
Metabolic Engineering Communications 13 (2021) e00177

Available online 17 July 2021
2214-0301/© 2021 The Author(s). Published by Elsevier B.V. on behalf of International Metabolic Engineering Society. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

mfapy: An open-source Python package for 13C-based metabolic 
flux analysis 

Fumio Matsuda *, Kousuke Maeda, Takeo Taniguchi, Yuya Kondo, Futa Yatabe, 
Nobuyuki Okahashi, Hiroshi Shimizu 
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan   

A R T I C L E  I N F O   

Keywords: 
13C-based metabolic flux analysis 
Experimental design 
Non-linear optimization 
Open-source software 
Python package 

A B S T R A C T   

13C-based metabolic flux analysis (13C-MFA) is an essential tool for estimating intracellular metabolic flux levels 
in metabolic engineering and biology. In 13C-MFA, a metabolic flux distribution that explains the observed 
isotope labeling data was computationally estimated using a non-linear optimization method. Herein, we report 
the development of mfapy, an open-source Python package developed for more flexibility and extensibility for 
13C-MFA. mfapy compels users to write a customized Python code by describing each step in the data analysis 
procedures of the isotope labeling experiments. The flexibility and extensibility provided by mfapy can support 
trial-and-error performance in the routine estimation of metabolic flux distributions, experimental design by 
computer simulations of 13C-MFA experiments, and development of new data analysis techniques for stable 
isotope labeling experiments. mfapy is available to the public from the Github repository (https://github.com/ 
fumiomatsuda/mfapy).   

1. Introduction 

Measurement of intracellular metabolic flux is essential for meta-
bolic engineering and biology (Antoniewicz, 2013, 2015; Wiechert, 
2001; Wittmann, 2007; Zamboni et al., 2009). 13C-based metabolic flux 
analysis (13C-MFA) was developed to estimate metabolic flux levels in 
the central carbon metabolism of metabolically engineered microbial 
cells (Costenoble et al., 2007; Shirai et al., 2007; Wasylenko and Ste-
phanopoulos, 2015). Recently, it has been applied to the quantitative 
analysis of cell metabolism in plants, mammalian cells, and cancers 
(Christen and Sauer, 2011; Gaglio et al., 2011; Haverkorn van Rijsewijk 
et al., 2011; Hiller and Metallo, 2013; Shimizu, 2004). 

To perform 13C-MFA, cells are cultivated in a medium containing 
13C-labeled carbon sources (Antoniewicz, 2018; Cheah et al., 2017; 
McAtee Pereira et al., 2018). Amino acids or intermediates are extracted 
and subjected to mass spectrometric analysis to measure the isotopic 
labeling enrichment or mass isotope distribution vector (MDV) of each 
metabolite. Additionally, specific rates for carbon source consumption 
and product excretion are determined from culture profile data. Because 

the MDV reflects intracellular metabolic flux levels, a metabolic flux 
distribution that effectively explains the observed data is computation-
ally estimated using a non-linear optimization method (Matsuda et al., 
2017). Several software packages can be used to perform the data 
analysis, such as 13CFLUX2 (Weitzel et al., 2013), C13 (Cvijovic et al., 
2010), Metran (Yoo et al., 2008), INCA (Young, 2014), influx_s (Sokol 
et al., 2012), OpenFLUX2 (Shupletsov et al., 2014), WUflux (He et al., 
2016), FluxPyt (Desai and Srivastava, 2018), and OpenMebius (Kajihata 
et al., 2014). These software packages contain functions required for the 
modern 13C-based MFA, including the rapid calculation of isotopic la-
beling enrichment using the elementary metabolite unit (EMU) frame-
work (Antoniewicz et al., 2007b), determination of the confidence 
interval of the estimated flux level (Antoniewicz et al., 2006), parallel 
labeling experiments (Ahn and Antoniewicz, 2013; Crown et al., 2015; 
Leighty and Antoniewicz, 2013), and isotopically non-stationary MFA 
(INST-MFA) (Jazmin et al., 2014; Schaub et al., 2008; Young et al., 2008, 
2011). Useful command-line-based or user-friendly graphic interfaces 
have been prepared for routine 13C-MFA. Moreover, several software 
packages have been distributed with open-source licenses (Desai and 
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Srivastava, 2018; Kajihata et al., 2014; Sokol et al., 2012). 
This article describes the development of mfapy, an open-source 

Python package for data processing of 13C-based metabolic flux anal-
ysis. Previously, we reported on OpenMebius for use in MATLAB (Kaji-
hata et al., 2014). The advantages of MATLAB are its fast and reliable 
calculation environment with the manufacturer’s support and many 
users, especially in chemical engineering field. However, Python was 
employed for the development of mfapy because Python is a freely 
available, popular programing language recently used for scientific 
purposes. A possible disadvantage is that Python is considered to be slow 
for operations on numerical data. 

A novelty of mfapy is that it provides a set of functions required for 
a13C-based metabolic flux analysis as a Python package. In OpenMebius, 
a metabolic flux distribution can be estimated by six commands and 
Excel files, including model definition and experimental data. The 
command-line-based interface is useful for routine data processing of 
13C-MFA. However, mfapy employs an object-oriented style interface 
that provides more than 70 methods to manipulate data and metabolic 
models for 13C-MFA. The flexibility and extensibility allow users to write 
or customize Python codes to describe various procedures for data 
analysis in isotope labeling experiments. For instance, computer esti-
mation of the metabolic flux distribution by non-linear optimization 
requires trial and error to obtain the global optimum result without 
being trapped in local optima. Some flexibility is required in the routine 
data processing of 13C-MFA, such as selecting suitable non-linear opti-
mization solvers to identify a plausible candidate for the global opti-
mum. Moreover, a useful 13C-labeled carbon source must be selected to 
design a practical isotopic labeling experiment. Hence, a computer 
simulation of the isotopic labeling experiment was performed using 
artificial MDV data (Maeda et al., 2016). Furthermore, extensibility is 
required to develop advanced data analysis techniques, such as Monte 
Carlo-based algorithms, to generate a probability distribution of meta-
bolic flux levels. 

