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Pulse noise-hidden image 
reconstruction and visualization  
via stochastic resonance
Qibing Sun, Hongjun Liu, Nan Huang, Zhaolu Wang & Jing Han

We investigate the nanosecond pulse noise-hidden image reconstruction and visualization using 
stochastic resonance implemented by modulation instability. In particular, this dynamical stochastic 
resonance holds with coupling between the pulse incoherent noise and pulse coherent signal, and 
provides a substantial enhancement of the signal-to-noise ratio and cross-correlation. This means 
that the pulse noise-hidden image can be effectively reconstructed with high visibility and fidelity via 
stochastic resonance at appropriate system parameters. Such a simple and convenient method has 
potential applications in image processing under noisy environment.

Weak optical signal processing and detection is a novel and rapidly developing research direction that aims to 
effectively extract and reconstruct the wanted signals from the strong noise background. It has very important 
applications in laser radar, laser sensing, biomedicine, laser imaging and many other low-level signal detection 
fields. However, the measured signal may be suppressed under the noise elimination process that appears in 
the traditional detection methods. Noise is usually considered detrimental to the signal restoration process and 
will degrade the performance of dynamical systems, which leads to great difficulty in low-level signal detection, 
especially for the noise-hidden signals. This promotes the development of an alternative idea, that is, whether 
the harmful noise can become beneficial for the low-level signal processing and detection. In some special non-
linear systems, the presence of noise can improve the signal-to-noise ratio (SNR) and visibility of the weak sig-
nals, exhibiting the phenomenon of stochastic resonance1. Compared with the conventional linear systems, this 
unique characteristic offers a great potential for noise-hidden signal reconstruction with lower SNR and appears 
in a variety of physical systems2–5. The classic system for stochastic resonance is induced by a particle oscillating 
periodically in a double-well potential and usually restricted to a threshold2–4, while there is no need for feed-
back or threshold in the new type of stochastic resonance based on the modulation instability5, making it more 
simple and flexible in the practical applications. This means that it is appropriate for nonlinear filtering of the 
weak signals and usually focuses on two-dimensional images rather than one-dimensional signals. D. V. Dylov 
et al. have exploited this stochastic resonance using continuous wave in a self-focusing medium5, which suggests 
a general method for reconstructing images through seeded instability. At present, with the rapid development 
of the laser radar and other imaging fields, the pulse image has extensive and important applications in many 
optical signal processing fields6–8. After transmission in the complex environment, the measured optical signal 
is usually low-level and submerged by the high noisy background. Once this signal is processed and detected 
with the introduction of such a nonlinear element into the optical path, the conventional techniques can also be 
used to improve its quality further. Jing Han et al. have demonstrated the reconstruction of pulse noisy images 
via stochastic resonance in theory9, providing reference for the experimental investigation. However, the main 
criticism of a novel technology mainly concerns the experimental validation. To further prove the feasibility and 
effectiveness of pulse noise-hidden image reconstruction and visualization via stochastic resonance, it is essential 
to experimentally clarify the influences of the nonlinearity tuned by the applied electric field, signal-to-noise 
intensity ratio and repetition rate of the pulse image on the noise-hidden signal reconstruction via stochastic 
resonance. On this basis, it is also need to experimentally specify how to obtain the optimal output by tuning the 
system parameters. This will promote the progress of stochastic resonance and its applications in many optical 
imaging fields.

In this paper, we report the reconstruction of nanosecond pulse noise-hidden images via stochastic resonance, 
displaying high SNR enhancement and cross-correlation gain. The nanosecond noise-hidden images grow at 
the expense of the pulse noise and become visible by optimizing the system parameters, leading to the detection 

State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of CAS, Xi’an, 
710119, China. Correspondence and requests for materials should be addressed to H.L. (email: liuhongjun@opt.ac.cn)

received: 08 July 2016

accepted: 18 October 2016

Published: 08 November 2016

OPEN

mailto:liuhongjun@opt.ac.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:36678 | DOI: 10.1038/srep36678

sensitivity improvement of the weak optical signals. As with the continuous signal and noise, a significant feature 
is that the visibility of the pulse noisy images varies within the pulse duration. These conclusions will further 
improve and perfect the stochastic resonance system, which accelerates its practical applications for weak optical 
image processing and detection under high noisy environment.

