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Abstract

Glaucomatous axon injury occurs at the level of the optic nerve head (ONH) in response to

uncontrolled intraocular pressure (IOP). The temporal response of ONH astrocytes (glial

cells responsible for axonal support) to elevated IOP remains unknown. Here, we evaluate

the response of actin-based astrocyte extensions and integrin-based signaling within the

ONH to 8 hours of IOP elevation in a rat model. IOP elevation of 60 mm Hg was achieved

under isoflurane anesthesia using anterior chamber cannulation connected to a saline res-

ervoir. ONH astrocytic extension orientation was significantly and regionally rearranged

immediately after IOP elevation (inferior ONH, 43.2˚ ± 13.3˚ with respect to the anterior-pos-

terior axis versus 84.1˚ ± 1.3˚ in controls, p<0.05), and re-orientated back to baseline orien-

tation 1 day post IOP normalization. ONH axonal microtubule filament label intensity was

significantly reduced 1 and 3 days post IOP normalization, and returned to control levels on

day 5. Phosphorylated focal adhesion kinase (FAK) levels steadily decreased after IOP nor-

malization, while levels of phosphorylated paxillin (a downstream target of FAK involved in

focal adhesion dynamics) were significantly elevated 5 days post IOP normalization. The

levels of phosphorylated cortactin (a downstream target of Src kinase involved in actin poly-

merization) were significantly elevated 1 and 3 days post IOP normalization and returned to

control levels by day 5. No significant axon degeneration was noted by morphologic assess-

ment up to 5 days post IOP normalization. Actin-based astrocyte structure and signaling

within the ONH are significantly altered within hours after IOP elevation and prior to axonal

cytoskeletal rearrangement, producing some responses that recover rapidly and others that

persist for days despite IOP normalization.

PLOS ONE | DOI:10.1371/journal.pone.0167364 November 28, 2016 1 / 22

a11111

OPENACCESS

Citation: Tehrani S, Davis L, Cepurna WO, Choe

TE, Lozano DC, Monfared A, et al. (2016) Astrocyte

Structural and Molecular Response to Elevated

Intraocular Pressure Occurs Rapidly and Precedes

Axonal Tubulin Rearrangement within the Optic

Nerve Head in a Rat Model. PLoS ONE 11(11):

e0167364. doi:10.1371/journal.pone.0167364

Editor: Kin-Sang Cho, Schepens Eye Research

Institute, UNITED STATES

Received: July 28, 2016

Accepted: November 12, 2016

Published: November 28, 2016

Copyright: © 2016 Tehrani et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: Supported by the American Glaucoma

Society Young Clinician Scientist Award (ST), the

Glaucoma Research Foundation Shaffer Grant

(ST), the Research to Prevent Blindness (RPB)

Career Development Award (ST), an unrestricted

grant from RPB (CEI/OHSU), and the National

Institute of Health (K08EY024025 to ST,

R01EY010145 to JCM, P30EY010572 to OHSU).

The funders agove had no role in study design,

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0167364&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction

Glaucoma is a chronic optic neuropathy involving axon degeneration that begins at the level

of the optic nerve head (ONH) [1, 2], and is the leading cause of permanent blindness world-

wide [3]. Elevated intraocular pressure (IOP) is the only known modifiable risk factor for

glaucoma [4, 5]. The question of what events link elevated IOP to eventual axon injury

remains unanswered. Understanding early cellular and molecular responses to elevated IOP

within the ONH will be critical to providing insights into possible neuroprotective

strategies.

Astrocytes are glial cells that provide structural and physiologic support for ONH axons,

and may serve as a link between elevated IOP and eventual axon degeneration [6]. The highly

ordered and unique arrangement of ONH astrocyte extensions perpendicular to the axonal

axis [7, 8], as well as their intimate contact with the extracellular matrix (ECM) [9], make them

prime candidates for sensing and responding to mechanical strain from IOP fluctuations.

Astrocytes are positioned along the connective tissues of the ONH, including the laminar

beams in the primate ONH [10]. Astrocytes exhibit multiple extensions that enter and

unsheathe axon bundles [7, 11, 12]. These astrocyte extensions further couple the meningeal

vasculature to axons [13, 14], and are involved in neural development and synapse formation

[15], metabolic and ionic support of ONH axons [16–18], facilitate mitochondrial transcellular

degradation from retinal ganglion cell axons [19], and phagocytosis of myelin segments within

the optic nerve [20, 21]. ONH astrocytes are also mechanosensitive [22–24] and dynamically

respond to elevated IOP by retracting or reorienting their extensions [8, 12]. The reaction of

ONH astrocytes to elevated IOP may lead to loss of structural and biochemical support of

axons and eventual axon degeneration [25–28].

Structural and mechanical astrocytic response to elevated IOP likely involves integrin sig-

naling and actin cytoskeletal dynamics [29, 30]. Integrins are transmembrane receptors that

link the extracellular matrix (ECM) environment to the intracellular actin cytoskeleton and

focal adhesion dynamics [31]. A large variety of integrin receptor subtypes have been identified

within the human and primate ONH and are implicated in glaucomatous optic neuropathy

[10]. Integrin receptor activity leads to direct activation of a number of intracellular kinases,

including the focal adhesion kinase (FAK) and Src kinase family members [32]. Active FAK

and Src kinase family members have been shown to be important regulators of cellular

responses to injury in cultured astrocytes [33, 34].