This study demonstrates that the flexibility and extensibility pro-
vided by mfapy enable us to write Python scripts for trial and error in 
routine 13C-MFA tasks, for computer simulation of 13C-MFA experiments 
to select suitable carbon sources, and for the development of new data 
analysis techniques. This article introduces various examples of Python 
scripts describing the procedure of 13C-MFA and other workflows. All 
Python scripts and related files mentioned in this study can be down-
loaded from the GitHub repository (https://github.com/fumiomats 

uda/mfapy). 

2. Materials and Methods 

2.1. Implementation of mfapy and code availability 

mfapy is implemented in Python 3 based on external packages, 
including NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), 
nlopt (the non-linear optimization package by Steven G. Johnson, htt 
p://github.com/stevengj/nlopt), joblib (https://joblib.readthedocs. 
io/en/latest/), and mkl-service (Fig. 1a). We tested all mfapy func-
tions using the 64-bit version of Anaconda3 (https://anaconda.com) for 
Windows. All scripts and example files of mfapy, detailed explanations 
of all functions, rules that describe the user-defined metabolic pathway, 
and the carbon transition network are available on the project home 
page (https://github.com/fumiomatsuda/mfapy). Documentation of 
each mfapy function is also available from GitHub (https://fumiomats 
uda.github.io/mfapy-document/). 

The software comprises five modules: mfapy.mfapyio, mfapy.meta-
bolicmodel, mfapy.mdv, mfapy.carbonsource, and mfapy.optimize. The 
mfapy.optimize submodule includes low-level functions for various 
optimization tasks and is not used by users directly. Fig. 1b shows a 
typical scheme for estimating the best-fitted metabolic flux distribution 
using mfapy. The mfapy package must be imported at the beginning of 
the Python 3 scripts (Fig. 1b, step 1). The corresponding Python code for 
the 13C-MFA of the toy model is shown in Supplementary Fig. 1. 

2.2. Model construction 

In 13C-MFA, a metabolic model M is constructed based on a meta-
bolic pathway network and carbon transition network. M is a function 
for calculating the isotopic labeling enrichment or a mass isotope dis-
tribution vector (MDVsim) of metabolites from a specified vector of 
metabolic flux (v) and isotopic labeling patterns of carbon sources (xinp). 

MDV sim
j = M

(
v, xinp) (1) 

Because the metabolic flux distribution at a metabolically steady 
state is determined, the vector of metabolic flux (v) follows the stoi-
chiometric equation, Sv = 0, where S is the stoichiometric matrix pro-
duced from the stoichiometry of metabolic reactions. MDV sim

j is 
calculated by the framework of EMUs (Antoniewicz et al., 2007b) using 

Fig. 1. Procedure for 13C-MFA by mfapy. (a) Screenshot of a python environment (PyScripter) running mfapy. (b) A typical scheme for estimating a best fitted 
metabolic flux distribution using the model definition, status, and MDV data files. Python codes for the parallel labeling experiment and the metabolic network of the 
toy model are shown in Supplementary Figs. 1 and 2. 
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the carbon transition information of each metabolic reaction. In mfapy, 
the metabolic model M is implemented as a MetabolicModel class in the 
mfapy.metabolicmodel module. An instance of the MetabolicModel 
class can be generated from a model definition file describing the stoi-
chiometry and carbon transition information of each metabolic reaction 
(Fig. 1b, step 2, Table 1). The number of carbons, symmetry, and other 
metabolite properties as well as reversible reactions and target frag-
ments for measurements are also described in the model definition file 
(Table 1 and Supplementary Table 1). 

2.3. Addition of constraints 

mfapy considers four types of metabolic reactions, including “free,” 
“fixed,” “fitting,” and “pseudo” types, to constrain v by observed rates of 
biomass synthesis, substrate consumption, and product excretion. The 
metabolic flux level of a “free” reaction is a free variable between the 
lower and upper boundaries. The metabolic flux level of a “fixed” re-
action is constrained to a specified observed flux value. The metabolic 
flux level of a “fitting” reaction is a variable between the lower and 
upper boundaries, and its residue against a specified flux value is 
considered in the residual sum of squares (RSS) in the model fitting. The 
“pseudo”-type reactions are disregarded in constructing a stoichiometry 
matrix of its substrate (Supplementary Fig. 3) (Desai and Srivastava, 
2018). These constraints for each reaction are described in “Exam-
ple_1_toymodel_status.csv” (Table 2) and applied to the model (Fig. 1b, 
step 3). 

2.4. Labeling patterns of carbon sources 

mfapy comprises a CarbonSource class to handle the isotopic label-
ing information of carbon sources (xinp). An instance of the class is 
automatically generated from a MetabolicModel instance by the 

“generate_carbon_source_template” method. The isotope labeling pat-
terns can be set using the “set_each_isotopomer” method (Fig. 1b, step 
4). 

2.5. Loading of observed MDV data 

The isotopic labeling enrichment of metabolites is described by the 
MDV (Wittmann and Heinzle, 1999): 

MDVj =

⎡

⎢
⎣

m + 0
m + 1
⋮
m + n

⎤

⎥
⎦ with

∑n

i = 0
m + i = 1 (2)  

where MDVj is the vector of isotopic labeling enrichment of metabolite 
j; m + i indicates the relative abundance of a metabolite, in which i 
carbons are labeled with 13C. The mass spectrum data are rectified for 
the presence of naturally occurring isotopes using a correction matrix to 
obtain the MDVj of the carbon skeleton (van Winden et al., 2002). An 
observed MDV dataset described in “Example_1_MDV1.txt” yields an 
instance of the MdvData class (Table 3 and Fig. 1b, step 5). 

