 15 8 1 1 11 1 1

Total 17 (42.5%) 22 (55%) 1 (2.5%)

1Prototype sequence (represents the P-ala subtype)
2New subvariants: P-thr-sv-2, P-thr-sv-4, P-thr-sv-5, and P-thr-sv-6.

doi:10.1371/journal.pone.0153498.t002
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declined from TNM-I to TNM-IV, whereas EBV DNA was not detected in the cases of tumor
extension where primary tumor cannot be assessed (Tx). This finding supports earlier reports
about the time specific and determined role of EBV oncogenic activity in early phases of
UCNT development [35,36], while additional genetic and epigenetic changes of NPC cells
might occur after the EBV infection [37].

The fact that the majority of EBV found in Serbian isolates was of type 1 was consistent with
the worldwide genotype distribution. A potential association between the genetic disposition of
the human populations from different geographical regions and specific EBV genotypes has
been suggested in previous studies [7].

Discoveries in LMP1 gene variability and LMP1 functions could be critical for the definition
of EBV responsibility for carcinogenesis mechanism. The presence of four known LMP1 vari-
ants with a dominance of B95-8 and Med, represents the already known European distribution
[13]. It is particularly interesting that NPC isolates from this region, for the first time, included
China1 and NC, unlike variants discovered from other European NPC isolates [17]. So far,
China1 has been found in NPC biopsies from China [38] and central and south Russia, while
NC has been found in only one sample from a Russian study [32]. In addition, the newly

Table 3. Combinations of TNM stages found in UCNT biopsies.

TNM staging EBNA2-positive biopsies LMP1-positive biopsies EBNA1-positive biopsies EBV DNA-negative biopsies

TxN1M0 - - - 8

TxN2M0 - - - 2

TxN3M0 - - - 1

TxN3aM0 - - - 3

TxN3bM0 1 1 1 1

T1N0M0 2 2 2 2

T1N1M0 6 6 7 7

T1N2M0 4 5 5 3

T1N3aM0 2 2 2 8

T1N3aM1 - - - 1

T1N3bM0 - - - 2

T2N0M0 1 2 2 3

T2N1M0 2 4 4 7

T2N2M0 3 3 3 1

T2N2M1 1 - 1 -

T2N3M0 - - - 1

T2N3aM0 - - - 5

T2N3bM0 1 1 1 -

T3N0M0 - 1 1 5

T3N1M0 1 2 2 3

T3N2M0 2 1 2 3

T3N3M0 1 1 1 -

T3N3aM0 2 2 3 -

T4N0M0 - - - 6

T4N1M0 2 2 2 -

T4N2M0 1 - 1 -

T4N2M1 - - - 1

T4N3aM0 - - - 3

Total 32 35 40 76

doi:10.1371/journal.pone.0153498.t003
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discovered Srb1 and Srb2 variants might represent UCNT-specific LMP1 polymorphisms with
geographical specificity, especially if the previously published data from Serbian patients with
benign diseases were considered [23]. The heterogeneity of LMP1 sequences contradicts previ-
ously reported theories. For example, the consistency in LMP1 variability, which was presented
by China1 found in carcinoma tissues from China, suggested that it could be the result of nega-
tive selection against the presence of other variants within the tumor. According to this, vari-
ant-specific changes in Human leukocyte antigen (HLA) virus epitopes within LMP1 might
enable LMP1 expression in the tumor cells with consequent inability to be recognized by
LMP1-specific CD8+ cytotoxic T lymphocytes [38]. Moreover, in the same study, the absence
of the NC variant within NPC was explained by the inability of the NC to inhibit T-cell prolif-
eration and natural killer cytotoxicity because of unique amino acid substitutions in the LMP1

Table 4. Distribution of LMP1 deletions and different combinations of EBV gene polymorphisms between TNM stages I-IVA and TNM stage IVB
found in UCNT biopsies.

TNM I—IVA TNM IVB total P-value1 P-value2

The presence of LMP1 deletion

Non-deleted LMP1 23 2 25 P = 0.012

Deleted LMP1 5 5 10

EBNA2 type/LMP1 variant

Type 1/B95-8 7 - 7 P = 0.016

Type 1/Srb 1 - 1 1

Type 1/Med 4 4 8

Type 1/NC 7 - 7

Type 1/Srb 2 1 1 2

Type 2/Med 1 - 1

Type 2/NC 1 - 1

LMP1 variant/ EBNA1 subtype

B95-8/P-thr 5 - 5 P = 0.042

B95-8/P-ala 5 - 5

Srb 1/P-thr - 1 1

Med/P-thr 6 4 10

Med/P-ala 2 - 2

China 1/P-thr 1 1 2

NC/P-ala 7 - 7

NC/V-ala 1 - 1

Srb 2/P-thr 1 - 1

Srb 2/P-ala - 1 1

deleted or non-deleted LMP1/EBNA1 subtype

deleted/P-thr 4 5 9 P = 0.049

deleted/P-ala 1 - 1

Non-deleted/P-thr 10 1 11

Non-deleted/P-ala 12 1 13

Non-deleted/V-ala 1 - 1

EBNA2 type/LMP1 variant/EBNA1 subtype

type 1/Med/P-thr 2 4 6 P = 0.013

The other appearances of this polymorphism 19 1 20

1P-value denoting significant differences in the distribution of different EBV polymorphisms between the grouped TNM stages
2P-value for possible predictors for TNM stage IVB