The astrocytic actin cytoskeleton is important for astrocyte morphology [35], extension for-

mation [35], migration [36, 37], communication and interaction with the ECM [9], and axonal

neuroprotection [38]. In addition, nearly 100 ONH actin cytoskeletal and integrin-related

gene expression patterns are altered with early glaucomatous injury in rodent models of glau-

coma [39, 40]. Therefore, astrocyte integrin-based signaling and downstream actin cytoskeletal

responses may provide a link between elevated IOP, astrocyte reactivity, and eventual axonal

injury and degeneration. We hypothesize that actin-based astrocyte extension dynamics within

the ONH are a sensitive indicator of astrocyte reactivity to elevated IOP, and that structural

changes of astrocyte extensions are downstream of integrin signaling. If so, one would expect

modulation in the activity of various downstream mediators of integrin receptors within the

ONH upon IOP elevation, including FAK and Src kinases and their downstream targets, paxil-

lin and cortactin, respectively. Here, we determine the astrocytic actin-based structural

response, as well as major molecular responses downstream of integrin signaling, within the

ONH after 8 hours of IOP elevation in a rat model.
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Materials and Methods

All animals were treated in accordance with the Association for Research in Vision and Oph-

thalmology statement for the use of animals in ophthalmic and vision research and all experi-

mental methods were approved by the Oregon Health & Science University (OHSU)

Institutional Animal Care and Use Committee. All surgeries were performed under isoflurane

anesthesia, and all efforts were made to minimize suffering. Animals were housed and moni-

tored according to OHSU’s Department of Comparative Medicine (DCM) guidelines, which

included monitoring animals for illness, injury, or distress by a member of DCM on a daily

basis.

Animals and IOP Elevation

Thirty-one male Brown Norway rats (8–9 months old, 350-400g) were housed under alternat-

ing 12-hour cycles of light and dark. For IOP elevation, animals were maintained under gen-

eral anesthesia using 2% isoflurane mixed with 100% oxygen, and kept at a temperature of

37˚C using a water bath-controlled blanket. After topical 0.5% proparacaine hydrochloride

ophthalmic solution application (Akorn, Lake Forest, Illinois, USA), the anterior chamber of

one eye per animal was cannulated using a 31 gauge needle with care to avoid iris or lens

trauma. The needle was linked to a reservoir filled with pH-balanced saline solution (BSS Plus,

Alcon Laboratories, Fort Worth, Texas, USA) that was raised to produce a pressure of 60 mm

Hg, as confirmed by a pressure sensor coupled with the infusion line (Harvard Apparatus,

Holliston, Massachusetts, USA). Both eyes underwent external IOP measurements every 30

minutes during the period of IOP elevation (8 hours total) using a handheld tonometer (Tono-

Lab; Icare Finland Oy, Espoo, Finland). Both eyes received topical proparacaine and topical

BSS, alternating every 15 minutes to keep the ocular surface anesthetized and moist, respec-

tively. Animals received a 1 mL subcutaneous injection of 0.9% saline every hour to maintain

systemic hydration while under general anesthesia. After 8 hours of exposure to an IOP of 60

mm Hg, the saline reservoir was lowered to achieve an IOP of 20 for 5 minutes. Following this,

the anterior chamber cannula was removed and animals were sacrificed either immediately

(day 0), or allowed to survive for 1, 3, or 5 days after IOP normalization (7–8 animals in each

of the following survival groups: day 0, 1, 3, and 5). During development of this model, IOP

was monitored for up to a week after removal of the intraocular cannula in several additional

animals, with no evidence of sustained IOP elevation at any point after the initial IOP elevation

(data not shown). To assess axon injury, an additional group of animals underwent unilateral

IOP elevation as above (4+ animals in each of the following survival groups: day 0, 1, 3, and 5).

Controls included fellow un-injected eyes.

Tissue Preparation, Actin Labeling, and Immuno-labeling, and Primary

Antibody Validation

Prior to euthanasia, all animals were anesthetized under deep sedation with isoflurane and sac-

rificed by transcardial perfusion fixation with freshly prepared buffered 4% formaldehyde

solution. In the group of animals used for axon injury assessment, the retrobulbar optic nerves

were removed, post-fixed in 5% glutaraldehyde, embedded in plastic, sectioned and stained

with toluidine blue (Electron Microscopy Sciences, Hatfield, Pennsylvania, USA), followed by

light microscopy grading of morphologic axonal degeneration on a scale of 1 (no axonal

injury) to 5 (axonal degeneration involving the entire nerve area). Section identities were

masked and injury was graded by five observers and the grades were averaged as previously

described [41, 42].

Actin-Based Astrocyte Response to Elevated Intraocular Pressure
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Perfusion-fixed eyes (including the ONH) were cryopreserved in 15% sucrose/phosphate

buffered saline (PBS), followed by 30% sucrose/PBS, positioned for vertical longitudinal sec-

tioning in Optimal Cutting Temperature support medium (Sakura Finetek, Torrance, Califor-

nia, USA), frozen in liquid isopentane cooled by liquid nitrogen, and kept on dry ice until

ready for storage in a -80˚C freezer. Frozen globes were cryo-sectioned at -20˚C (5 μm thick-

ness) onto gelatin-coated microscope slides (LabScientific, Inc., Highlands, New Jersey, USA).