2.6. Metabolic flux estimation 

A vector of metabolic flux v is fitted to the observed mass spectrum 
(MD̂Vj) using a non-linear optimization method: 

RSS(v) =
∑N

j = 1
(
[
MD̂Vj − MDV sim

j

]T
C − 1

MD̂Vj

[
MD̂Vj − MDV sim

j

])

vopt = argmin
v

RSS(v)
s.t. Sv = 0

(3) 

The optimized value vopt is the estimated metabolic flux distribution 
in the cells to minimize the covariance-weighted sum of squared dif-
ference. C

MD̂Vj
is the covariance matrix with a measurement standard 

deviation located on the diagonal. 
In mfapy, the estimation of vopt is executed by a three-step procedure 

using the methods of the MetabolicModel class. In step 6 in Fig. 1b, a 
pair of observed MDV datasets and the isotopic labeling information of 

Table 1 
Example of model definition file (extracted from Supplementary Table 1 or 
Example_1_toymodel_model.txt).  

//Reactions 
Id For Stoichiometry 

Matrix 
For Atom 
mapping 

Atom mapping Link to 
external ID 

v1 AcCoA + OAC– >
Cit 

AcCoA +
OAC– > Cit 

AB + CDEF– >
FEDBAC 

(kegg: 
R00351) 

v2 Cit– > AKG +
CO2ex 

Cit– > AKG 
+ CO2ex 

ABCDEF– >
ABCDE + F 

(kegg: 
R00709) 

v3 AKG– > Glu AKG– > Glu ABCDE– >
ABCDE 

(kegg: 
R00243) 

v4 AKG– > Suc +
CO2ex 

AKG– > Suc 
+ CO2ex 

ABCDE– >
BCDE + A 

(kegg: 
R01197) 

v5 Suc– > Fum Suc– > Fum ABCD– > ABCD (kegg: 
R02164) 

v6 Fum– > OAC Fum– > OAC ABCD– > ABCD (kegg: 
R01082) 

v7 OAC– > Fum OAC– > Fum ABCD– > ABCD (kegg: 
R01082) 

v8 Asp– > OAC Asp– > OAC ABCD– > ABCD (kegg: 
R00355) 

v9 Glu– > Gluex nd nd (kegg: 
R00243) 

//Metabolites 
Name Number of 

carbons 
Symmetry Carbon source Excreted 

metabolite 

CO2ex 1 no no excreted 
AcCoA 2 no carbonsource no 
OAC 4 no no no 
Cit 6 no no no 
AKG 5 no no no 
Suc 4 symmetry no no 
Fum 4 symmetry no no 
Glu 5 no no no 
Gluex 5 no no excreted 
Asp 4 no carbonsource no  

Table 2 
Example of a status file (Example_1_toymodel_status.csv).  

Class Id type Value1) Standard 
deviation2) 

Lower 
boundary 

Upper 
boundary 

reaction v1 fixed 100 1 0 300 
reaction v2 free 100 1 0 300 
reaction v3 free 50 1 0 300 
reaction v4 free 50 1 0 300 
reaction v5 free 50 1 0 300 
reaction v6 free 125 1 0 300 
reaction v7 free 75 1 0 300 
reaction v8 free 50 1 0 300 
reaction v9 free 50 1 0 300 
reversible FUM free 50 1 0 300 

1) Metabolic flux level information was used for fixed and fitting types. 
2) Standard deviation information was used for fitting type only. 

Table 3 
Example of MDV file (Example_1_MDV1.txt).  

Name Isotopomer Select MDV Standard deviation 

GluMeas 0 1 0.012477 0.01 
GluMeas 1 1 0.733379 0.01 
GluMeas 2 1 0.254143 0.01 
GluMeas 3 1 0.0 0.01 
GluMeas 4 1 0.0 0.01 
GluMeas 5 1 0.0 0.01  
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carbon sources are registered as “a labeling experiment” using the 
set_experiment method. In step 7 in Fig. 1b, a random initial flux dis-
tribution is generated using the generate_initial_states method. In step 8 
in Fig. 1b, the metabolic flux vector v is optimized using the fitting_flux 
method to minimize the covariance-weighted sum of squared difference 
(Eq. [3]). To solve the non-linear optimization problem, mfapy employs 
Scipy and nlopt packages supporting 13 global and local optimizers, 
such as sequential quadratic programming (SLSQP) and CRS2_LM 
(“controlled random search with local mutation”). 

2.7. Determination of confidence intervals 

The confidence intervals of the estimated fluxes are determined 
using the grid search method (Antoniewicz et al., 2006; Costenoble 
et al., 2007). Following the generation of a template dictionary (ci_enge) 
to describe the target reactions, the 95% confidence interval is deter-
mined using the search_ci method (Fig. 1b, step 9). 

2.8. Generation of artificial MDV 

An artificial observed MDV is used for computer simulation of the 
13C-MFA experiment. For a specified metabolic flux vector, v, and car-
bon source (such as the cs prepared above), an MDVdata instance, 
including simulated MDV data, can be generated by the “generate_mdv” 
method of the MetabolicModel instance. The MDVdata instance com-
prises “add_gaussian_noise” and “set_std” to add Gaussian noise to the 
MDV data and set standard deviation levels for the MDV measurement. 
A Python code example for this task is as follows: 

#Generation  of  artificial  MDV  

mdv  =  model.generate_mdv(v,  cs)

mdv.add_gaussian_noise(0.01)

mdv.set_std(0.01)

2.9. Metropolis-Hastings algorithm 

The Metropolis-Hastings algorithm is performed as follows:  

(1) A seed metabolic flux distribution v is produced by minimizing 
the RSS(v) using the MetabolicModel.fitting_flux method, as 
described above.  