doi:10.1371/journal.pone.0153498.t004
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region (amino acids 34 to 40) responsible for immunosuppressive functions [38]. Despite the
opposite findings in the present research, it still could be presumed that differences in signaling
and biological properties of the LMP1 variants contribute to differences in pathogenicity.
Therefore, the B95-8 and NC variants, which were earlier described as “eliminated variants” by
negative immune selection, represent possible predictors for favorable TNM stages (I-III) in
the present study. It could be assumed that UCNT pathogenesis associated with LMP1 B95-8
or NC variant activity, did not lead to intracranial extension and/or involvement of cranial
nerves, hypopharynx, orbit, etc., or that negative immune selection eliminated these variants
except in advanced cancer stages.

Among the different types of LMP1 gene variability, deletions remain a delicate region of
investigation for their specific role in carcinogenesis. Of the 10 LMP1 isolates with deletions,
four had the frequently described 30-bp deletion, while six had a rare 69-bp deletion. The gen-
eration of the deletions during replication is based on slipped-strand mispairing of two
9-nucleotide repeats coding two identical triplets, laterally positioned from one of the deletions
[39]. Therefore, one of the repeats constituted the first or the final nucleotide of the deletions.

To date, there are two relevant concepts of the role of deletions in carcinoma cells. The first
is the association with geographical and ethnic-group characteristics, and the other is based on
direct impact on the development of carcinoma [33]. There have been discrepant findings of
the frequency of LMP1 deletions in NPC tissue. In Serbian biopsies, the frequency was 28.6%,
and in other non-endemic regions for NPC such as Europe, North America, and North Africa,
the frequency of LMP1 deletion was determined to be 55–75% in the biopsies, without differ-
ences between isolates from NPC and healthy patients [40]. In spite of the dominance of non-
deleted LMP1 in this study, statistical analysis revealed an important aspect of deletion appear-
ances, since deletions have been identified as a possible risk factor for the most disfavorable
TNM stage. Patients with non-deleted LMP1 almost never had metastasis in lymph nodes at a
distance more than 6 cm from the primary tumor, and/or to supraclavicular fossa (stage N3).
On the other hand, a deletion in LMP1 was found in 71% of biopsies representing TNM stage
IVB. The idea of associations between LMP1 deletions and aggressive carcinogenesis has
existed for almost two decades. It is known that LMP1 could induce proteins with pro-
angiogenic functions such as matrix metalloproteinase 1 and vascular endothelial growth factor
[41]. It was particularly shown that key role in the activation of vascular endothelial growth fac-
tor and angiogenesis had LMP1 driven induction of cyclooxygenase-2 and hypoxia-inducible
factor-1α [42]. Also, there is some indirect evidence in the literature that LMP1 could induce
progression of metastasis [43,44]. Subsequently, it has been shown that LMP1 had the capacity
for modulation of metastatic property by inducing matrix metalloproteinase 9, upregulating
the expression of mucin 1 and ezrin, and downregulating inhibitors of metastasis such as
RECK1 [45], and also upregulating tyrosylprotein sulfotransferase 1 and tyrosine sulfation of
chemocine receptor 4 [46]. In addition, LMP1 induction of fibronectin by activation of activin
A and transforming growth factor beta signalling might also contribute to tumor cell invasive-
ness [41]. Even though the clinical reports within this field are scarce, a similar assumption was
demonstrated by researchers from Thailand where NPC biopsies of TNM stages III-IV had 21
times more deleted LMP1 than did NPC biopsies of TNM stages I-II [34]. On the other hand,
in Malaysia, a correlation between deletion and metastatic NPC could not be established [33].

The 69-bp deletion is hard to find in NPC. According to previously published data, the
prevalence of this deletion varied from 3.3% in NPC isolates found in North Africa [47], to
27% in NPC isolates found in Russia [32]. In isolates from this study, the prevalence of the
69-bp deletion was 17%, similar to results from Russia. As the 69-bp deletion did not correlate
with any specific clinical outcome, and was not detected in earlier benign lesions from Serbian
patients [23], it could be assumed that the 69-bp deletion might represent a predictive marker
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for NPC genesis in non-endemic regions such as Serbia and Russia. In North Africa, where the
prevalence of the 69-bp deletion is low and non-specific to NPC isolates, nasopharyngeal carci-
noma has an intermediate incidence rate of 8–12 per 100 000 persons per year [47].