Sections closest to the sagittal (vertical midline) plane of the ONH were preferentially used for

this study. The superior and inferior orientation of the ONH was determined based on the

anatomic location of the central retinal vein and artery, located just inferior to the ONH [43].

Tissue sections were blocked with 1% bovine serum albumin (BSA) in PBS for 1 hour. Tis-

sue sections were co-labeled with primary antibodies in 1% BSA/PBS at 4˚C overnight, using

antibodies against axonal tubulin (Tuj1; mouse monoclonal against βIII tubulin, 1:500 dilution,

Covance, Seattle, Washington, USA), phosphorylated focal adhesion kinase (p-FAK; rabbit

monoclonal against phosphorylated Tyr 397, 1:500 dilution, Life Technologies, Grand Island,

New York, USA), active Src kinase (mouse monoclonal, raised against amino acid residues

519–536 of c-Src, 1:500 dilution, Life Technologies), phosphorylated paxillin (p-paxillin; rabbit

polyclonal against phosphorylated Tyr 118, 1:100 dilution, Abcam, Cambridge, Massachusetts,

USA), phosphorylated cortactin (p-cortactin; rabbit polyclonal against phosphorylated Tyr

421, 1:500 dilution, EMD Millipore, Billerica, Massachusetts, USA), or glial fibrillary acidic pro-

tein (GFAP, rabbit polyclonal; Dako, Carpentaria, CA, USA). Non-specific mouse or rabbit

IgG antibodies (Sigma, Saint Louis, Missouri, USA) were used at similar concentrations to the

respective antibodies above for negative control sections. Sections were washed with PBS at

room temperature using three 5-minute cycles, followed by incubation with secondary fluores-

cent-labeled goat anti-mouse or goat anti-rabbit monoclonal antibodies (Alexa 488-labeled,

Life Technologies) and actin filament marker tetramethylrhodamine (TRITC)-labeled phalloi-

din (Sigma) at a concentration of 1 μg/ml in 1% BSA/PBS at room temperature for 1 hour.[8,

44] After washing as above, cell nuclei were stained with 4’,6-diamidino-2-phenylindole

(DAPI) contained within the mounting media (Prolong Gold with DAPI, Life Technologies).

In order to validate the primary antibodies used for integrin-based immunofluorescence

labeling, we used commercially synthesized blocking peptides (NeoBiolab, Woburn, Massa-

chusetts, USA) to test for the specificity of the primary antibody. The blocking peptides used

were the same sequence as the immunogenic peptide used for raising the primary antibody

(per the commercial antibody supplier). The blocking peptide sequences were SSETDD[pY]

AEII (p-FAK blocking peptide, corresponding to amino acids 390–401 of phosphorylated

human FAK), HV[pY]SF (p-paxillin blocking peptide, corresponding to amino acids around

the phosphorylation site of tyrosine 118 of human paxillin), LEDYFTSTEPQYQPGENL

(active Src blocking peptide, corresponding to amino acid residues 519–536 of human c-Src),

and PPSSPI[pY]EDAAPF (p-cortactin blocking peptide, corresponding to residues surround-

ing phosphorylated tyrosine 421 of mouse cortactin). The blocking peptides were dissolved in

PBS at a stock concentration of 1 mg/ml. For primary antibody validation in our immunofluo-

rescence labeling protocol, the primary antibodies (1:500 dilution) were incubated with the

specific blocking peptide (1:500 dilution) in 1% BSA/PBS for 1 hour at room temperature.

This mixture was then substituted as the primary antibody solution for labeling ONH tissue

sections, with no other changes to the immunofluorescent labeling protocol described above.

Microscopy and Image Analysis

Confocal images of the inferior and superior ONH (defined as a 75 x 75 μm area of the ONH

just posterior to the termination of Bruch’s membrane, at either the ONH region adjacent to

Actin-Based Astrocyte Response to Elevated Intraocular Pressure
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the central retinal vein [inferior] or opposite from the central retinal vein [superior]) were

obtained using an FV1000 microscope (Olympus, Center Valley, Pennsylvania, USA), an

UplanFLN 40x/NA1.30 oil objective, and 3.8x optical zoom. Images were captured using

FV10-ASW version 4.0 software (Olympus) with laser wavelength settings of 405nm, 488nm,

and 559nm at 1 μm/slice, using the same laser intensity and exposure time for all samples.

FIJI image analysis software [45] was used to project a Z-stack of all acquired images per tis-

sue section to visualize the maximum pixel intensity across the sample. The Directionality

plugin feature of FIJI [46] was used to determine the mean orientation of actin bundles

within the superior and inferior ONH, relative to anterior-posterior (A-P) axis (as defined

by the longitudinal axis of axonal tubulin βIII labeling) [8]. To determine label intensity,

mean fluorescence pixel intensity within images was calculated using FIJI software. In order

to see if the brightest (i.e. most discernible) actin bundles within the ONH were altered after

IOP elevation, we measured actin bundle lengths. For actin bundle length measurements,

each Z-stack image was segmented into a grid with nine 25 x 25 μm sections, followed by

identification of the 5 brightest actin bundles in each grid (a total of approximately 45 actin

bundles per image). The identified actin bundles were measured using the ruler tool in the

FV10-ASW software. In addition, for the purpose of normalization of actin filament mea-

surements to a known cellular structure, additional length measurements of only actin fila-

ment in contact with nuclei were performed using the same grid methodology described

above. Measured actin filaments that crossed between the designated grid margins were only

counted once.