(2) Based on the flux distribution at the jth step, v, a proposal flux 
distribution, v’, is generated by adding random values to the flux 
level of three randomly selected reactions. Proposal flux distri-
butions are iteratively generated until a v’ within a feasible flux 
space is obtained using the MetabolicModel.add_perturbation 
method.  

(3) If the acceptance probability p = P (RSS(v’))/P (RSS(v)) is larger 
than 1.0, then (v’) is accepted for the next step. P is the proba-
bility distribution of the χ2 distribution (the degree of freedom is 
the number of measurements). If p < 1.0, v’ is accepted with 
probability p. When v’ is rejected, v is used in the next step.  

(4) The procedure is repeated 5,000,000 times to generate a Markov 
chain because at least 100,000–1,000,000 steps are required to 
obtain a stable estimate (Matsuda et al., 2020). The data of the 
initial 2,500,000 steps are discarded during the burn-in process.  

(5) The remaining chain with 2,500,000 steps is used as the sample 
population of v, following a posterior distribution. From the 
population, 2500 data points are obtained by sampling every 
1000 steps of the chain.  

(6) The entire procedure is performed 20 times via parallel 
computing. 

(7) A sample population of 50,000 data points (2500 with 20 repli-
cates) is used for the following data analysis. The entire proced-
ure is available in the MetabolicModel.posterior distribution 
method. 

2.10. Test data 

A toy model of the tricarboxylic acid (TCA) cycle was obtained from 
a previous study (Antoniewicz et al., 2007b). Two 13C-MFA datasets 
described in our previous study, including a metabolically engineered 
Escherichia coli strain producing isopropanol (Okahashi et al., 2017) and 
breast cancer cells (Araki et al., 2018), were used as examples. 

3. Results 

3.1. Test of mfapy: MDV calculation using an EMU algorithm 

mfapy uses the framework of the EMU algorithm to determine a 
simulated MDV (MDV sim

j ) from vectors of the metabolic flux (v) and the 
isotopic labeling pattern of the carbon source (xinp) (Antoniewicz et al., 
2007b). In the original article about the EMU algorithm, an example of 
MDV calculation based on a toy model of the TCA cycle, including nine 
reactions and 10 metabolites, was introduced (Supplementary Fig. 2) 
(Antoniewicz et al., 2007b). In this study, we prepared a model defini-
tion file of the toy model (Example_0_toymodel_model.txt, Supplemen-
tary Table 1) and a Python script describing a procedure to calculate the 
MDV of glutamate (Example_0_toymodel.py). In the procedure, 
following the construction of the metabolic model from the model 
definition file, the MDV of glutamate (MDV sim

Glu ) was determined using 
Eq. (1) using v and xinp from the original literature (100% non-labeled 
Asp and [non-labeled AcCoA: [1–13C]Ac-CoA: [U–13C]Ac-CoA] =

[50:25:25]). The obtained MDV sim
Glu was identical to the theoretical 

values shown in the original literature (Supplementary Table 2), indi-
cating that the EMU algorithm was implemented exactly and performed 
as intended in mfapy. 

3.2. Test of mfapy: 13C-MFA of metabolically engineered E. coli 

In our previous study, 13C-MFA was conducted to estimate the 
metabolic flux distribution of the central carbon metabolism of a 
metabolically engineered E. coli strain to produce isopropanol using the 
authentic 13C-MFA software OpenMebius (Okahashi et al., 2017). The 
metabolically engineered strain (MSI002 strain) was cultured in an M9 
medium containing 13C-labeled glucose (glucose : [1–13C]glucose : 
[U–13C]glucose = 2:70:28). Cells were collected in an exponential 
growth phase (OD600 ~1) to measure the MDV of proteinogenic amino 
acids by GC-MS. Furthermore, the specific rates for glucose consump-
tion, and acetate, acetone, and isopropanol production were determined 
from the culture profile data. The metabolic flux distribution of central 
carbon metabolism was successfully estimated from the MDV of 23 
fragments of proteinogenic amino acids and specific rate data using the 
metabolic model of E. coli, including 85 reactions. G-value parameters 
were included in each target fragment by applying a patch to the source 
code of OpenMebius to rectify the effects of inoculated unlabeled pro-
teinogenic amino acids on the observed MDV (Antoniewicz et al., 2007a; 
Okahashi et al., 2017). 

Here, the procedure for data processing in the previous 13C-MFA 
study was transported to a Python code using mfapy functions 
(“Example_2_1_Ecoli.py”). A metabolic model definition file (“Exam-
ple_2_Ecoli_model.txt”) and status file (“Example_2_Ecoli_status.csv”) 
were prepared from the original data from the literature. To manage the 
G-value parameters, a specific reaction type, “pseudo,” can be used in 
mfapy (see Supplementary Fig. 3 for details). The metabolic flux vector v 
was optimized to minimize the difference between the observed and 
simulated MDVs (Eq. [3]). The metabolic flux vector v of the best-fitted 
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optimization determined via mfapy was identical to that determined 
using OpenMebius in a previous study (Supplementary Fig. 4, Supple-
mentary Table 3). This task required approximately 0.4 h when per-
formed using AMD Ryzen 9 3900X (12 core, 3.8G Hz) processor. 

