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    Introduction 
 Tumor cell invasion across tissue boundaries and metastasis are 

dependent on the capacity of cancer cells to breach the base-

ment membrane, remodel the ECM, and migrate through the 

3D matrix meshwork ( Sahai, 2005 ;  Yamaguchi et al., 2005b ). 

One major route of invasion requires tumor cells to proteolyti-

cally cleave ECM and basement membrane components via a 

mechanism that is initiated by the formation of integrin-based 

cell/matrix contacts and involves matrix-degrading proteases 

( Friedl and Wolf, 2003 ). Metalloproteinases (MMPs), particu-

larly membrane-type (MT) MMPs, including MT1-MMP, are 

essential for pericellular proteolysis and tumor cell invasion 

( Deryugina and Quigley, 2006 ;  Itoh and Seiki, 2006 ). 

 When analyzed on reconstituted ECM thin substrates, matrix 

degradation by invasive cells occurs at discrete sites corresponding 

to small (micrometer range) cellular protrusions at the ventral cell 

surface called invadopodia. Based on a substantial amount of work, 

invadopodia are currently viewed as dynamic extensions of the 

plasma membrane, where signaling components and cellular ma-

chineries involved in actin-driven membrane protrusion and exocy-

tosis are thought to cooperate for delivering and concentrating 

integrins, active MMPs (MT1-MMP and MMP2), and other com-

ponents at sites of contact with the ECM ( Chen and Wang, 1999 ; 

 Mueller et al., 1999 ;  Hashimoto et al., 2004 ;  McNiven et al., 2004 ; 

 Tague et al., 2004 ;  Yamaguchi et al., 2005a; Artym et al., 2006 ; 

 Hotary et al., 2006 ). Invadopodia are thus thought to mimic the 

contact sites that form between tumor cells and the basement mem-

brane during cell invasion ( Friedl and Wolf, 2003; Buccione et al., 

2004 ). Therefore, it is essential to understand how these structures 

can assemble into functional proteolytic invasive units. 

I
nvadopodia are actin-based membrane protrusions 

formed at contact sites between invasive tumor cells 

and the extracellular matrix with matrix proteolytic ac-

tivity. Actin regulatory proteins participate in invadopodia 

formation, whereas matrix degradation requires metallo-

proteinases (MMPs) targeted to invadopodia. In this study, 

we show that the vesicle-tethering exocyst complex is re-

quired for matrix proteolysis and invasion of breast carci-

noma cells. We demonstrate that the exocyst subunits 

Sec3 and Sec8 interact with the polarity protein IQGAP1 

and that this interaction is triggered by active Cdc42 and 

RhoA, which are essential for matrix degradation. Inter-

action between IQGAP1 and the exocyst is necessary for 

invadopodia activity because enhancement of matrix 

degradation induced by the expression of IQGAP1 is lost 

upon deletion of the exocyst-binding site. We further show 

that the exocyst and IQGAP1 are required for the accu-

mulation of cell surface membrane type 1 MMP at invado-

podia. Based on these results, we propose that invadopodia 

function in tumor cells relies on the coordination of cyto-

skeletal assembly and exocytosis downstream of Rho gua-

nosine triphosphatases.

 The interaction of IQGAP1 with the exocyst complex 
is required for tumor cell invasion downstream of 
Cdc42 and RhoA 
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two independent siRNAs for each of the exocyst subunits ( Fig. 1 a ) 

resulted in a 50 – 65% inhibition of matrix degradation as com-

pared with control MDA-MT1ch cells ( Fig. 1, b and c ). Similar 

results were observed upon depletion of the exocyst (Sec8) in 

parental MDA-MB-231 cells (see Fig. 5). These observations 

suggested that the exocyst complex contributes to invadopodial 

degradation of breast tumor cells. 

 To investigate whether the reduced pericellular proteolytic 

activity observed on depletion of some exocyst components 

correlated with a decreased capacity of MDA-MB-231 cells to 

invade across the ECM, we used a transwell chamber invasion 

assay using matrigel as the barrier to invasion. Loss of function 

of the exocyst complex by siRNA reduced invasion of MDA-

MB-231 cells to 40 – 60% of control cells, depending on the exo-

cyst subunit targeted for knockdown ( Fig. 1 d ). All together, 

these fi ndings demonstrate that the exocyst complex is a key el-

ement in the mechanism of invasion of breast carcinoma cells. 

 Sec3 and Sec8 associates with 
IQGAP1 in vitro 
 Using a yeast two-hybrid assay, we identifi ed the closely related 

IQGAP1 and IQGAP2 proteins as potential binding partners of 

Sec3, Sec8, Exo70, and Exo84 (Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200709076/DC1). IQGAP1, a Cdc42 

and Rac effector protein that regulates cell polarization during 

migration ( Noritake et al., 2005; Brown and Sacks, 2006 ), has 

been recently implicated in invasion and metastasis ( Clark et al., 

2000 ;  Nabeshima et al., 2002; Mataraza et al., 2003 ;  Jadeski et al., 

2008 ). As we did not detect the expression of IQGAP2 in MDA-

MB-231 cells (unpublished data), our further analyses focused 

on IQGAP1. 

 The two-hybrid interactions defi ned a conserved region of 

the C-terminal end of IQGAP1 and IQGAP2 (57% identity) as 

the putative binding site for the exocyst subunits (Fig. S1, a and b). 