Statistical Analysis

Statistical analysis was performed by two-way analysis of variance (ANOVA) for 5 indepen-

dent groups and Dunnett’s multiple comparison testing was used to compare each experimen-

tal group to the control group (GraphPad Prism software, La Jolla, California, USA). Linear

regression was performed using Prism software to assess for the presence of statistically signifi-

cant deviation from a zero slope. All analyses were conducted using an alpha level setting of

0.05. Sample sizes (n) reflect the number of eyes used in each of the experimental (day 0, 1, 3,

or 5) and control groups.

Results

Optic Nerve Injury After 8 hours of IOP Elevation is Minimal at Five Days

Post Exposure

We first determined the level of morphologic optic nerve injury within the posterior, mye-

linated optic nerve from our model. IOP elevation during the 8 hour exposure was stable

and comparable in all experimental groups (Table 1). The IOP of control eyes remained

Table 1. Mean IOP Measurements During 8 Hours of IOP Elevation.

Group n IOPMean ± SD (mm Hg) Injury Grade (n, p value relative to control)

Control 30 10.2 ± 1.6 1.0 ± 0.1 (16)

Day 0 8 58.7 ± 1.3 1.0 ± 0.0 (4, >0.05)

Day 1 8 58.7 ± 1.8 1.0 ± 0.0 (6, >0.05)

Day 3 8 57.2 ± 1.5 1.0 ± 0.0 (5, >0.05)

Day 5 7 57.1 ± 1.5 1.1 ± 0.1 (4, <0.01)

IOP = intraocular pressure (measured with a tonometer); n = number of eyes; SD = standard deviation

doi:10.1371/journal.pone.0167364.t001
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within a physiologic range during 8 hours of anesthesia. No significant morphologic injury

was noted in control or experimental myelinated optic nerves, as assessed by light micros-

copy using a previously validated grading system [41, 42]. The longest surviving group after

8 hours of IOP elevation exhibited minimal morphologic optic nerve axon injury (day 5

injury grade of 1.1 ± 0.1 [n = 4] versus control injury grade of 1.0 ± 0.2 [n = 16]).

ONH Astrocyte Extensions Change Orientation within Hours after IOP

Elevation

Given the dynamic nature of astrocytes in vivo [8, 12] and in culture [35–37], we determined

the actin-based structural response of the ONH astrocytes to 8 hours of IOP elevation in our

rat model, using ONH actin bundles as a highly sensitive marker for astrocyte extensions [8].

We further differentiated the actin-based astrocyte responses of the superior and inferior

ONH to elevated IOP, as the superior region of the ONH is more susceptible to axonal injury

in models with chronic IOP elevation [6, 47–51], and is more susceptible to mechanical effects

in models of acute IOP elevation [52].

Control superior and inferior ONH regions demonstrated highly ordered astrocytic actin

bundles (Fig 1A–1C), which were nearly perpendicular to the A-P (axonal) axis of the optic

nerve (70.3 ± 10.5˚ and 84.1˚ ± 1.3˚ in the superior and inferior ONH, respectively). There was

minimal (if any) actin filament label along the A-P (axonal) axis, indicating limited contribu-

tion of actin filament signal from axons with the ONH, consistent with previous findings [8].

Immediately after exposure to 8 hours of IOP elevation (day 0), ONH astrocyte actin bundle

orientation shifted to a more oblique and less-organized pattern relative to controls (Fig 1D

and 1E). The reorientation of astrocyte actin bundles on day 0 was statistically significant for

the inferior ONH relative to controls and to the superior ONH (Fig 2A). The structural organi-

zation of astrocyte extensions re-oriented back to baseline orientation within 1 day post IOP

normalization in both the superior and inferior ONH, and remained at baseline orientation

through day 5 post IOP normalization (Figs 1D, 1E and 2A).

Given the changes we observed in astrocyte bundle orientation with IOP elevation and

the previously reported shortening of astrocyte processes in response to elevated IOP [12],

we asked if astrocyte actin bundles underwent a change in length within the ONH in

response to elevated IOP. Using a grid system to reduce selection bias (Fig 2B), we assessed

actin bundle length throughout the superior and inferior ONH. In addition, in order to nor-

malize actin bundle measurements to the cell body, we further assessed the length of only

those actin bundles that were in contact with a nucleus. When assessing all actin bundles,

control ONHs exhibited mean actin bundle lengths of 7.2 ± 0.3 μm and 7.9 ± 0.7 μm in the

superior and inferior ONH, respectively (Fig 2C). In the experimental groups, ONH astro-

cytes exhibited an increase in mean actin bundle length within 1 day post IOP normaliza-

tion relative to controls (10.5 ± 0.7 μm and 9.8 ± 0.9 μm in the superior and inferior ONH,

respectively), which was also observed up to 5 days post IOP normalization (Fig 2C). This

increase in mean actin bundle length in response to elevated IOP was statistically significant

within the superior ONH on day 1 and day 5 post IOP normalization, relative to controls.