3.3. Function of mfapy: availability of multiple solvers 

mfapy employs Scipy and nlopt external packages to support 13 
global and local non-linear optimization solvers. Various solvers with 
distinct algorithms have been developed owing to the compatibility 
between the algorithms and non-linear optimization problems. To 
investigate the compatibility with 13C-MFA, the performance of 13 
solvers was compared by solving the E. coli example (Exam-
ple_2_2_Ecoli_solver_comparison.py). 

For example, following a generation of a population of 100 random 
initial metabolic flux vectors, each metabolic flux vector was optimized 
for 60 s using the SLSQP algorithm. The median RSS level among the 100 
metabolic flux vectors was 20,896 (Fig. 2a). The procedure was repeated 
for the 13 solvers using an identical population of the initial metabolic 
flux vectors. Fig. 2a shows that, among the eight local optimization 
solvers, the best result was obtained for “LN_SBPLX (Subplex),” whose 
median RSS value was 1660. The second-best solver was “LN_BOBYQA” 
(bound optimization by quadratic approximation; median RSS value of 
4400). For the cases of global solvers, the best result was obtained for 
“GN_CRS2_LM (controlled random search with local mutation)” with a 
median RSS value of 12,953. 

A similar comparison was performed using a dataset obtained from a 
previous 13C-MFA study of breast cancer (MCF-7) cells (Araki et al., 
2018) (Example_3_MCF7.py). MCF-7 breast cancer cells were cultured in 
media containing non-labeled glucose and [U–13C]glutamine, as well as 
[1–13C]glucose and non-labeled glutamine, in parallel. Intracellular 
metabolites were extracted at 24 h and analyzed via mass spectrometry 
to obtain the MDV of 16 fragments of 7 metabolites. The specific rates 
for glucose, glutamine consumption, and lactate production were 
determined from the culture profile data. The MDV, specific rate data, 
and the metabolic model for MCF-7 including 85 reactions obtained in 
the previous study were used for the comparison of 13 optimization 
solvers in this study. 

The result showed that “GN_CRS2_LM” yielded the best median RSS 
value of 44 among five global solvers, although performance of other 
global optimization solvers depended heavily on the dataset (Fig. 2b). 
Furthermore, the best and second-best local solvers were “LN_NEL-
DERMEAD (the Nelder–Mead simplex algorithm)” and “SLSQP,” with 

median RSS values of 103 and 150, respectively. For local optimization, 
“LN_SBPLX (Subplex),” “LN_BOBYQA,” “LN_NELDERMEAD,” and 
“SLSQP” were typically better than the other solvers in the two exam-
ples. We empirically selected “GN_CRS2_LM” and “SLSQP” as the first 
option in a new 13C-MFA study, and tested other solvers because of the 
solver dependency on datasets. 

3.4. Function of mfapy: parallel execution of optimization tasks for 
finding the global optimum 

Non-linear optimization solvers often fail to reach the global opti-
mum because they are trapped in a local optimum or their optimization 
progress is slow. To avoid local optima, mfapy can execute optimization 
trials from many random initial metabolic flux vectors in parallel pro-
cessors using a task-parallel execution environment of the joblib mod-
ule. In this study, global and local optima were investigated using the 
E. coli example above. The procedure for model fitting was changed by 
modifying the Python code (Example_2_3_Ecoli_local_optimum.py). An 
optimization trial comprised the global optimization by GN_CRS2_LM 
with 10,000 optimization steps, followed by a gradient-based local 
optimization (SLSQP). Optimization trials from 1000 random initial 
metabolic flux vectors were executed in parallel, while the optimization 
progression was monitored. 

A comparison between the RSS and metabolic flux level of pyruvate 
dehydrogenase (PDH) showed that optimizations remained incomplete 
after the 10,000 steps of SLSQP (Fig. 3a). The RSS of 106 and 359 trials 
were below the threshold after 200,000 and 1,000,000 SLSQP steps, 
respectively (Fig. 3b and c). The metabolic flux level of PDH converged 
to a single value as optimization progressed (Fig. 3c). 

Furthermore, a comparison between the RSS and metabolic flux level 
of the reaction of glucose 6-phosphate dehydrogenase (G6PDH) revealed 
a global and local optimum below the RSS threshold. Although 339 trials 
reached the global optimum, 20 trials were trapped in the local mini-
mum after 1,000,000 steps (Fig. 3d–f). 

A metabolically engineered strain (MSI002 strain) was constructed 
in a previous study by removing the phosphoglucose isomerase (PGI) 
reaction and activation of the Entner–Doudoroff (ED) pathway (Oka-
hashi et al., 2017). However, 13C-MFA was conducted using a metabolic 
network, including a reversible PGI reaction. Moreover, the reactions of 
fructose 1,6-bisphosphatase (FBPase; FBP→F6P) and PEP synthetase 
(Pps; pyruvate→PEP) were considered based on experimental validation 
(Okahashi et al., 2017). The metabolic flux vector of the global optimum 
result showed that the metabolic flux level of the PGI reaction was 

Fig. 2. Performance comparison of 13 non-linear optimization solvers. Following the preparation of 100 initial metabolic flux vectors, each metabolic flux vector was 
optimized for 60 s using a non-linear optimization solver. Median RSSs of 100 metabolic flux vectors are shown in the figure. (a) Comparison using a13C-MFA dataset 
of E. coli (Okahashi et al., 2017). (b) Comparison using a13C-MFA dataset of cancer cells (Araki et al., 2018). 
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successfully determined to be zero (Fig. 3g, Supplementary Table 3). 
Glucose was catabolized via the ED pathway to produce glyceraldehyde 
3-phosphate (GAP) and pyruvate (PYR). Subsequently, GAP was con-
verted to PYR by the lower Embden–Meyerhof–Parnas (EMP) pathway 
(Fig. 3g). 

