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Abstract: The noise generated by free surface hydropower machines, e.g., water wheels, has led to
complaints and to restrictions in their operation in urban areas. This problem generally occurs when
water wheels are not well designed and are installed without expertise. Despite the relevance of
the problem, and the growing interest in the use of water wheels at existing low head barriers, the
acoustic impact of water wheels has not yet been properly addressed by the scientific community.
Therefore, in this manuscript, the importance of the problem and the related scientific challenges are
discussed, supported by case studies and theoretical considerations. A literature review on the topic
is carried out, although little information is available in the scientific domain. The aim of this work
is to increase the awareness on this problem, in order to stimulate future research and to suggest
useful guidelines for future water wheel projects, thereby increasing the water wheel potential and
reducing noise disturbance for people.
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1. Introduction

Gravity hydraulic machines use water weight to generate energy. The two most
known types of gravity machines are gravity water wheels, used in the past to drive water
mills [1], and Archimedes screws [2]. Gravity water wheels are the focus of this study.

Gravity water wheels are cost-effective hydropower converters for the repowering
of old mill sites and for the retrofitting of non-powered low head weirs (typically below
2.5 m) and small flows (below few cubic meters per second). Their advantages are flexible
operation at off-design conditions, high peak hydraulic efficiency (up to 85%), and low
costs in comparison to analogous reaction turbines, e.g., low head Francis and Kaplan
turbines [3]. Furthermore, water wheels operate with a fish-friendly behavior and are
compatible with sediment [3,4]. The most recent review papers on gravity water wheels
have been published in [5,6], where their engineering design, operation, and historic
development have been discussed.

Gravity wheels can be classified into three main types, depending on their inflow
configuration.

Undershot wheels, typically used below 1.5 m head and maximum flow below
1000 L/s per meter width, with a maximum hydraulic efficiency of 80% and global plant
efficiency of 65% [7], depending on the head and flow rate; the inflow is located in the
lowest portion of the wheel (Figure 1a). They can be of two main types: Sagebien type with
flat blades and Zuppinger type with curved blades [7].

Breastshot wheels, typically used below 3 m head and with a maximum flow below
600–800 L/s per meter width, with a maximum hydraulic efficiency of 80% and global
plant efficiency of 65% (Figure 1b). They can be classified as low breastshot (i.e., undershot),
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middle breastshot (the water enters near the rotation axis) and high breastshot (the water
enters in the upper third of the wheel) [8,9].

Overshot wheels, typically used between 3 m and 6 m head and with maximum flows
below 200 L/s per meter width, with a maximum hydraulic efficiency of 85% and global
plant efficiency of 70% [10]. The inflow is at the top of the wheel, and they are usually
installed in mountain areas (Figure 1c).
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Data collected during the Restor Hydro project, described in detail in [11], showed
that the repowering of EU (European Union) historic sites with low heads weirs and mills
would produce 8703 TWh/y. France, with the potential generation of 3832 GWh/y, is the
leader. In addition, 6.8 TWh/y of electricity can be generated at these historic sites by
improving the infrastructures; 27,749 mills were registered and 17,485 were found to be in
good status, with weirs that could be retrofitted quite easily. It was found that the majority
(90%) of registered water mill sites had a capacity lower than 40 kW and could be possible
sites for water wheel installations. The potential is not only limited to EU. For example,
in an irrigation canal system in Pakistan (Khyber Pakhtunkhwar/Peshawar), there are
1267 drop structures with head differences between 0.5 and 3 m, power ratings between
2 and 100 kW, with a total hydraulic power of 68.6 MW over a canal length of 1120 km
(pers. comm. Gerald Müller). In most of these sites, water wheels could be installed as
cost-effective hydropower converters. Pakistan has a total length of 40,000 km of primary
canals, so that the actual potential is much larger.

However, water wheels also exhibit some drawbacks, e.g., low rotational speeds
(i.e., expensive gearboxes), large diameters and, sometimes, and noise emission during
operation. Noise emission is generally associated with the inflow phenomena and the
water uplift at the outflow.

Nevertheless, the acoustic impact of water wheels has been poorly investigated by
the scientific community, and only few data and case studies are available in the literature.
The only available review paper deals with the noise generated by hydraulic weirs for low
head applications [12]. Therefore, the scope of the present opinion paper is to discuss the
available data and publications on the noise generated by water wheels. The scientific gaps
and challenges to be addressed are highlighted, and some guidelines to reduce the noise of
water wheels are discussed. The available case studies are described.

2. Noise Generation from Water Wheels

Noise is defined as an unwanted and unpleasant sound, which is loud or disruptive
to hearing. Noise is generated by vibrations through a medium, such as air or water [13].
Humans can hear sound frequencies higher than 15 to 20 Hz, so these signals are in the
infrasonic range.