Thus, we performed in vitro GST pull-down assays from lysates 

of HeLa cells transfected with HA-tagged Sec3, Sec8, Exo70, 

or Exo84 exocyst complex subunit. The C-terminal end of 

IQGAP1 (position 1,361 – 1,657, IQGAP1-CTer1;  Fig. 2 a ) and 

a subregion (position 1,361 – 1,563, Cter2) comprising a pre-

dicted coiled-coil domain fused to GST specifi cally recovered 

all four exocyst subunits ( Fig. 2 b ). In contrast, the coiled-coil 

domain (position 1,491 – 1,538, Cter4) was not suffi cient for 

binding on its own, nor was the far-most C-terminal fragment 

(1,563 – 1,657, CTer3). Interaction of the exocyst subunits with 

the coiled-coil – containing region of IQGAP1 was specifi c, as 

no such interaction could be detected between Sec8 and the pre-

dicted coiled-coil domain of the JSAP1/JIP3 scaffolding protein 

(Fig. S2 a, available at http://www.jcb.org/cgi/content/full/

jcb.200709076/DC1 ; Kelkar et al., 2000 ). 

 To further clarify the interaction of IQGAP1 with the exo-

cyst complex, pull-down assays were performed in cells depleted 

in the Sec3 and/or Sec8 subunits. Combined knockdown of Sec3 

and Sec8 with specifi c siRNAs, although affecting the expression 

level of HA-Exo70 to some extent (43% reduction as compared 

with mock-treated cells;  Fig. 2 c , top; compare lane 1 with lane 4), 

led to a strong reduction of HA-Exo70 binding to the IQGAP1 

CTer2 fragment ( Fig. 2 c , top; compare lane 6 with lane 12). 

 With the overall aim of identifying the machinery control-

ling invadopodia biogenesis and function, we found that the 

exocyst complex is a key component of invadopodial proteol-

ysis and invasion of human breast adenocarcinoma cells. 

The exocyst complex, which consists of eight subunits, namely, 

Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84, me-

diates the tethering of post-Golgi and endocytic recycling vesi-

cles for targeted insertion at sites of active plasma membrane 

growth ( Folsch et al., 2003 ;  Prigent et al., 2003; Hsu et al., 2004 ). 

Genetic and cell biology studies in budding yeast,  Drosophila , 

and mammals have shown that the exocyst complex is neces-

sary for cellular functions that require polarized exocytosis to 

dynamic regions of the plasma membrane, such as budding in 

yeast, cell – cell adhesion, neurite and fi lopodia extension, and 

cell migration ( TerBush et al., 1996; Grindstaff et al., 1998 ;  

Sugihara et al., 2002 ;  Rosse et al., 2006 ). The current view is 

that the exocyst complex selects vesicles eligible for docking 

by recognizing molecular codes such as GTPases of the Rab 

subfamily on the incoming vesicles and assembles in a vesicle-

tethering complex at specialized regions of the plasma membrane 

that are delineated by small GTPases belonging to the Rho family 

and to the Ral and ADP-ribosylation factor subgroups ( Munson 

and Novick, 2006 ). 

 In this paper, we identify new exocyst complex partners 

and/or regulators that play a role in tumor cell invasion. We show 

that the Sec8 and Sec3 subunits interact with the cell polarization 

landmark IQGAP1 ( Noritake et al., 2005; Brown and Sacks, 

2006 ) and that this interaction is controlled by the Rho GTPases 

Cdc42 and RhoA. We also provide an indication that this asso-

ciation is involved in matrix degradation in highly invasive 

MDA-MB-231 human breast carcinoma cells. Overall, our study 

identifi es novel components of the exocytic machinery acting 

downstream of Cdc42/RhoA GTPases that are essential for the 

formation and activity of invadopodia in breast tumor cells. 

 Results 
 The exocyst complex is required for 
breast tumor cell invasion 
 MDA-MB-231 breast tumor cells are known to degrade the ma-

trix at invadopodia through a mechanism dependent on MMP 

activity ( Sabeh et al., 2004 ). We fi rst investigated the contribu-

tion of the exocyst complex to invadopodial matrix proteolysis 

of MDA-MB-231 cells, as the exocyst controls the docking of 

transport vesicles to dynamic exocytic sites at the plasma mem-

brane, a defi nition that complies with invadopodial features. 

 To initiate these studies, the effect of knocking down 

MT1-MMP using a specifi c siRNA duplex was analyzed in MDA-

MB-231 cells stably transfected with a fl uorescent mCherry-

tagged MT1-MMP construct (MDA-MT1ch cells;  Fig. 1 a , top) 