In the local optimum, the GAP produced by the ED pathway was 
converted to glucose 6-phosphate (G6P) via the gluconeogenesis 
pathway and entered the ED pathway again, as shown in Fig. 3h. A 
comparison between the observed MDV and the simulated MDVs of the 
global and local optima suggested that the RSS of glycine-derived 
fragments in the local optimum was smaller than that of the global op-
timum (Supplementary Table 4). In contrast, the RSS of the m+3 signals 
of phenylalanine-related fragments significantly increased in the local 
optimum. This implies that, in the global optimum result, the [U–13C] 
GAP and non-labeled GAP produced via the ED pathway were primarily 
used for glycine and phenylalanine biosynthesis because of the high 
metabolic flux levels of the lower EMP pathway (Fig. 3g). In contrast, for 
the local optimum results (Fig. 3h), [U–13C]Pyr, [1–13C]Pyr and non- 
labeled Pyr produced via the ED pathway were used for the synthesis 
of glycine and phenylalanine. An optimization descent may be trapped 
in the local minimum when a metabolic flux vector v possesses the latter 
distribution during the optimization process. The results confirmed that 
the local optimum was caused by the characteristics of the metabolic 
network and the small experimental error in the observed MDV of 
glycine. Furthermore, the example showed that many optimization trials 
are required to obtain the global optimum. 

3.5. Function of mfapy: generation of artificial observed MDV for 
simulating 13C-MFA experiments 

In the 13C-MFA, 95% confidence intervals were determined for each 
metabolic reaction to evaluate the reliability of the flux estimation. To 
minimize the 95% confidence intervals, a suitable 13C-labeled carbon 
source should be used for labeling experiments (Crown and Antonie-
wicz, 2012). A computer simulation of a13C-MFA experiment is useful in 

the determination of suitable carbon sources (Maeda et al., 2016). mfapy 
includes required functions, such as the generation of an artificial 
observed MDV (see Materials and Methods). 

Here, a computer simulation was performed to confirm the previous 
finding that a mixture of [U–13C]glucose and non-labeled glucose was 
better than 100% [1–13C]glucose as the carbon source to determine the 
flux in an anaplerotic reaction (Crown et al., 2015; Millard et al., 2014; 
Shupletsov et al., 2014) (“Example_4_Simulation.py”). For this purpose, 
an expanded toy model of the TCA cycle and the metabolic flux vector v 
shown in Fig. 4a were used (“Example_4_Simulation_model.txt”). 
Furthermore, it was assumed that the isotope labeling patterns of 
α-ketoglutarate (AKG), oxaloacetate (OAC), and phosphoenolpyruve 
(PEP) were observed via mass spectrometry. 

For the case of 13C-MFA using 100% [1–13C]glucose as the carbon 
source (denoted as 100% [1–13C]glucose), the simulated MDV of AKG, 
OAC, and PEP was calculated using Eq. (1). From the simulated MDV, an 
artificial observed MDV was generated by the addition of Gaussian noise 
(σ = 0.01; see Materials and Methods for the detailed procedure). Sub-
sequently, a 13C-MFA was simulated by identifying an optimum meta-
bolic flux vector using the artificial observed MDV data and determining 
the 95% confidence intervals of three anaplerotic reactions (v4, v5, and 
v6) and one non-anaplerotic reaction (v7). The procedure was repeated 
100 times to yield a population of 95% confidence intervals, because the 
results of the 13C-MFA simulation depend on Gaussian noise used to 
create the artificial observed MDV. The median 95% confidence interval 
was used as a representative value. 

Fig. 4b shows that the width of the 95% confidence interval of v4 
(PEP carboxylase reaction) was 68 (range, 48–116). The 95% confidence 
interval was five times larger than that of v7 (pyruvate dehydrogenase 
reaction), with a 95% confidence interval of 15 (range, 98–113). Similar 
wide confidence intervals were observed for other anaplerotic reactions 
(v5 and v6). Moreover, an identical procedure was performed using 
another carbon source containing [U–13C]glucose and non-labeled 
glucose at a 50:50 ratio (denoted as 50% [U–13C]glucose). The width 
of the 95% confidence interval of reaction v4 was 36 (range, 50–86). The 

Fig. 3. Investigation of global and local optima in 13C-MFA of metabolically engineered E. coli. Metabolic models and measurement data were obtained from a 
previous study (Okahashi et al., 2017). Model fitting was performed by the gradient-based local optimization (SLSQP). A total of 1000 optimization trials were 
executed in parallel. (a–f) Progression of optimization of 1000 trials. Metabolic flux levels of PDH (a–c) and G6PDH (d–f) reactions at the 10,000th (a and d), 200, 
000th (b and e), and 1,000,000th (c and f) steps are shown in figure. (g and h) Metabolic flux distribution of global (g) and local (h) optimum results. Blue numbers 
represent metabolic flux levels. Blue lines indicate significant carbon flow toward glycine and phenylalanine. White and black circles indicate 13C-labeling patterns of 
carbon source (glucose, Glc) and GAP and PYR produced by the ED pathway. All metabolic flux levels are normalized to that of the glucose uptake rate. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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metabolic network (Fig. 4a) shows that reactions v4 and v5 form a 
reversible interconversion that mixes the 13C-labeling patterns of PEP 
and OAC. This means that an estimation of the interconversion level will 
be difficult when the overall percentage of 13C in PEP and OAC is low. 
Because the overall percentage of 13C in 100% [1–13C]glucose (17%) is 
lower than that of 50% [U–13C]glucose (50%), these results suggest that 
100% [1–13C]glucose is an undesirable carbon source compared to 50% 
[U–13C]glucose for the analysis of the anaplerotic reactions. 