The amino acids between 322 and 366 in the C terminal region of LMP1 had been described
as a mutational hot spot because of numerous substitutions that occurred during the evolution
of LMP1 variants [39]. Besides the amino acid substitutions at the seven LMP1 characteristic
positions, the most prominent substitutions were Gly!Ser at 212 (65.7%) and Ser!Asn at
309 (68.6%). Identification of additional substitutions unique for single variants might serve as
additional markers for discrimination of variants in specific geographical regions.

Although associations between the variability of the EBNA1 gene and geographical origin
were clearly demonstrated, it was not clarified whether nucleotide changes had any significant
influence on the development and pathogenesis of tumors. The distribution of EBNA1 sub-
types and dominance of P-thr discovered in this study supported previously described Euro-
pean distributions, except for the first identification of V-ala in European NPC [17].

Characterization of each EBNA1 subtype was completed by identification of all subvariants
within the scope of one subtype. The most significant variability was demonstrated within P-
thr subvariants (P-sv-2, -4, -5, and -6). Of the four new subvariants, the identification of P-thr-
sv-5 was particularly significant because this was the largest homogeneous group of EBNA1
isolates wherein a new subvariant was discovered. Although there is no evidence of functional
associations between specific EBNA1 variability and direction of pathogenesis, some assump-
tions have been presented in the literature. For example, there is a theory about the influence of
the V-val polymorphism on NPC progression [48]. In addition, there is another theory about
the correlation between EBV gene variability with environmental factors and genetic predispo-
sition of the infected host [19]. It follows that P-thr-sv-5 could be a UCNT-specific EBNA1
subvariant and might serve as a specific diagnostic marker for UCNT evolution. It could also
be possible that there is a multifactorial influence of P-thr-sv-5 together with genetic predispo-
sitions of the Serbian population. It would be essential to investigate the molecular background
of progression between P-thr-sv-5 and host cell in vitro.

P-ala isolates were identified as subvariants P-ala-sv-1 or P-ala-sv-2, and they have already
been demonstrated in isolates evaluated by a Danish study involving patients with NPC and
lymphoma and healthy controls [21]. Therefore, they undoubtedly represent European-specific
EBNA1 variability [17]. The V-ala subtype is very rare and has only been found in a South
American population [26]. Notably, V-ala-sv-1 from this study was identical to the subvariant
V-ala-iii, which was described in one Hodgkin lymphoma isolate from Argentina [26].

Since there is a spectrum of diversities within a single EBV gene, different combinations of
genome variability could have significance in specific disease characteristics [40]. Only few
studies aimed to define EBV polymorphisms between EBNA2, LMP1, and EBNA1 genes, and
they had been performed in Chinese and Argentine isolates [26,40]. Although in both studies
NPC isolates were not included, there was not any correlation between specific polymorphisms
and type of disease.

The comparative analysis between different EBV gene variabilities showed for the first time
a significant difference in distribution of LMP1 variants and the presence of LMP1 deletions
between EBNA1 subtypes. Thus, there were associations between two LMP1 variants and P-
thr: China1 (in 100%) and Med (in 83.3%). Moreover, P-ala was encountered in almost all
cases together with non-deleted LMP1 (93.3%). However, the most important was the fact that
those associations had shown correlation with TNM tumor progression. Firstly, both EBNA2
genotypes in combination with B95-8 or NC had never been present in TNM stage IVB. Simi-
larly, the combination between B95-8 and NC and any other EBNA1 subtype, as well as combi-
nations of non-deleted LMP1 and any other EBNA1 subtype. Considering these results, it is
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clear that LMP1 deletions have the crucial role in cancer progression to stage N3, indepen-
dently of EBNA2 or EBNA1 variability. Finally, we have identified a possible risk factor for
TNM stage IVB: type 1/Med/P-thr, a specific combination of EBNA2 genotype/LMP1 variant/
EBNA1 subtype. This combination was found in one third of UCNT isolates.

NPC is distinguished from other carcinomas of the head and neck by its epidemiology, his-
topathology, clinical characteristics, and therapy. EBV findings in this study asserted that EBV
activity has a time-specific and determined role in early UCNT oncogenesis. LMP1 variability
showed four known and two new variants, with the first detection of China1 and NC variants
in European NPC. New variants Srb1 and Srb2 might represent UCNT-specific LMP1 poly-
morphisms. Concerning differences in pathogenicity, variants B95-8 and NC represented pos-
sible predictors for favorable TNM stages. On the other hand, LMP1 deletions, the 30-bp
deletion and the 69-bp deletion, have been identified as possible risk factors for the most disfa-
vorable TNM stage, independent of EBNA2 or EBNA1 variability. In addition, this study iden-
tified for the first time a possible risk factor for stage N3 in a specific combination of variability
of three EBV genes: type 1/Med/P-thr. Of four new EBNA1 subvariants, P-thr-sv-5 revealed a
potential diagnostic significance for UCNT evolution. All associations discovered require
advanced molecular investigations in order to analyze the mechanisms of their generation and
circumstantial influences on host cells, especially because of their significance in UCNT
pathogenesis.
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