or in the parental cell line. Reduction of MT1-MMP expression 

abolished matrix proteolysis of both MDA-MT1ch ( Fig. 1 b)  and 

MDA-MB-231 cells (Fig. S5, available at http://www.jcb.org/

cgi/content/full/jcb.200709076/DC1), confi rming that MT1-MMP 

is central to ECM degradation ( Ueda et al., 2003; Sabeh et al., 

2004 ;  Artym et al., 2006 ). Knocking down Sec6, Sec8, or Sec10 

exocyst complex subunits to 5 – 40% of their normal levels using 
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 Figure 1.    The knockdown of exocyst complex subunits inhibits matrix degradation and invasion of breast cancer cells.  (a) The expression levels of MT1-MMP 
(MT1), Sec6, Sec8, and Sec10 were analyzed by immunoblotting with specifi c antibodies in lysates of MDA-MT1ch cells (i.e., MDA-MB-231 cells stably trans-
fected with a construct encoding mCherry-tagged MT1-MMP) treated with the indicated siRNAs for 72 h. After immunoblotting, membranes were stained with 
Coomassie Brilliant blue (CBB) to control for equal loading. The open arrowhead indicates the position of mCherry-tagged MT1-MMP (MT1Ch). The closed 
arrowhead points to a processed, catalytically active (60 kD) form of endogenous MT1-MMP (endo MT1). Of note, depletion of the Sec8 exocyst complex 
subunit led to a reduction of the Sec6 level (arrow). Residual levels of knocked down proteins, as calculated based on densitometric analysis of Western blots, 
are indicated underneath the blots with respect to the level of mock-treated cells set to 100. The asterisk indicates a nonspecifi c band detected with anti-Sec6 
antibodies that was not depleted upon treatment with Sec6 siRNAs. Molecular masses are indicated in kilodaltons. (b) Effect of MT1-MMP and exocyst subunit-
specifi c siRNAs on the capacity of MDA-MT1ch cells to degrade fl uorescent gelatin. MDA-MT1ch cells treated with the indicated siRNAs for 72 h were further 
incubated on FITC-gelatin for 4 h. Then, cells were fi xed and stained with fl uorescent phalloidin to label F-actin in all cells. Data are represented as normal-
ized degradation (degradation index), which was calculated as the area of degraded matrix per cell relative to mock-treated cells (mean percentage  ±  SEM 
[error bars]) from at least three independent experiments with two coverslips each. The number of cells analyzed for each siRNA is indicated above the bars. 
(c) Representative images of MDA-MT1ch cells treated with the indicated siRNA and cultured on FITC-gelatin for 4 h. Merged images of F-actin (red) and gelatin 
(green) are shown. Bars, 10  μ m. (d) Effect of MT1-MMP and exocyst subunit-specifi c siRNAs on the capacity of parental MDA-MB-231 cells to cross a layer of 
matrigel in a transwell chamber. Data are represented as normalized invasion (invasion index) relative to mock-treated cells calculated as described in Mate-
rials and methods (mean percentage  ±  SEM; each siRNA-treated cell population was analyzed in triplicate in at least three independent experiments).   

In addition, single Sec3 or Sec8 knockdown also resulted in de-

creased binding of Exo70 to GST-IQGAP1/CTer2 ( Fig. 2 c , com-

pare lanes 6, 8, and 10). Furthermore, we observed that when the 

exocyst subunits were in vitro translated in reticulocyte lysates, 

only Sec3 and Sec8 but not Exo70 or Exo84 bound the IQGAP1 

CTer1 and CTer2 constructs (Fig. S2 c). All together, these fi ndings 
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(see Fig. S2 d for a schematic representation of the Sec3/Sec8 

fragments used). This analysis identifi ed predicted coiled-coil 

domains present at the N terminus of Sec3 and Sec8 as the 

IQGAP1-binding region (Fig. S2 e). Confi rming previous results 

( Matern et al., 2001 ), our two-hybrid screens also documented 

reciprocal interactions of Sec3 and Sec8 through their predicted 

N-terminal coiled-coil domains (unpublished data). Collectively, 

suggest a direct, possibly cooperative binding of Sec3 and Sec8 

to the C-terminal region of IQGAP1. On the contrary, association 

of the other exocyst subunits, including Exo70 and Exo84, might 

be indirect, requiring Sec3/Sec8 bound to IQGAP1. 

 To map the IQGAP1-binding region of Sec3 and Sec8 sub-

units, several fragments of these proteins were translated in vitro 

and tested for binding to the GST-CTer2 construct of IQGAP1 

 Figure 2.    Sec3 and Sec8 exocyst complex subunits interact with a C-terminal region of IQGAP1.  (a) Schematic representation of the C-terminal fragments 
of human IQGAP1 used. GRD, Ras GTPase-activating protein – related domain (binding site for GTP-Rac1/Cdc42); CC, coiled-coil domain predicted by 
COILS (version 2.2); RasGAP_C, RasGAP C terminus; Sec3 BD, minimal overlapping region of nine independent IQGAP1 clones isolated in a yeast two-
hybrid screen using human Sec3 as bait (Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb.200709076/DC1). (b) Lysates of HeLa cells 
transfected with HA-tagged human Sec3, Sec8, Exo70, or Exo84 were incubated with the indicated C-terminal fragment of IQGAP1 fused with GST 
immobilized on beads, and bound proteins were analyzed by immunoblotting with anti-HA antibody. 1% of lysates was loaded as a control (input). The 
bottom panel shows the different GST-IQGAP1 fragments separated by SDS-PAGE and stained with Coomassie Brilliant blue (CBB). Arrowheads indicate 
intact GST fusion proteins. (c) Effect of Sec3/Sec8 depletion on binding of the exocyst to IQGAP1-CTer2. HeLa cells were treated for 48 h with Sec3- or 
Sec8-specifi c siRNA alone or in combination as indicated and were further transfected with a construct encoding HA-tagged human Exo70 for 18 h. Lysates 
were prepared and incubated with GST-IQGAP1-CTer2, and bound proteins were analyzed by immunoblotting with anti-HA (top) or anti-Sec8 (middle) 
antibodies. The bottom panel shows GST and GST-IQGAP1-CTer2 proteins separated by SDS-PAGE and stained with Coomassie Brilliant blue. Residual levels 
of knocked down proteins and of proteins bound to GST-IQGAP1/CTer2 are indicated underneath the blots with respect to the level of mock-treated cells 
based on densitometric analysis. The effi ciency of Sec3 depletion with siSec3 is documented in Fig. S2 b. Molecular masses are indicated in kilodaltons.   
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231 cells. Low levels of IQGAP1 – Sec8 complexes were repro-

ducibly detected in reciprocal coimmunoprecipitations from 

MDA-MB-231 cell lysates ( Fig. 3 a ), which is indicative of an 

association of IQGAP1 with the exocyst complex in these cells. 

To examine the regulation of the IQGAP1 – exocyst complex in 

further detail, epitope-tagged proteins were transfected into 

HEK293 cells, wherein transfection effi ciency was high and 

protein association was better monitored. We fi rst verifi ed that 

these results indicate that Sec3, Sec8, and IQGAP1 can associate 

through coiled-coil domains present in all three proteins. 