Results
Experimental setup.  As with the previously reported designs5, a pulse incoherent noise and a pulse 
coherent signal are employed to explain the nature of pulse noise-hidden image processing based on stochas-
tic resonance. In addition, the nonlinear system is the last key elementary component determining the output 
performance of this proposed method. Figure 1 presents the detailed schematic of this stochastic resonance pro-
duced by modulation instability. The pulse signal is purely coherent and an image of a resolution chart formed 
by the 4-f optical system. The pulse noise is spatially incoherent with random phase fluctuations and generated 
by a “lens-diffuser-lens” system. The signal and noise pulses are divided from a same nanosecond pulse laser 
with the wavelength of 532 nm and pulse width of about 17 ns, in which a time delay line is used to guarantee the 
synchronization in time domain. The nonlinear medium is a 5.5 ×​ 5 ×​ 10 mm3 SBN:75 photorefractive crystal 
doped with CeO2, whose strength of the photorefractive nonlinearity can be controlled by the applied electric 
field parallel to its optical axis. The pulse signal and pulse noise are spatially overlapped and collinearly injected 
into the SBN:75 crystal. Nonlinear interaction between the signal and noise will take place during the nonlinear 
stochastic resonance process and light exiting the photorefractive crystal is then imaged by a 4-f optical system 
onto a CCD camera.

Numerical results and analysis.  To better understand and exploit the stochastic resonance with a pulse 
signal and a pulse noise, the instability-linear perturbation theory is utilized to numerically analyze the dynamic 
coupling process, in which the perturbation treats each pixel individually for the low-level pulse images9–12. To 
make the theory analytically tractable, the coherent mode-mixing within the signal is ignored and the noise is 
treated as a drive term acting on the signal. That is, we focus on the response of the pulse noise to the driven pulse 
signal that provides valuable insight into mechanism for the coherent-incoherent coupling9–12. This allows a more 
proper treatment for the incoherent dynamics. Considering the low-level intensity of the injected light and high 
transmittance of the nonlinear medium, the linear loss and high-order nonlinear contribution are neglected and 
thus the growth rate g can be expressed as2,9
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where A and B are effective mode-dependent normalization constants giving the height and location of the 
visibility peak, γ is the nonlinear coefficient of spatial coupling electric field, I is the incident light intensity, 
β =​ λ/2πn0 is the diffraction coefficient for light of wavelength λ in a medium with index of refraction n0, lc is the 
correlation length, α is the wavenumber, δ indicates the Gaussian distribution in the time domain of nanosecond 
pulse, respectively.

To evaluate and manifest the low-level pulse signal processing ability under the high noisy background via 
stochastic resonance, the initial signal-to-noise intensity ratio is fixed at 1:45 with the average signal power of 
100 nW. That is, the input image is highly noise-hidden and invisible. The numerical simulations of this nonlinear 
stochastic resonance system are performed by solving Eq. (1). The parameters are defined as A =​ 1.6, B =​ 530, 
n0 =​ 2.3 and lc =​ 100 μ​m 5. At a fixed correlation length of the pulse noise, the optimal output image is obtained by 
adjusting the photorefractive nonlinearity, as presented in Fig. 2. It is clear that the visibility is greatly improved 
due to the instability of energy coupling between the coherent signal and random noise as the nonlinear change of 
the refractive index Δ​n keeps acting on the interface. This leads to the reconstruction of the distribution of total 
energy between beams with different coherence through the movement of particles. As a consequence, the SNR 
is significantly enhanced resulting in the visualization of the noise-hidden image, where nonlinearity allows the 
signal reconstruction and visualization through the modulation instability.