The main influences of ultra-low frequency sound on humans are thought to be the
resonance of body cavities, and the effect of resonance and standing sound waves in
enclosed spaces such as rooms [14]. In the former case, air or fluid filled cavities of the
body can respond dynamically to infrasound, which can lead to resonance and a build-up
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of amplitude. These phenomena are worsened in urban areas [15,16]. In [17], it is reported
that the installation of a large fan in a workshop led to a feeling of discomfort and to visual
disturbances (“apparitions”) experienced by the workers. This was traced back to the fact
that the fan created infrasound waves, which led to a resonance in the eyeballs of workers
(the estimated resonance frequency according to NASA is 18 Hz), which in turn caused
the discomfort. In the latter case, the resonance of air-filled enclosed spaces is known as
Helmholtz resonance. During dynamic excitation, the air inside a containment that has
one opening starts to vibrate. In the car industry, this is termed “car window buffeting”,
and is known to create a feeling of discomfort [18]. The resonance amplitude here can be
significantly higher than the amplitude of the exciting signal. The Helmholtz-type response
is a harmonic oscillation or a standing wave that, contrary to the pulsed signal from, e.g., a
water wheel, may not be audible. This is still a topic of ongoing scientific discussion (see,
e.g., the reviews in [19,20]).

Due to the free water surface operation, the generated noise from water wheels may
be well audible to people, so that it can become a major drawback in some cases. The noise
generation in water wheels usually occurs through either the sudden contact of a blade
with the surface of the inflowing water, generating a slapping noise, or through turbulence
and water being lifted up and falling down on the downstream side. In both cases, it
is not a harmonic sound wave, but a pulsed noise signal with pulse frequencies of 2 to
approximately 10 Hz, depending on the wheel speed and blade number.

The problem of noise is worsened when the hydraulic design is overlooked (Figure 2).
Indeed, water wheels are generally considered simple machines rather than full-fledged
hydraulic turbines; therefore, they are usually manufactured by carpentry companies or
blacksmiths with not enough competence on hydraulics and on water wheel design. The
impact of the blades on the water jet, and possibly the noise generated when a blade
exits the tailrace can generate pulsed noise signals. In addition, the generator and the
gearbox can be the cause of higher frequency noise. All of these sources can result in a noise
emission that is more disturbing than that generated by the free waterfall in undisturbed
conditions. The noise of the generator, especially when the electro-mechanical equipment
is not inside a proper powerhouse, may also worsen the acoustic impact. Noise emitted by
the gearbox is omitted here, as this noise usually indicates that the component is starting
to fail.
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Figure 2. (a) Water wheel with bad inflow design and blade shape, and the outflow design at the
tailrace (b) (personal collection of the author).

Some examples of the noise generated by water wheels can be found in the literature
(Table 1). An overshot wheel in Pader (Germany) suspended its operation due to the
neighboring residents’ complaints about the pulsating noise. Bristle elements were installed
in the paddles to reduce the noise. A Zuppinger water wheel in Germany had blades that
slammed on the upstream free surface, generating a pulsating noise [5].
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Table 1. Case studies found in the literature.

Type Country Dimensions Acoustic Impact

overshot Germany
undershot Italy 2 m width × 6 m diameter +9 dB
undershot Germany 7 m diameter Pulsating noise 2–3.5 Hz

stream water wheel Germany

Noise emission due to a wheel blade striking the water surface was also found during
laboratory tests of Zuppinger water wheels, but it did not occur for Sagebien water wheels,
due to the optimal blade inclination at the inflow [7]. In Italy, some examples have also
been recorded by one of the authors, where the owner of the plant was obliged to stop the
wheel operation after complaints from the neighbors, with serious economic consequences
for the owner. An additional Italian example is that of a water wheel 6 m in diameter and
2 m wide, operating under 2 m head and 1.25 m3/s of flow. The noise emission from the
wheel was 9 dB higher than the noise without the wheel (caused by the free waterfall). The
installation of acoustic barriers reduced the noise level by 7 dB. However, the dB value is
not necessarily a measure of the effect of this noise.

From a Zuppinger wheel near Freiburg, Germany, the frequency of the pulsating
noise was estimated as 2–3.5 Hz, assuming a diameter of 7 m, 48 blades, and a maximum
tangential velocity of the blade of 1.5 m/s. One particular feature of the pulsed noise in
this case was the resonance of air filled cavities such as rooms or spaces between walls,
which could amplify the signal significantly, and cause feelings of discomfort [14]. It must
be noted that the acoustic pressure caused by resonance can be significantly higher than
that of the arriving acoustic signal. The fact that air is resonating in a harmonic oscillation
can mean that, despite the fact that the pulsating original signal is audible (as a series of
noise signals similar to, e.g., a motorbike engine), the response of the air can be below the
human hearing limit.

There is also a supercritical flow wheel in a school in Munich (St. Anna-Gymnasium)
that can only run during working hours because of noise generation [21].

Nevertheless, it must be noted that a lot of water wheels are currently in operation
with no substantial acoustic impact [5,6].