 A GTP-Cdc42/RhoA-triggered association 
of Sec3/Sec8 with IQGAP1 
 Then, we investigated the interaction between the exocyst com-

plex and IQGAP1 in vivo. First, we analyzed the association of 

endogenous IQGAP1 with the exocyst complex in MDA-MB-

 Figure 3.    In vivo interaction of IQGAP1 with Sec8 and Sec3 is regulated by Cdc42 and RhoA.  (a) Endogenous association of IQGAP1 with Sec8 in 
MD-MB-231 cells. 2 mg lysates of MDA-MB-231 cells was immunoprecipitated with control, anti-Sec8, or anti-IQGAP1 IgGs, and bound proteins were 
analyzed by immunoblotting with the indicated antibodies. 1% of total lysate was loaded as a control (input). Densitometric analysis showed that  � 2% 
of immunoprecipitated Sec8 was in complex with IQGAP1, and  � 7% of immunoprecipitated IQGAP1 was associated with Sec8 in typical experiments. 
(b) Activated Cdc42 and RhoA promote IQGAP1 association with Sec8 in transfected HEK293 cells. HA-tagged Sec8 was transiently coexpressed with 
GFP-tagged wild-type (WT) or mutant IQGAP1-T1050AX2 (IQGAP1-T) in HEK293 cells together with myc-tagged Cdc42, Rac1, or RhoA GTPases either 
in their GTP-bound form (L [Cdc42-Q61L], Rac1-Q61L, or RhoA-Q63L) or GDP-bound form (N [Cdc42-T17N], Rac1-T17N, or RhoA-T19N). IQGAP1-T 
harbors mutations in the GRD domain that abolish binding to GTP-Cdc42/Rac1 ( Fukata et al., 2002 ). Approximately 1 mg of cellular extract was immuno-
precipitated with anti-GFP antibodies and analyzed by anti-HA (top), anti-GFP (middle), or anti-myc (bottom) immunoblotting as indicated (lanes 1 – 12). 
Control IPs with irrelevant IgGs are shown in Fig. S3 b. Protein expression levels in 10  μ g of total cell extracts are shown in the right panel (input, lanes 
13 – 24). Of note, mycRhoA-T19N was consistently expressed to a lower extent as compared with mycRhoA-Q63L. The open arrowhead indicates the posi-
tion of IgG light chain, and closed arrowheads point to myc-tagged Rho GTPases. (c) Cdc42 and RhoA activities are required for IQGAP1 – Sec8 complex 
formation in MDA-MB-231 cells. The same amount of cell lysates prepared from MDA-MB-231 cells either mock treated (lanes 1 and 2), depleted for 
72 h with combined siRNAs for Cdc42 and RhoA (lanes 3 and 4), or serum starved for 48 h (lanes 5 and 6) were immunoprecipitated with control IgGs or 
anti-Sec8 antibodies, and bound proteins were analyzed by immunoblotting with the indicated antibodies. A fraction (1%) of the lysates was analyzed as 
a control (input, lanes 7 – 9). (d) Sec3 and Sec8 form a complex with and dependent on GTP-bound Cdc42. HEK293 cells were transiently transfected with 
HA-tagged Sec3, V5-tagged Sec8, and myc-tagged Cdc42-Q61L (L) or -T17N (N) as indicated, and  � 1 mg of cellular extracts was immunoprecipitated 
with anti-myc antibodies (lanes 1 – 6). Bound proteins were analyzed by anti-HA, anti-V5, and anti-myc immunoblotting as indicated. Protein expression 
levels in 10  μ g of total cell extracts are shown in the right panel (input, lanes 7 – 12). The open arrowheads indicate IgG light chain, and closed arrowheads 
indicate myc-tagged Cdc42. Control IPs with irrelevant IgGs are shown in Fig. S3 c (available at http://www.jcb.org/cgi/content/full/jcb.200709076/DC1). 
Molecular masses are indicated in kilodaltons.   
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tion with anti-GFP antibodies. As previously shown, WT 

IQGAP1 interacted specifi cally with the GTP-bound form of 

Cdc42 and Rac1 but not RhoA ( Fig. 3 b,  bottom; compare lanes 

1, 3 and 5, respectively;  Noritake et al., 2005 ). On analyzing the 

presence of Sec8-HA in the immunoprecipitates, we made the 

observation that active Cdc42 and RhoA but not Rac1 promoted 

the association of IQGAP1 with Sec8 ( Fig. 3 b,  top; compare 

lanes 1, 5, and 3). Similarly, active Cdc42 induced the associa-

tion of IQGAP1 with Sec3-HA (Fig. S3 a, lane 7; available 

at http://www.jcb.org/cgi/content/full/jcb.200709076/DC1). 