To estimate the performance of this pulse stochastic resonance system, the cross-correlation gain is used as a 
quantitative measure of the quality improvement between the input image and the output image, which is defined 
as reference13,14. Figure 3(a) illustrates the relationship between the cross-correlation gain and the applied electric 
field E. At a fixed E, the maximum cross-correlation gain within the pulse duration is evaluated. It is obvious that 
the cross-correlation gain varies with the applied electric field, where exists an optimal value for acquiring the 

Figure 1.  Scheme for pulse noise-hidden image reconstruction and visualization via stochastic resonance. 
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maximum cross-correlation gain. As seen from Eq. (1), the output image is mainly determined by the nonlinear-
ity, intensity and correlation length of the noise. The change of Δ​n and photorefractive nonlinearity varies with 
the applied electric field, which determines the energy transferring efficiency from high-level noise to low-level 
signal. In addition, compared with the continuous stochastic resonance, the cross-correlation gain is changing 
within the pulse duration in the pulse stochastic resonance as shown in Fig. 3(b). This is mainly induced by the 
various intensities at different time points of the input pulse. The spatial coupling electric field in the photore-
fractive crystal is established with a form of oscillation15. The nonlinear coefficient γ is dynamical because of 
the fluctuant spatial coupling electric field, which leads to a different growth rate g and output image. Namely, 
the quality and visibility of output images mainly depends on the applied electric field, intensity and correlation 
length of the noise.

Experimental results and analysis.  The experiment for the noise-hidden pulse image reconstruction and 
visualization was carried out using the scheme displayed in Fig. 1. To improve the practicability and compatibil-
ity of stochastic resonance, the parameter-tuning method is proposed and employed for acquiring the optimal 
output visibility. The spatial correlation length of the pulse noise is fixed under an initial signal-to-noise intensity 
ratio, which is depended on the incident spot size on the diffuser and its rotation speed16. As a consequence, the 
output performance of this dynamical stochastic resonance is optimized by carefully adjusting the applied voltage 
across the crystal that determines the nonlinear change of the refractive index Δ​n of the photorefractive crystal2,9. 
At an initial signal-to-noise intensity ratio of about 1:45, the optimal visibility of the output images at different 
applied voltages is recorded by the CCD and shown in Fig. 4. It can be seen that the visibility varies with the 
applied voltage and the pulse noise-hidden image becomes more and more clear as the applied voltage increases 
to about 300 V. That is, a positive exchange is established during the stochastic resonance process based on the 
modulation instability, leading to the reconstruction of noise-hidden images. This is due to the variation of the 
nonlinear change of the refractive index Δ​n and nonlinear coefficient of the photorefractive crystal that can be 
adjusted by the applied voltage. Specially, the very weak signal first seeds a potential that concentrates the noise, in 
turn, nonlinear coupling amplifies the signal and reinforces the potential. Namely, the initial signal is essentially 
a seed that triggers an instability in the noise. Through this seeded instability, the pulse noise-hidden signal will 
be reconstructed and visualized with high fidelity, where the intensity perturbations grow at the expense of a uni-
form background. However, the output image becomes blurred again as the applied voltage increases further, as 

Figure 2.  Output performance of stochastic resonance. (a) original image, (b) noise-hidden image and (c) 
output image.

Figure 3.  Cross-correlation gain varying (a) with the applied electric field and (b) within the pulse duration.
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seen in Fig. 4. At a higher Δ​n, the turbulent dynamics will continue mixing the pulse signal and noise, whose bor-
der degrades in coherent and incoherent snake-like instability17,18. This indicates that too much nonlinearity will 
degrade the resonance pattern and thus appropriate nonlinearity is necessary for the pulse noise-hidden image 
reconstruction and visualization. While variation of the visibility of the output image within the pulse duration is 
not observed due to the lager exposure time of the CCD. To evaluate the ability of pulse noise-hidden image pro-
cessing, the cross-correlation gain is also analyzed and found to be in close agreement with the theoretical results. 
As depicted in Fig. 5, the cross-correlation gain varies with the applied voltage and a maximum value of about 10 
is obtained at the applied voltage of 300 V. These results show that parameter-tuning is vital for the optimization 
of stochastic resonance, which provide important reference for adaptive stochastic resonance.