To reduce the range of the confidence interval, a mixture of [1–13C] 
glucose:[U–13C]glucose at 50:50 is likely a better carbon source because 
of interactions between [1–13C]glucose and [U–13C]glucose (denoted as 
Mixture). Alternatively, it has been reported that the parallel execution 
of multiple labeling experiments, such as two labeling experiments using 
100% [1–13C]glucose and 50% [U–13C]glucose, can improve the flux 
estimation performance (Parallel) (Ahn and Antoniewicz, 2013; Leighty 
and Antoniewicz, 2013; Maeda et al., 2016). The computer simulation of 
the Mixture and Parallel cases showed that the 95% confidence intervals 
determined by the Mixture were similar to that of 100% [1–13C]glucose, 
indicating that no specific interaction occurred in the mixing of the 
carbon source to decrease the intervals. In contrast, the results sup-
ported that the parallel labeling experiment was useful for improving 
the flux estimation because the 95% confidence intervals of all reactions 
were the narrowest among the four carbon sources. 

Next, based on the experimental design, we determined the more 
important metabolite or mass isotopomer for estimating metabolic flux 
levels. As mentioned above, it was assumed that the isotope labeling 
patterns of AKG, OAC, and PEP were observed via mass spectrometry in 
the computer simulation of 13C-MFA. One approach to identify better 
target metabolites for measurement is to compare the simulated 95% 
confidence intervals using distinct sets of target metabolites. As previ-
ously stated, the 95% confidence interval of v4 was determined to be 36 
(from 50 to 86) for the computer simulation of 13C-MFA using 50% 
[U–13C]glucose as the carbon source (Fig. 4b and c). Additional com-
puter simulations showed that the 95% confidence intervals expanded to 
62 (AKG and OAC), 129 (AKG and PEP), and 43 (OAC and PEP) when the 
isotope labeling patterns of the two metabolites were used for the 13C- 
MFA (Fig. 4c). The results showed that the MDV data of OAC were more 
important than those of other metabolites because the 95% confidence 
intervals expanded significantly when the MDV data of OAC were 

removed from the MDV dataset. These examples show that mfapy can 
describe various data analysis workflows for the computer simulation of 
13C-based metabolic flux analysis. 

3.6. Function of mfapy: computational basis for developing alternative 
methodologies 

The flexibility and extensibility provided by mfapy can support the 
development of new data analysis techniques for stable isotope labeling 
experiments, such as a Bayesian approach (Heinonen et al., 2019; 
Kadirkamanathan et al., 2006). In this study, a Markov chain Monte 
Carlo (MCMC) algorithm was applied to select useful mass isotopomers 
for 13C-MFA. From a Bayesian perspective, we did not possess any in-
formation regarding the metabolic flux vector v or the metabolic flux 
levels of v before measuring the MDV of the target metabolites. After 
measuring the MDV of the target metabolites, we estimated the posterior 
distribution of v under the condition that the MDV data were observed. 
The probability distribution of flux vector v, P (RSS(v)), should follow a 
χ2 distribution (degree of freedom is the number of measurements) 
because the observed MDV data include an experimental error following 
the normal distribution. The Metropolis–Hastings method is an MCMC 
algorithm that generates a posterior distribution of v (see Materials and 
Methods for the detailed procedure). 

An interesting application of this approach is the generation of a 
posterior distribution from a small number of MDV data points. A pos-
terior distribution can be generated even if the number of data points is 
less than the degree of freedom of the metabolic model. Using the 
expanded toy model of the TCA cycle, we prepared a simulated MDV 
using the procedure described above without the addition of Gaussian 
noise. The relative intensity of the +3 isotopomer of the OAC was ob-
tained from the simulated MDV. Using only one data point, a posterior 
distribution of v4 was successfully obtained using the Metropolis–Hast-
ings method, as shown in Fig. 5a. The metabolic flux levels of the 2.5 and 
97.5 percentile points of the posterior distribution were 55 and 161, 
respectively. In contrast, the same analysis using the +0 isotopomer of 
OAC yielded an extremely broad distribution (Fig. 5b). These results 
suggest that the observation of the +3 isotopomer of OAC was more 
critical than that of the +0 isotopomer of OAC for estimating the 
metabolic flux level of v4. Fig. 5c shows the metabolic flux levels of 2.5 

Fig. 4. Computer simulation of 13C-MFA for the selection of an effective carbon source. (a) Expanded toy model of central carbon metabolism of E.coli. (b) Com-
parison of 95% confidence intervals of three anaplerotic reactions (v4, v5, and v6) and one non-anaplerotic reaction (v7) determined via simulation of 13C-MFA using 
distinct carbon sources. Red dotted lines represent metabolic flux levels of answers. [1–13C]glucose: 100% [1–13C]glucose, [U–13C]glucose: [U–13C]glucose and non- 
labeled glucose at 50:50 ratio, Mixture: [U–13C]glucose and [1–13C]glucose at 50:50 ratio, Parallel: parallel labeling experiment using 100% [1–13C]glucose and the 
mixture of [U–13C]glucose and non-labeled glucose at 50:50 ratio. (c) Comparison of 95% confidence intervals of v4 determined by simulation of 13C-MFA using 
distinct measured metabolites. 
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and 97.5 percentile points of the posterior distributions determined for 
every isotopomer of OAC, AKG, and PEP. The comparison showed that 
the +1, +2, and +3 isotopomers of OAC were the most important 
measurement targets for estimating the metabolic flux level of v4, and 
that the result was identical to that of the 95% confidence interval-based 
method (Fig. 4c). 