HA-tagged Sec8 and Sec3 were functional and interacted with 

endogenous Sec6 and Sec10 subunits by coimmunoprecipita-

tion analysis (unpublished data). Because IQGAP1 is a known 

effector of Cdc42 and Rac1 small GTPases, HEK293 cells were 

transfected with constructs encoding wild-type (WT) IQGAP1 

(tagged with GFP), Sec8-HA, and either constitutively active 

(Q to L substitution at position 61 or 63) or dominant inhibitory 

(T to N substitution at position 17 or 19) mutant forms of myc-

tagged Cdc42, Rac1, or RhoA, and the interaction of IQGAP1 

with Sec8 and Rho GTPases was analyzed by immunoprecipita-

 Figure 4.    Localization of IQGAP1 and Sec8 
at F-actin – rich invadopodia in MDA-MB-231 
cells plated on cross-linked fl uorescent gelatin. 
 (a) MDA-MB-231 cells were plated on fl uo -
rescent FITC-gelatin, and, after 5 h, cells were 
fi xed and stained for immunofl uorescence 
microscopy with anti-IQGAP1 antibodies and 
fl uorescent phalloidin. F-actin and endog-
enous IQGAP1 colocalize at invadopodia 
corresponding to proteolytic holes in the fl uo-
rescent gelatin matrix (right). (b) Phalloidin 
and anti-V5 staining of MDA-MB-231 cells 
transiently expressing V5-tagged Sec8 after 5 h 
on FITC-gelatin showing colocalization of F-actin 
and overexpressed Sec8 at invadopodia. 
(c) MDA-MB-231 cells transiently transfected with 
V5-tagged Sec8 together with HA – MT1-MMP 
and Y527F c-Src were plated for 4 h on 
AlexaFluor350-gelatin and stained for immuno-
fl uorescence microscopy with the indicated 
antibodies. Higher magnifi cation views of the 
boxed areas are shown underneath each 
image. Bars, 10  μ m.   
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 IQGAP1 and the exocyst complex are 
required for MT1-MMP accumulation 
at invadopodia 
 We fi rst examined the distribution of Sec8 and IQGAP1 in MDA-

MB-231 cells plated on fl uorescent gelatin. Endogenous IQGAP1 

was enriched at invadopodia of MDA-MB-231 cells together 

with fi lamentous actin (F-actin;  Fig. 4 a ). We could not analyze 

the distribution of the endogenous Sec8 (or Sec3) subunit in 

MDA-MB-231 cells because of the lack of good immunological 

reagents capable of detecting these proteins by immuno  fl uo res  -

cence microscopy. Therefore, MDA-MB-231 cells were tran-

sfected with epitope-tagged Sec8 (V5 tagged) to facilitate detection. 

Besides a diffuse staining caused by accumulation in the cytosol, 

Sec8-V5 was also detected at invadopodia, where it colocalized 

with F-actin ( Fig. 4 b ). In addition, using MDA-MB-231 cells ex-

pressing an active mutant form of c-Src (Y527F), which triggers 

the appearance of larger, more stable invadopodia ( Artym et al., 

2006 ), we observed colocalization of endogenous IQGAP1 and 

Sec8-V5 at foci of degraded matrix ( Fig. 4 c ). Collectively, these 

data show that IQGAP1 and a component of the exocyst complex 

colocalize at invadopodia of MDA-MB-231 cells. Finally, as 

MT1-MMP has been shown to be specifi cally enriched at inva-

dopodia ( Monsky et al., 1993; Chen and Wang, 1999 ), one would 

expect cell surface MT1-MMP to colocalize with IQGAP1 and 

F-actin at invadopodia. MDA-MB-231 cells plated on FITC-

gelatin were analyzed for cell surface MT1-MMP and intra-

cellular IQGAP1/F-actin by immunofl uorescence microscopy. 

Puncta of cell surface MT1-MMP immunofl uorescence colocal-

ized with F-actin/IQGAP1-positive invadopodia lying on top of 

degraded gelatin ( Fig. 5 a , arrows). 

 We further investigated the effect of knocking down 

IQGAP1 on MDA cells ’  capacity to degrade gelatin. Depletion 

of IQGAP1 with two independent siRNAs to  � 30% of control 

levels in MDA-MB-231 cells ( Fig. 5 b ) resulted in a signifi cant 

reduction of matrix degradation comparable with the effect of 

Sec8 depletion ( Fig. 5 c ), whereas overall levels of MT1-MMP 

in the different cell populations were similar ( Fig. 5 b ). The 

contribution of IQGAP1 and exocyst to the function of invado-

podia was assessed by scoring the number of proteolytically ac-

tive invadopodia positive for cell surface MT1-MMP in Sec8 or 

IQGAP1-depleted cells in comparison with mock-treated cells. 

Depletion of Sec8 or IQGAP1 led to a signifi cant reduction of 

cell surface MT1-MMP – positive invadopodia ( Fig. 5 d ), dem-

onstrating that the function of the exocyst complex and IQGAP1 

is required for cell surface accumulation of MT1-MMP at inva-

dopodia for invadopodia formation and activity. 

 The exocyst-binding domain of IQGAP1 is 
required for the mechanism of invadopodial 
proteolysis 
 To connect IQGAP1 and exocyst complex function at invadopo-

dia, we made use of the IQGAP1-T1052AX2 (IQGAP1-T) pro-

tein ( Fig. 6 a ). This mutant form of IQGAP1, which is defective 

for binding to GTP-Cdc42/Rac1 ( Fig. 3 b ), has been shown to 

promote the extension of multiple lamellipodial structures in fi bro-

blastic cell lines and, thus, is thought to represent a constitutively 

active form of IQGAP1 ( Fukata et al., 2002 ). When expressed 

When cells were transfected with a mutant of IQGAP1, 

IQGAP1-T1052AX2 (IQGAP1-T), which was shown to be de-

fective for binding to Cdc42/Rac1 ( Fukata et al., 2002 ), none of 

the Rho GTPases were found to interact with IQGAP1-T ( Fig. 

3 b,  bottom; lanes 7 – 12). However, the binding of mutant 

IQGAP1-T to Sec8 was observed upon coexpression of the ac-

tive form of Cdc42 or RhoA, whereas Rac1 was unable to pro-

mote this interaction ( Fig. 3 b , top; lanes 7 and 11). 

 We also analyzed the consequence of the loss of Cdc42/

RhoA activity on endogenous association of IQGAP1 with Sec8 

in MDA-MB-231 cells. Serum starvation of MDA-MB-231, a 

treatment known to cause a reduction of active Cdc42 and RhoA 

levels in various cell types ( Ren and Schwartz, 2000 ), led to an 

 � 80% reduction ( ± 22%; from two independent experiments) of 

the steady-state association of IQGAP1 with Sec8 ( Fig. 3 c , 

compare lane 2 with lane 6). In addition, reduced expression of 

Cdc42 and RhoA upon siRNA treatment also reduced the 

amount of IQGAP1 coimmunoprecipitated with Sec8 (43  ±  

16% reduction as compared with mock;  Fig. 3 c , compare lane 2 

with lane 4). 