When measuring only actin bundles that were in contact with a nucleus, control ONHs

exhibited mean nuclear-adjacent actin bundle lengths of 5.7 ± 0.2 μm and 6.3 ± 0.3 μm in

the superior and inferior ONH, respectively (Fig 2D). In the experimental groups, ONH

astrocytes exhibited an increase in mean nuclear-adjacent actin bundle length within 1 day

post IOP normalization relative to controls (8.4 ± 0.4 μm and 7.5 ± 0.4 μm in the superior

and inferior ONH, respectively), which were statistically significant within the superior

ONH relative to controls.
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Axonal Microtubule Filament Intensity within the ONH is Reversibly

Altered after 8 hours of IOP Elevation

While no significant morphologic optic nerve axonal injury was noted in our model 5 days

post IOP elevation, we asked if the axonal microtubule architecture within the ONH was

altered after IOP elevation, given the intimate relationship between astrocyte extensions and

axon bundles [8, 11]. Immediately after IOP elevation, axon-specific βIII tubulin label intensity

(indicative of microtubule filaments) remained at levels comparable to controls (Fig 2E). How-

ever, 1 day post IOP normalization, the level of ONH axonal microtubule filament intensity

was reduced, reaching statistically significant difference within the superior ONH region rela-

tive to controls (Fig 2E). This reduction in ONH axonal microtubule filament intensity was

sustained 3 days post IOP normalization (reaching statistical significance in both the superior

Fig 1. Actin-based astrocyte extensions change orientation within hours after intraocular pressure

elevation. (A) Low magnification images of control optic nerve head (ONH) sections labeled for actin (TRITC-

phalloidin), tubulin (Tuj1 anti-tubulin βIII antibody), and nuclei (DAPI). The left and right boxes in the merged

image indicate the anterior superior and inferior regions of the ONH, respectively. (B, C) High magnification

images of the superior and inferior regions of the ONH, as indicated by boxes in panel (A). Representative

superior (D) and inferior (E) ONH regions from control eyes and eyes exposed to 8 hours of intraocular

pressure (IOP) elevation, labeled for actin, tubulin, and nuclei. Day 0 eyes were immediately fixed after 8

hours of IOP elevation, while day 1–5 indicate the period of time the IOP was normalized post IOP elevation

prior to fixation. A-P = anterior-posterior, B = Bruch’s membrane, I = inferior, R = retina, and S = superior.

doi:10.1371/journal.pone.0167364.g001
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and inferior ONH) and returned to baseline levels within 5 days post IOP normalization

(Fig 2E). Of note, this reversible reduction in ONH axonal microtubule filament intensity in

response to IOP elevation was temporally preceded by astrocyte actin-based extension re-

arrangement, which occurred immediately after IOP elevation (Fig 2A).

IOP Elevation for 8 Hours Alters FAK Activity and Enhances Paxillin

Phosphorylation within the ONH

Integrins facilitate mechanosensory cellular responses [53], and their activation [54–56] leads

to phosphorylation of FAK (p-FAK; a kinase upstream of actin cytoskeletal remodeling) [57].

Fig 2. Quantitative analysis of actin-based astrocyte extension and axonal microtubule

reorganization in response to elevated intraocular pressure. (A) Mean astrocytic actin bundle orientation

relative to the anterior-posterior axis within the superior and inferior optic nerve head (ONH) of control eyes

and eyes exposed to 8 hours of intraocular pressure (IOP) elevation. (B) An example of the superior ONH with

actin and nuclear co-labeling, before and after application of a grid to allow for filament length measurement

analysis. Note, in this example, only nuclear-adjacent actin bundles are identified and measured. (C) Mean

length of actin bundles (with or without contact with a nucleus) within the superior and inferior ONH of control

eyes and eyes exposed to 8 hours of IOP elevation. (D) Mean length of actin bundles in contact with a nucleus

within the superior and inferior ONH of control eyes and eyes exposed to 8 hours of IOP elevation. (E) Mean

axonal tubulin fluorescence intensity within the superior and inferior ONH of control eyes and eyes exposed to

8 hours of IOP elevation. Day 0 eyes were immediately fixed after 8 hours of IOP elevation, while day 1–5

indicate the period of time the IOP was normalized post IOP elevation prior to fixation. Error bars indicate

standard error of the mean (SEM); * = p<0.05 by 2-way ANOVA and indicates statistically significant

difference between control and experimental groups; n = 7, 7, 7, 8, and 6 for control, day 0, day 1, day 3, and

day 5 groups, respectively. A-P = anterior-posterior.

doi:10.1371/journal.pone.0167364.g002
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Given the significant and rapid actin-based astrocyte structural changes within the ONH in

response to elevated IOP in our model, we asked if p-FAK levels were altered in response to

elevated IOP. Baseline p-FAK levels were noted in control superior and inferior ONH sections

(Fig 3A and 3B). Levels of p-FAK trended toward a reduction immediately post IOP elevation

(day 0) and post IOP normalization on days 1–5 (Fig 3A–3C). While p-FAK levels for individ-

ual experimental groups post IOP elevation (day 0–5) were not statistically different from con-

trol levels, we did note a linear trend toward reduced levels of p-FAK post IOP normalization

within the superior and inferior ONH (Fig 3C), which was statistically significant for the supe-

rior ONH (as defined by a best fit linear regression compared to a line with a zero slope,

R2 = 0.77, p<0.05).

Next, we asked if the level of phosphorylated paxillin (p-paxillin), a downstream target of p-

FAK important for focal adhesion and actin cytoskeletal remodeling [58, 59], was altered in

response to 8 hours of IOP elevation. Relatively low baseline levels of p-paxillin were noted in

control ONHs (Fig 4A and 4B). Immediately after IOP normalization (day 0), p-paxillin levels

appeared to be reduced (but did not a reach statistically significant change relative to controls).