3. Assessment of Noise Emissions from Water Wheels

The noise generated by water wheels is mostly a pulsed noise rather than a harmonic
oscillation. This means that, when using standard measurement devices, its amplitude
is averaged and thereby reduced. Instead of measuring an average value, a time series
of the noise should be taken and analyzed. Furthermore, the effect of these infrasound
signals needs to be evaluated, keeping possible resonance phenomenon in mind. The
sound pressure should be measured not just in the open spaces, but also in enclosed spaces
(e.g., rooms with a window slightly open towards the source, or wherever complaints have
been made), or even between walls. The sound pressure can locally be significantly higher
than the pressure signal from the water wheel. Care should be taken to allow for the fact
that the resonant waves are standing waves, so that they will have node points where
the effect disappears and crest points where a maximum occurs. Figure 3 indicates the
problem, while for a first harmonic wave the maximum occurs at the opening, the third
harmonic has a maximum at the wall. The wrong choice of the measurement point at a
node may result in a zero reading.

It appears that low-frequency signals can travel further than high-frequency noise. In
addition, low-frequency noise can propagate between reflective boundaries such as walls
on both sides of a street. This can increase their effective propagation distance significantly.
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4. Outlook and Challenges

Despite the importance of the topic, the abovementioned examples are the limited
data that have been found in the literature for water wheels, with low possibility of any
generalization or scientific elaboration. In general, the studies investigating the acoustics
of any type of micro-hydro turbine operating at atmospheric pressure are very limited [21].
The most up-to-date scientific paper on noise emission in micro hydropower plants is [12],
where a comprehensive field study to evaluate the sound environments around a selection
of typical low head weir sites was presented, but the study is limited to the noise emission
of waterfalls from weirs. Therefore, the absence of noise-related data of water wheels is a
great scientific gap that need to be addressed, especially because the assessments of noise
levels are generally mandatory in sensitive areas (e.g., urban areas) before installing a
hydropower plant. Neighbors, and related activities, have been noted one of the most noise
annoying sources [22]. Furthermore, it can be expected that the noise intensity is correlated
with the efficiency of the wheel. The better the design, the lower the noise emission of the
wheel, although it cannot be reduced to zero.

The general design guidelines that should be considered to minimize noise emissions
are:

(1) Respecting the triangle velocity theory at the inflow to minimize shock losses of the
water flow on the blades of the wheel and reducing power losses [23,24].

(2) Minimizing water uplift downstream by choosing an optimal blade shape and a
suitable diameter, reducing the noise generated by the splashing water uplift by
the blade and falling down onto the tailrace. This requires the blade profile to be
perpendicular to the free surface downstream [7].

(3) Enclosing the generator in a proper powerhouse.
(4) Installing artificial acoustic barriers [25] or natural (vegetation) barriers [26,27].

In all water wheel projects where noise problems may occur, it is also recommended
to record the existing noise levels and characteristics at various points to create a solid
database for comparison with post-implementation noise.

There is, however, a lot of research required. The fact that water wheel noise mostly
consists of regular pulsed signals that can create acoustic resonance is not considered
currently at all. The following research gaps should be filled:

(1) The noise emission of a water wheel under different operating conditions, i.e., at the
design flow and at part and full load, need to be measured and analyzed to establish
its typical characteristics

(2) Is there a correlation between noise emission and wheel efficiency?
(3) The damping of pulsating low-frequency noise, and the effective propagation distance

of such noise signals, needs to be investigated, low-frequency and pulsed noise
appears to travel further than high frequency noise.

(4) Potential resonance effects in enclosed air spaces should be analyzed, which could be
rooms or outdoor areas enclosed by large buildings.

(5) Low frequency sound is more difficult to suppress than high frequency signals.
Methods to reduce sound emissions need to be identified.
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(6) The potential health effects of low-frequency or infrasound need to be investigated
further.

The importance of the topic is relevant, and it is of interest also for the other turbines op-
erating at atmospheric pressure, e.g., wind turbines [28,29] and Archimedes screws [15,16].
A study on the possibility of noise reduction on Archimedes screws was reported by [15].
The study was initiated as an Archimedes screw built in Munich had to stop operation after
nearby residents complained about the noise. In this study, however, only the noise level
was reported and not the frequency. A modification of the exit geometry of the screw led
to a noise reduction of 12 dB, with an original noise level in the laboratory tests of 40 dB.

5. Conclusions

A collection of case studies and related scientific studies show that the problem of
noise generation by water wheels should not be overlooked. The noise emission strictly
depends on the water wheel design, with typical pulsed signals with frequencies between
2 and 10 Hz, i.e., in the infrasonic range. Such signals can lead to acoustic resonance in
enclosed air spaces, where the signal amplitude is amplified significantly. This in turn
can have effects on the well-being of people, especially in residential neighborhoods, and
serious consequences for the operation of hydropower installation.

However, there is very little knowledge about this aspect of water wheel design.
Therefore, more efforts should be spent by both the industry to develop more efficient
water wheels, and by academia to study the problem of noise and to provide engineering
tools to be used in practical applications. The relevance is increased by its importance also
in other similar energy contexts, e.g., for wind turbines and Archimedes screws.
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