 Based on the aforementioned results, we conclude that 

although GTP-bound Cdc42 and RhoA can promote the asso-

ciation of IQGAP1 with the Sec8/Sec3 subunits of the exocyst 

complex in vivo, direct binding of these Rho GTPases to 

IQGAP1 is not required for this effect. Thus, we tested the 

possibility that active Cdc42/RhoA might interact with the 

exocyst subunits and, thus, facilitate their association with 

IQGAP1. When HEK293 cells were transfected with active or 

inactive Cdc42 together with Sec3-HA and Sec8-V5, active 

myc-Cdc42 was coimmunoprecipitated with both Sec3 and 

Sec8, and these interactions were detected only on coex pres-

sion of the two exocyst subunits ( Fig. 3 d,  top and middle; 

lane 5). A complex of active RhoA with Sec3/Sec8 was also 

detected, although to a lower extent (Fig. S3 d). The interac-

tion of GTP-bound Cdc42 and RhoA with the exocyst subunits 

is probably transient in nature and can be detected only upon 

direct immunoprecipitation of the myc-tagged Rho GTPases 

when both Sec3 and Sec8 subunits are overexpressed (com-

pare situations documented in  Fig. 3, b  and  d ). Collectively, 

our results suggest that upon activation (i.e., GTP binding), 

Cdc42 and RhoA interact with the Sec3/Sec8 subunits of 

the exocyst complex in a mechanism that promotes the inter-

action of Sec3/Sec8 and the remaining sub units of the complex 

with IQGAP1. 

 Finally, we analyzed the contribution of Cdc42 and RhoA 

to matrix degradation of MDA cells. Knockdown of Cdc42 or 

RhoA in both MDA-MB-231 cells led to a drastic reduction of 

matrix degradation comparable with MT1-MMP depletion, 

whereas overall expression levels of MT1-MMP were not af-

fected by knocking down Cdc42 or RhoA (Fig. S4, available 

at http://www.jcb.org/cgi/content/full/jcb.200709076/DC1). 

Of note, simultaneous depletion of both Cdc42 and RhoA with 

combined siRNA treatment led to a further decrease of degrada-

tion (unpublished data). All together, these results indicate that 

signaling pathways downstream of Cdc42 and RhoA are essen-

tial and probably act nonredundantly in the mechanism of inva-

dopodial matrix degradation of MDA-MB-231 cells. 
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 Figure 5.    IQGAP1 and Sec8 are required for invadopodial proteolysis of the matrix and MT1-MMP accumulation at invadopodia.  (a) MDA-MB-231 cells 
were plated on fl uorescent FITC-gelatin for 6 h, subjected to surface labeling using anti – MT1-MMP antibody, fi xed with PFA, and then permeabilized and 
stained for F-actin and endogenous IQGAP1. IQGAP1, red; MT1-MMP, green; F-actin, blue. The bottom left panel corresponds to the boxed area in the top 
panel. Black and white panels show individual images for surface-labeled MT1-MMP, IQGAP1, and F-actin that are all merged in the bottom left panel as 
well as FITC-gelatin. Of note, the punctuate accumulation of cell surface MT1-MMP at invadopodia was clearly detected by anti – MT1-MMP antibody over 
unspecifi c labeling of the gelatin (which appears as small dots visible even in regions of the gelatin free of cells; not depicted). Arrows indicate surface-
labeled MT1-MMP at invadopodia on top of areas with various degrees of matrix degradation. Bars: (top) 2  μ m; (bottom) 10  μ m. (b) Expression levels of 
IQGAP1, Sec8, and MT1-MMP in MDA-MB-231 cells treated with specifi c siRNAs as indicated. Membranes were stained with Coomassie Brilliant blue 
(CBB) to control for equal loading. Molecular masses are indicated in kilodaltons. (c) Effect of IQGAP1 or Sec8 knockdown on matrix degradation of 
MDA-MB-231 cells. Degradation indexes calculated as in  Fig. 1 a  represent the mean  ±  SEM (error bars) of three independent experiments. The number of 
cells analyzed in each dataset is indicated on top of the graph. All siRNA-treated cell populations are signifi cantly different as compared with mock-treated 
cells (P  ≤  0.01). (d) For each siRNA, matrix-degrading cells were scored for the presence of invadopodia, which were defi ned as surface-labeled MT-MMP 
accumulations lying on spots of degraded gelatin. Values are given as number  ±  SEM of MT1-MMP – positive invadopodia per cell from three independent 
experiments. All siRNA-treated cell populations are signifi cantly different as compared with mock-treated cells (P  ≤  0.01).   
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in MDA-MT1ch cells, IQGAP1-T induced a striking 6.7-fold 

( ± 1) increase of matrix degradation ( Fig. 6 b ). Overexpression 

of WT IQGAP1 had a less stimulatory effect ( × 2.9  ±  0.4-fold). 

Distribution of the IQGAP1-WT and -T constructs was examined 

in MDA-MT1ch cells with respect to invadopodia localization. 