To implement the Metropolis–Hastings method, we first developed 
an mfapy-based Python code describing the procedure (“Exam-
ple_5_1_MonteCalro.py”). Subsequently, the method to execute the 
entire Metropolis–Hastings algorism was newly added to a Metabol-
icModel class (“Example_5_2_MonteCalro.py”). A generation of one 
posterior distribution of v required approximately 0.5 h, whereas the 
determination of the 95% confidence intervals of 17 flux levels in the 
previous section required 4.3 h (using AMD Ryzen 9 3900 × 12 core 
processor). The demonstration suggested that extendability as an open- 
source Python package can provide a computational basis for devel-
oping alternative methodologies for 13C-labeling experiments. 

3.7. Function of mfapy: isotopically non-stationary (INST)-MFA 

mfapy supports INST-MFAs (Jazmin et al., 2014). The INST-MFA 
additionally needs pool size data of intracellular metabolites and 
time-course MDV data. The example python code, “Exam-
ple_6_INSTMFA_toymodel.py,” describes a procedure for a computer 
simulation of INST-MFA using the toy model. The pool size levels of each 
metabolite can be considered as “free,” “fixed,” and “fitting” similar to 
the metabolite flux levels. By setting the time point information, the 
generate_mdv method can generate the MdvTimeCourseData class to 
deal with a time-course MDV dataset (detailed information is available 
from the mfapy documentation web page, https://fumiomatsuda.github 
.io/mfapy-document/). 

In our previous study, INST-MFA was applied to Synechocystis sp. 
PCC 6803 GT strain under photoautotrophic conditions using NaH13CO3 
as the carbon source (Nakajima et al., 2017). Using the time course MDV 
data for 15 fragments of 13 free metabolites, an optimal metabolic flux 
distribution and metabolite pool size, which passed the χ2 test with α =
0.05, were estimated using non-linear fitting of predicted and measured 
time courses of MDV in the previous study (Nakajima et al., 2017). 
However, the fitting took an enormous amount of time (approximately 1 
week) because numerical integration is needed to calculate the 

simulated time-course MDV data during the non-linear fitting. 

4. Discussion 

The Python package mfapy was developed to provide a toolbox for 
13C-MFA. mfapy compels users to write Python codes and has no user- 
friendly graphical interface. However, various functions, including the 
availability of multiple solvers (Fig. 2), parallel execution of the opti-
mization task (Fig. 3), generation of artificially observed MDV for 
simulating 13C-MFA experiments (Fig. 4), the basis for developing 
alternative methodologies (Fig. 5), and INST-MFA can facilitate 13C- 
MFA studies. 

The availability of multiple solvers and the parallel execution of 
optimization tasks of mfapy enabled trial and error to obtain the global 
optimum, which have contributed to the success of previous 13C-MFA 
studies of E. coli (Wada et al., 2017), yeast (Hayakawa et al., 2015), and 
cultured breast cancer cells (Araki et al., 2018; Okahashi et al., 2015, 
2018). Moreover, a better design for various 13C-MFA experiments was 
obtained by computer simulation of the 13C-labeling experiment. For 
instance, a computer simulation using mfapy revealed that 100% 
[2–13C]ethanol was the best carbon source among [1–13C]ethanol and 
[U–13C]ethanol for the 13C-labeling experiment of ethanol-assimilating 
Saccharomyces cerevisiae (budding yeast) (Hayakawa et al., 2018). 

Furthermore, the flexibility of mfapy provided a basis for new data 
analysis techniques, including a Monte Carlo-based data analysis 
method recently developed for the quantitative assessment of metabolic 
reprogramming (Matsuda et al., 2020) (Example_5_2_MonteCalro.py). 
Flux analysis or isotopomer analysis instead of 13C-MFA has been widely 
used to investigate metabolic redirection and reprogramming, such as in 
cancer and immune cells (Brekke et al., 2012; Dong et al., 2017; Fan 
et al., 2014; Faubert et al., 2017; Lewis et al., 2014; Liu et al., 2016; 
Lussey-Lepoutre et al., 2015). In many cases, the metabolic flux ratio 
between the two pathways has been estimated from the 13C-labeling 
patterns or MDV of a few metabolites. For such cases, a Monte 
Carlo-based approach would be useful because it can generate a prob-
ability distribution of the metabolic flux vector v using a small number of 
data points. The deliverables were newly implemented in the mfapy 
package in this study. 

mfapy has been continuously developed to enrich functions, such as 
loading various model definition formats and data visualization (Beyss 

Fig. 5. A Bayesian approach to determine important metabolites or mass isotopomers for estimating metabolic flux levels. Computer simulations were performed 
using the expanded toy model for the case of 50% [U–13C]glucose as the carbon source. (a and b) Posterior distributions of metabolic flux level of v4 determined using 
Metropolis–Hastings method when +3 isotopomer (a) and +0 isotopomer (b) of OAC were used as the measured data. (c) Comparison of 95% intervals of posterior 
distributions when each isotopomer, i.e., OAC, AKG, and PEP, was used as the measured data. In all simulations, [U–13C]glucose and non-labeled glucose at a 50:50 
ratio were used as carbon sources. 
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et al., 2019). New versions will be available to the public from the 
Github repository. 
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Appendix. List of abbreviations 

MDV mass isotope distribution vector 
13C-MFA 13C-based metabolic flux analysis 
INST-13C-MFA isotopically nonstationary 13C-metabolic flux analysis 
AKG α-ketoglutarate 
AcCoA acetyl-CoA 
Cit citrate 
F6P fructose-6-phosphate 
FBP fructose-1,6-bisphosphate 
FUM fumarate 
G6P glucose-6-phosphate 
GAP glyceraldehyde-3-phosphate 
Gly glycine; 
OAC oxaloacetate 
Phe phenylalanine; 
PEP phosphoenolpyruvate 
3 PG 3-phosphoglycerate 
Pyr pyruvate; SUC: succinate 
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