However, 1 day post IOP normalization, p-paxillin levels increased and reached significantly

elevated levels 5 days post IOP normalization relative to controls (Fig 4A–4C).

Src Kinase Target Cortactin is Phosphorylated within the ONH in

Response to 8 Hours of IOP Elevation

We next asked if Src kinase, an upstream regulator of actin polymerization [44, 60] and FAK

phosphorylation [61], was active within the ONH. Active Src was abundantly found through-

out control and experimental ONH sections (Fig 5A and 5B). Active Src levels were slightly

reduced immediately after IOP elevation on day 0, reaching statistical significance within the

inferior ONH relative to controls (Fig 5C). The level of active Src returned to control levels 1

day post IOP normalization, and remained unchanged 3 and 5 days post IOP normalization

relative to controls (Fig 5C).

Given the abundant levels of active Src within the ONH, we asked if cortactin, a down-

stream target of Src kinase important for actin polymerization [44, 60, 62, 63], was phosphory-

lated in response to IOP elevation. Levels of phosphorylated cortactin (p-cortactin) were

minimal in control ONHs, and remained statistically unchanged immediately after IOP eleva-

tion on day 0 (Fig 6A–6C). However, p-cortactin levels significantly increased and peaked 1

day post IOP normalization, and began to trend down 3 days post IOP elevation while remain-

ing significantly elevated relative to controls (Fig 6A–6C). Levels of p-cortactin trended down

further to control levels 5 days post IOP normalization (Fig 6A–6C).

Discussion

Here, we present the first evidence of temporal and regional actin-based responses of ONH

astrocytes to 8 hours of elevated IOP, which occur within hours of IOP elevation and prior to

any significant morphologic evidence of axonal degeneration. In addition, while some of the

structural and molecular responses of ONH astrocytes to elevated IOP are largely reversible

within days after IOP normalization, we provide evidence of sustained changes in some molec-

ular responses up to 5 days after IOP normalization. Our results also suggest a temporal sepa-

ration of actin-based astrocyte structural re-orientation prior to tubulin-based axonal

cytoskeletal reorganization.

Astrocytes are exquisitely sensitive to external mechanical stimuli [64], likely through sam-

pling and interaction of integrin receptors with the ECM [29]. In culture, astrocytes exposed

to external stretch respond by releasing adenosine 5’-triphosphate [22, 65] and endothelin

Actin-Based Astrocyte Response to Elevated Intraocular Pressure
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Fig 3. Focal adhesion kinase phosphorylation levels within the optic nerve head decrease steadily

after intraocular pressure elevation. (A-B) Superior and inferior optic nerve head (ONH) sections labeled

with anti-phosphorylated focal adhesion kinase (p-FAK) antibodies in control eyes and eyes exposed to 8

hours of intraocular pressure (IOP) elevation. The bottom panels in (A) include a validation of antibody

specificity using a p-FAK specific blocking peptide (bottom left panel), as well as an example of co-labeling

Actin-Based Astrocyte Response to Elevated Intraocular Pressure
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[66]. IOP elevation in vivo induces rapid architectural changes of the ONH and ECM [67].

Given that astrocytes are in intimate contact with the ONH ECM, astrocytic extensions

respond to IOP elevation by reorienting and retracting their extensions [8, 12, 68]. Here, we

show the first evidence of rapid ONH astrocyte extension rearrangement immediately after 8

hours of IOP elevation, followed by re-orientation back to control levels within 1 day after IOP

normalization. In addition, we noted an overall quantitative increase in the average length of

actin-based astrocytic extensions 1 day after IOP normalization. The observed reversible

changes in astrocyte extension orientation immediately after IOP elevation may imply acute

shifts in the biomechanical forces present within the ONH tissue. Indeed, cells rich in actin

(such as fibroblasts) are exquisitely sensitive to tissue strain and readily change orientation to

counter stretch [69]. In addition, the observed reversible increase in astrocyte actin bundle

length 1 day after IOP elevation, may imply that astrocyte response to local ONH mechanical

tissue stress involves lengthening of extensions, which is consistent with observed reports of

cultured astrocyte processes lengthening under mechanical stress [70].

Interestingly, ONH astrocyte architectural changes in response to short-term IOP elevation

(30 mm Hg for 1 hour) in a murine model using glial fibrillary acid protein (GFAP) as an

astrocyte marker [12], suggest astrocytic structural changes and recovery on the time scale of

days to weeks after IOP elevation. Our results suggest a more rapid astrocyte rearrangement

after IOP elevation, followed by a more rapid reorientation back to baseline levels after IOP

normalization (both within hours). This difference may be explained by the level of IOP eleva-

tion and the time of exposure achieved in each model, and by the different astrocyte labeling

techniques employed in the two models. Here, we use filamentous actin labeling, which is a

highly sensitive, real-time indicator of astrocyte extensions [8]. In contrast, GFAP may not be

present throughout all astrocyte extensions [71] and GFAP expression patterns have been

shown to change with varying levels of tissue stress [72, 73].