Like the endogenous proteins, both constructs were detected at 

the cell edge, where they colocalized with F-actin in cortical 

bundles and at the ventral cell surface within invadopodia, co-

inciding with dark spots of degraded gelatin ( Fig. 6 c ). Impor-

tantly, deletion of the entire C-terminal region of IQGAP1-T 

( � CC + RGC [RasGAP C terminus]) or only the region of 

IQGAP1-T encompassing the Sec3/Sec8 binding domain ( � CC) 

completely abolished the stimulatory effect of the activated mu-

tant ( Fig. 6, a and b ). Noticeably, the distribution of IQGAP1-T � CC 

 Figure 6.    Stimulation of invadopodial prote-
olysis by a constitutively active IQGAP1 mu-
tant requires the Sec3/Sec8-binding domain.  
(a) Schematic representation of IQGAP1, 
IQGAP1-T1050AX2 (IQGAP1-T) mutant, and 
its C-terminal deletion mutants. CHD, calponin 
homology domain; WW, polyproline-binding 
domain; IQ, calmodulin-binding motif; GRD, 
Ras GTPase-activating protein – related domain; 
CC, predicted coiled-coil domain; RasGAP_C, 
RasGAP C terminus. The stars indicate muta-
tions in the GRD domain, which abolish bind-
ing to GTP-Cdc42/Rac1 ( Fukata et al., 2002 ). 
(b) Evaluation of fl uorescent matrix degradation 
in MDA-MT1ch cells transfected for 24 h with 
the indicated constructs and analyzed after 4 h 
of incubation on AlexaFluor350-labeled gelatin. 
Data are represented as normalized degrada-
tion (degradation index), calculated as the 
area of degraded matrix per cell relative to 
GFP-expressing cells (mean  ±  SEM [error bars] 
from three independent experiments). The num-
ber of cells analyzed for each construction is 
indicated above the graph. (c) Localization 
of IQGAP1 and IQGAP1-T to invadopodia. 
After 4 h on AlexaFluor350-labeled gelatin, 
MDA-MT1ch cells transfected with the indi-
cated construct were fi xed and processed for 
immunofl uorescence analysis by staining with 
AlexaFluor633-phalloidin to visualize poly-
merized actin. GFP-tagged IQGAP1 proteins 
localize at F-actin – rich invadopodia lying on 
top of degraded areas of the fl uorescent gela-
tin matrix (arrows). In contrast, the localization 
of GFP-IQGAP1-T � CC appears more diffuse. 
Higher magnifi cation views of the boxed area 
are shown. Bars, 10  μ m.   
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membrane recycling in an evolutionally conserved pathway used 

by surface proteins that have been internalized into endosomes 

and are returned back to specialized domains of the plasma 

membrane ( Folsch et al., 2003 ;  Prigent et al., 2003; Langevin 

et al., 2005 ). Various studies also identifi ed endocytosis and re-

cycling as a mechanism for controlling the activity of MT1-

MMP during matrix degradation and invasion of tumor cells 

( Jiang et al., 2001 ;  Uekita et al., 2001 ;  Zucker et al., 2002; 

Remacle et al., 2003 ;  Wu et al., 2005 ;  Lafl eur et al., 2006 ). 

Based on our fi ndings that IQGAP1 and the exocyst complex, 

probably acting in a complex at invadopodia, are required for 

MT1-MMP accumulation at invadopodia, for invadopodial deg-

radation of the matrix, and for invasion of breast carcinoma 

cells, we propose the model depicted in  Fig. 7 . In this scenario, 

the interaction of Sec3/Sec8 with IQGAP1 under the control of 

Cdc42/RhoA would provide a mechanism for targeting the exo-

cyst complex to IQGAP1-enriched invadopodia of tumor cells. 

After targeting and/or assembly at invadopodia, the exocyst 

would facilitate tethering and polarized exocytosis of transport 

vesicles, resulting in delivery and accumulation of MT1-MMP 

at invadopodia. Noticeably, we observed a reduction of ventral 

puncta of F-actin and cortactin in cells depleted for Sec8 or 

IQGAP1 (unpublished data). However, whether this steady-state 

reduction refl ects a general inhibition of invadopodia formation 

or the formation of more short-lived structures in the absence of 

IQGAP1 or the exocyst complex is unknown. In any case, our 

data support the view that the local activation of Cdc42 and 

RhoA at contact sites between tumor cells and the matrix would 

be required to interface proteins involved in cytoskeletal organi-

zation with proteins involved in exocytosis to assemble an active 

structure competent for matrix proteolysis and remodeling. 

 In addition, we found not only invadopodial proteolytic 

activity but also the mechanism of invadopodia formation to be 

critically dependent on expression of MT1-MMP ( Figs. 1 b  and 

S5). These observations are in agreement with recent studies 

showing that knockdown or pharmacological inhibition of 

MT1-MMP inhibits matrix degradation and invadopodia forma-

tion in carcinoma cells, including MDA-MB-231 cells ( Artym 

et al., 2006 ;  Clark et al., 2007 ). All together, these fi ndings sup-

port the idea that MT1-MMP is not only the main proteolytic 

activity of invadopodia, but it also represents one prominent 

component of the building foundation of this structure. 

 Our study attributes a novel function to IQGAP1 as a key 

component of invadopodia. IQGAP1 localizes at lamellipodia of 

migratory cells, where it links microtubule plus ends to the actin 

cytoskeleton and, thereby, appears as a key regulator of cell po-

larity during migration ( Noritake et al., 2005; Brown and Sacks, 

2006 ). In addition, recent studies showing that IQGAP1 is over-

expressed at invasive fronts of metastatic human colorectal carci-

nomas and enhances tumorigenesis of human breast epithelial 

cells all support an essential role for IQGAP1 in invasion and 

metastasis ( Clark et al., 2000 ;  Nabeshima et al., 2002; Mataraza 

et al., 2003 ;  Jadeski et al., 2008 ). Our fi nding that IQGAP1 is en-

riched at invadopodia and that loss of its expression leads to a re-

duction of invadopodia function in matrix degradation provides a 

mechanism for IQGAP1 ’ s role in the dissemination of invasive 

carcinoma cells. IQGAP1 is a scaffolding protein involved in 

appeared more diffuse, with no clear enrichment in ventral 

puncta ( Fig. 6 c ). In addition, we observed that IQGAP1-T de-

leted of its far-most C-terminal region ( � RGC) also lost the ca-

pacity to stimulate matrix degradation, as it failed to promote 

lamellipodia formation in the initial study of  Fukata et al., 2002  

(see Discussion below). Of note, when expressed together with 

Sec8-HA and activated Cdc42 in HEK293 cells, IQGAP1-

T � CC could still be coimmunoprecipitated together with Sec8. 