The generalized parameter-tuning stochastic resonance is introduced based on the tuning of applied volt-
age, which has incomparable flexibility and is highly effective in practical applications of image processing. The 
initial signal-to-noise intensity ratios are set as 1:50, 1:55 and 1:60. The applied voltages are carefully adjusted to 
acquire better visibility, as illustrated in Fig. 6. It is clearly seen that the output pulse images become visible with 
the cross-correlation higher than 8 under the voltages of 300 V, 350 V, and 400 V. That is, the modulations become 
more pronounced with higher visibility by optimizing the applied voltage when the initial signal-to-noise inten-
sity ratio is fixed. This typical characteristic is induced by the instability of energy coupling between weak signals 
and random noise related to the nonlinearity2,9. However, too much noise will dominate this system and destroy 
the conditions of stochastic resonance at a fixed applied electric field, which leads to the distortion of output 
images. In a word, all the above results strongly indicate that the pulse-noise hidden images can be effectively 
reconstructed and visualized via parameter-tuning stochastic resonance based on modulation instability.

Figure 4.  Pulse noise-hidden image reconstruction at different applied voltages. (a) Pure image, (b) noise-
hidden image, (c) 150 V, (d) 200 V, (e) 250 V, (f) 300 V, (g) 350 V and (h) 400 V.

Figure 5.  Cross-correlation gain at different applied voltages. 
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In many imaging fields, the repetition frequency of the pulse signals is different according to the practical 
application acquirements. At a fixed signal-to-noise intensity ratio of 1:45 and applied voltage of 300 V, the 
noise-hidden image processing via stochastic resonance at different repetition frequencies is presented in Fig. 7, 
in which the exposure time of CCD is set to guarantee about 10 pulses to build the output images. It is clearly 
seen that the noise-hidden images are effectively extracted with a high visibility, when the repetition frequencies 
are 400 Hz, 700 Hz and 1 kHz, respectively. Moreover, the cross-correlation gains are all greater than 8 at various 
repetition frequencies. That is, the pulse noise-hidden image reconstruction and visualization via stochastic reso-
nance can allow a large repetition frequency range, which expands the application fields of stochastic resonance.

Discussion
The stochastic resonance based on modulation instability is a very flexible and general approach for pulse noisy 
image processing. It holds with coherent-incoherent coupling for certain system parameter ranges. The nonlinear 
coupling is necessary to cause the energy transfer between different components, in which diffraction and non-
linearity determine the intensity of incident wave enhanced or diminished in propagation19,20. This promotes the 
development of parameter-tuning stochastic resonance, where tuning parameters suitably can make the energy 
transfer from the strong noise to the relatively weak signal. Under appropriate system parameters, the pulse 
noise-hidden images grow at the expense of noise and become visible with a peak cross-correlation gain, which 
can be used for signal reconstruction and contrast enhancement. These characteristics reflect the phenomena 
of stochastic resonance that is compatible with the existing imaging systems. This paves the way for a variety of 
applications of stochastic resonance and provides an effective means to improve the detection sensitivity in weak 
signal processing and detection fields.

In conclusion, we have presented an innovative and practical technology for pulse noise-hidden image recon-
struction and visualization based on stochastic resonance. It can effectively reconstruct nanosecond noise-hidden 
images with a cross-correlation gain of about 10 by carefully adjusting the system parameters, which extends the 
applications of stochastic resonance. The experimental results agree well with the predictions from numerical 
simulations. This provides an efficient method for processing and detecting pulse noise-hidden images in various 
imaging fields.
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