The structural and molecular astrocytic changes we observed within the ONH occur prior

to any significant morphologic axonal degeneration in the optic nerve. Indeed, other studies

have demonstrated that a single short-term exposure to elevated IOP in rodent models does

not cause long term effects on axon transport [74, 75]. However, our results indicate a revers-

ible reduction in total axonal microtubule filament intensity within the ONH in response to 8

hours of IOP elevation, potentially due to a reversible depolymerization of microtubule fila-

ments. This reduction in axonal microtubule filament intensity levels is delayed until 1 day

post IOP normalization, sustained through 3 days post IOP normalization, and then recovers

by 5 days post IOP normalization. This response of axonal microtubule filament rearrange-

ment occurs later than the actin-based astrocyte extension re-arrangement that we observed

immediately after IOP elevation. The temporal relationship between these two findings sup-

port the possibility that astrocyte architectural re-arrangement in response to IOP elevation

may precede axonal injury [8, 76], and may possibly have a causal role in axon degeneration. It

is conceivable that repeated or chronic astrocyte architectural changes in response to elevated

IOP result in the loss of optimal astrocyte structure and function, which further lead to

with p-FAK and axon specific anti-tubulin antibodies to demonstrate the non-axonal source of the majority of

p-FAK label (bottom right panels). (C) Mean p-FAK fluorescence intensity within the superior and inferior ONH

of control eyes and eyes exposed to 8 hours of IOP elevation. Day 0 eyes were immediately fixed after 8

hours of IOP elevation, while day 1–5 indicate the period of time the IOP was normalized post IOP elevation

prior to fixation. Error bars indicate standard error of the mean (SEM). * = p<0.05 using linear regression

analysis and indicates statistically significant difference in slope of the best fit trend line from a zero slope;

n = 7, 6, 6, 7, and 6 for control, day 0, day 1, day 3, and day 5 groups, respectively. A-P = anterior-posterior.

doi:10.1371/journal.pone.0167364.g003
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Fig 4. Paxillin phosphorylation levels within the optic nerve head increase and remain elevated after

intraocular pressure elevation. (A-B) Superior and inferior optic nerve head (ONH) sections labeled with

anti-phosphorylated paxillin (p-paxillin) antibodies in control eyes and eyes exposed to 8 hours of intraocular

pressure (IOP) elevation. The bottom panels in (A) include a validation of antibody specificity using a p-paxillin

specific blocking peptide (bottom left panel), as well as an example of co-labeling with p-paxillin and axon

specific anti-tubulin antibodies to demonstrate the non-axonal source of the majority of p-paxillin label (bottom
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permanent and irreversible structural changes of axonal microtubule cytoskeleton. Axonal

microtubule cytoskeletal disruption would impede axonal transport of cellular cargo and mito-

chondria [77, 78], and may accelerate eventual axonal degeneration. Indeed, astrocyte mor-

phology alterations have been shown to correlate with axon loss in rodent models of glaucoma

[68]. Thus, astrocyte response to elevated IOP within the ONH may be the earliest event in

IOP-mediated cellular responses, which result in subsequent chronic changes to astrocyte

structure and function that are incompatible with axonal support. This hypothesis remains to

be tested in future studies.

Our results indicate a subtle, but significant differential structural rearrangement of actin-

based astrocyte extensions within the superior and inferior region of the ONH. In our study,

the structural rearrangement of astrocyte extensions in response to elevated IOP are most sig-

nificant in the inferior ONH immediately after IOP elevation (Fig 2A, day 0). Differential sus-

ceptibility to axonal damage between the superior and inferior ONH regions in rodent

glaucoma models has been described, and indicates a predilection for superior ONH axon

injury [6, 47–51]. The preferential rearrangement of inferior ONH astrocyte extensions in our

model may still be consistent with reports of superior ONH susceptibility to axonal injury. As

reported by Sun et al [12], rodent astrocyte extensions span the entire transverse diameter of

the ONH. As IOP-induced biomechanical strain within the ONH [79] may preferentially be

transmitted to astrocytes in the superior ONH, one would expect these astrocytes to be more

reactive. Rodent astrocytes cell bodies located within the superior ONH have relatively long,

distal extensions spanning to the inferior ONH [12]. These longer, distal extensions are the

first to retract and rearrange upon astrocyte reactivity after elevated IOP [12], likely leading to

the inferior ONH structural changes observed here. Further investigations into this hypothesis

will require detailed finite element modeling of the ONH in response to mechanical strain

[80–82], including the contribution of highly ordered actin-based astrocyte extensions to these

models.

We hypothesize that the rapid structural changes we observed in ONH astrocyte extension

orientation in response to IOP elevation are downstream of integrin signaling (Fig 7). Integ-

rins are cell membrane receptors that interact with the ECM and link extracellular signaling

with the intracellular actin cytoskeleton [31]. In addition, integrins are distributed throughout

the ONH along the margins of ECM beams and within the glial column [10]. Our results sup-

port a rapid intracellular cascade of signaling downstream of integrin receptors involving FAK

and Src kinase, and more importantly their respective targets paxillin and cortactin, which

have a direct role in actin cytoskeletal remodeling.

First, in control eyes under normal IOP fluctuations, active p-FAK and p-paxillin are pres-

ent within the ONH. This likely indicates a dynamic and homeostatic interaction between the

ECM and the intracellular actin cytoskeleton (through basal integrin activity) to optimize

astrocytic extensions in their baseline structural steady state. In this scenario, cortactin remains

inactive, potentially through sequestration by the unphosphorylated/inactive portion of the

FAK population, which renders cortactin inaccessible for phosphorylation by both FAK and

Src kinase [63, 83].

right panels). (C) Mean p-paxillin fluorescence intensity within the superior and inferior ONH of control eyes

and eyes exposed to 8 hours of IOP elevation. Day 0 eyes were immediately fixed after 8 hours of IOP

elevation, while day 1–5 indicate the period of time the IOP was normalized post IOP elevation prior to

fixation. Error bars indicate standard error of the mean (SEM). * = p<0.05 by 2-way ANOVA and indicates

statistically significant difference between control and experimental groups; n = 7, 7, 5, 7, and 7 for control,

day 0, day 1, day 3, and day 5 groups, respectively. A-P = anterior-posterior.

doi:10.1371/journal.pone.0167364.g004
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Fig 5. Active Src kinase levels within the optic nerve head are reduced immediately and transiently

after intraocular pressure elevation. (A-B) Superior and inferior optic nerve head (ONH) sections labeled

with antibodies against active Src kinase in control eyes and eyes exposed to 8 hours of intraocular pressure

(IOP) elevation. The bottom panels in (A) include a validation of antibody specificity using an active Src

specific blocking peptide (bottom left panel), as well as an example of co-localization of active Src with

astrocyte specific anti-glial fibrillary acidic protein (GFAP) antibodies (bottom right panels). Note similar
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Immediately after 8 hours of IOP elevation (day 0), p-paxillin levels remain unchanged rela-

tive to controls. As p-paxillin is necessary for focal contact formation [58], this likely indicates

no additional focal contacts formation by astrocyte extensions on day 0 relative to baseline.

Un-elevated levels of p-paxillin immediately after IOP elevation may allow for astrocyte exten-

sion rearrangement, as observed in this study.

Within 1 day after normalization of IOP, p-paxillin and p-cortactin levels increase within

the ONH relative to controls. Phosphorylation of paxillin and cortactin have been shown to

enhance focal adhesion formation [32] and actin polymerization [60], respectively, while p-

cortactin is necessary for optimal actin dynamics [44]. Taken together, the above changes after

IOP normalization may allow for astrocyte extension reformation through enhanced actin

polymerization and establishment of new focal contacts. Interestingly, the levels of two of the

upstream kinases responsible for p-paxillin and p-cortactin phosphorylation (namely, FAK

and Src kinase, respectively), do not significantly increase within the ONH in response to IOP

elevation. Indeed, ONH p-FAK levels trend toward lower levels post IOP normalization in our

model. This may highlight the importance of other mediators of paxillin and cortactin phos-

phorylation in response to elevated IOP within the ONH, including the role of other kinases

[84–86], phosphatases [87, 88], adaptor proteins [89, 90], and the cellular localization of paxil-

lin and cortactin [91, 92].

Several days after IOP normalization, some of the molecular markers of integrin signaling

and actin dynamics have returned to baseline levels within the ONH in our model. However,

p-paxillin levels within the ONH continue to remain significantly elevated 5 days post IOP

normalization relative to control levels, while ONH p-FAK levels steadily decline post IOP

normalization. These results are particularly significant as sustained molecular changes within

astrocytes after IOP elevation may play a role in axonal injury in repeat or chronically-sus-

tained IOP elevation models. In such a scenario, repeated IOP elevations may result in addi-

tional or synergistic astrocytic structural and molecular changes, which may render astrocytes

more reactive to future IOP elevations and therefore less supportive of axons. Indeed, human

eyes with greater glaucomatous injury appear to have increased susceptibility to IOP elevation

[93], while some patients with glaucomatous injury continue to lose vision despite reduction

of their intraocular pressure [94].

In conclusion, 8 hours of IOP elevation in a rat model leads to rapid structural and molecu-

lar changes within ONH astrocytes prior to morphologic axon degeneration. These changes

are likely mediated through integrin receptors, which act as a link between the ECM and intra-

cellular actin cytoskeleton. While some of the structural and molecular astrocyte changes in

response to 8 hours of IOP elevation return to baseline after IOP normalization, evidence of

sustained molecular changes within the ONH offers a possible clue into the pathogenesis of

axon injury in chronic and repeated IOP elevation, as characterized in primary open angle

glaucoma.

orientation and directionality of filaments labeled for active Src and GFAP. (C) Mean active Src fluorescence

intensity within the superior and inferior ONH of control eyes and eyes exposed to 8 hours of IOP elevation.

Day 0 eyes were immediately fixed after 8 hours of IOP elevation, while day 1–5 indicate the period of time the

IOP was normalized post IOP elevation prior to fixation. Error bars indicate standard error of the mean (SEM).

* = p<0.05 by 2-way ANOVA and indicates statistically significant difference between control and

experimental groups; n = 7, 7, 6, 7, and 5 for control, day 0, day 1, day 3, and day 5 groups, respectively.

A-P = anterior-posterior.

doi:10.1371/journal.pone.0167364.g005
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Fig 6. Cortactin phosphorylation levels within the optic nerve head increase in a reversible manner

after intraocular pressure elevation. (A-B) Superior and inferior optic nerve head (ONH) sections labeled

with anti-phosphorylated cortactin (p-cortactin) antibodies in control eyes and eyes exposed to 8 hours of

intraocular pressure (IOP) elevation. The bottom panels in (A) include a validation of antibody specificity using

a p-cortactin specific blocking peptide (bottom left panel), as well as an example of co-labeling with p-cortactin

and axon specific anti-tubulin antibodies to demonstrate the non-axonal source of the majority of p-cortactin
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