We believe that this interaction likely represents the oligomer-

ization of IQGAP1-T � CC with endogenous IQGAP1 ( Fukata 

et al., 1997 ;  Ren et al., 2005 ), providing a bridge to the exocyst 

complex. At this stage, the relevance of IQGAP1 oligomeriza-

tion to the mechanism of matrix degradation at invadopodia is 

not known. In any case, our data demonstrate that a constitu-

tively active form of IQGAP1 has the capacity to stimulate 

invadopodia-mediated proteolysis of the matrix and that this 

activity requires the integrity of the C-terminal region of IQGAP1, 

including the exocyst complex – binding site. 

 Discussion 
 Several studies, including work from our laboratory, have dem-

onstrated that the exocyst complex is involved in protein and 

 Figure 7.    Model for Rho-GTPase signaling control of invadopodial forma-
tion and function.  In response to the interaction of tumor cells with their 
3D matrix environment, Rho-GTPases are activated locally, triggering actin 
assembly through activation of the Arp2/3 complex and leading to inva-
dopodia protrusion within the ECM. IQGAP1, which is downstream of 
Cdc42 and RhoA, plays a central role in invadopodia function through 
the coordination of actin assembly with the exocytic machinery via the 
vesicle-docking exocyst complex and possibly through microtubule plus 
end anchoring (see Discussion for details).   
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has been shown to control the formation of invadopodia in hu-

man melanoma and rat mammary adenocarcinoma tumor cell 

lines based on a Neural Wiskott-Aldrich syndrome protein –

 Arp2/3 complex signaling activation cascade ( Nakahara et al., 

2003 ;  Yamaguchi et al., 2005a ). A large body of work also im-

plicates RhoA-related proteins (RhoA, RhoB, and RhoC) and 

downstream signaling pathways in the progression and invasion 

of tumors of various origins ( Fritz et al., 2002 ;  Sahai and 

Marshall, 2002 ;  Pille et al., 2005 ;  Wyckoff et al., 2006 ). Our 

study implicating RhoA in invadopodial matrix degradation 

extends previous studies showing that RhoA is required for the 

formation and activity of podosome/invadopodia-like invasive 

structures in v-Src – transformed fi broblasts ( Berdeaux et al., 

2004 ; for reviews see  Linder and Aepfelbacher, 2003; Jurdic 

et al., 2006 ). The picture that is thus emerging collectively from 

these previous studies and our work connecting Cdc42/RhoA 

with the vesicle-tethering machinery implies that the role of 

Cdc42/RhoA at invadopodia is not restricted to actin assembly 

but rather involves the coordination of cytoskeleton remodeling 

with vesicle docking/exocytosis for the generation of protru-

sions and for invasiveness. 

 Materials and methods 
 Plasmid constructions 
 To obtain expression vectors coding for human Sec3, Sec8, Exo70, and 
Exo84 C-terminally tagged with V5 or HA tag, ORFs were amplifi ed by 
PCR and cloned into pcDNA3.1D/V5-His-TOPO (Invitrogen). Alternatively, 
PCRs were performed with reverse primers, including the sequence for 
HA tag (5 � -TACCCATACGATGTTCCAGATTACGCTTAA-3 � ), and fragments 
were cloned into pcDNA3.1 (Invitrogen). HA-tagged subfragments of Sec3 
and Sec8 were obtained by PCR and subcloned in pcDNA3.1. Full-length 
ORF of exocyst subunits (Sec3, Sec8, Exo70, and Exo84) were subcloned 
into the yeast two-hybrid bait plasmid pB27 derived from the original 
pBTM116 plasmid ( Formstecher et al., 2005 ). GFP-IQGAP1 and -IQGAP1-
T1050AX2 expression constructs were gifts from K. Kaibuchi (Nagoya 
University, Nagoya, Japan). IQGAP1-T1050AX2 (IQGAP1-T) harbors 
a substitution of Thr/Val/Ile (aa 1,050 – 1,052) to Ala/Ala/Ala and a 
tandem duplication of region aa 1,043 – 1,059 ( Fukata et al., 2002 ). 
Expression vectors encoding for IQGAP1 C-terminal fragments fused with 
GST were generated by PCR and cloned into pGEX-4T-1 (GE Healthcare). 
C-terminal deletion mutants of GFP-IQGAP1-T1050AX2 were constructed 
as follows:  Δ CC, a fragment corresponding to aa 1,563 – 1,657, was am-
plifi ed by PCR and inserted into pEGFP-IQGAP1-T1050AX2 between an 
internal SwaI site (corresponding to aa position 1,347) and a SacII site of 
the 3 � -end multiple cloning site fusing aa 1 – 1,374 with 1,563 – 1,657; 
 Δ RGC, a fragment corresponding to aa 1 – 1,562, was amplifi ed by PCR 
and cloned into the SalI – SacII sites of pEGFP-C3;  Δ CC + RGC and pEGFP-
IQGAP1-T1050AX2 were cleaved at SwaI (internal) and SmaI 3 � -end mul-
tiple cloning sites and were self-ligated. 

 Human MT1-MMP cDNA was obtained from RZPD GmbH (clone 
numbers IRAKp961P20107QQ2 and IRAKp961O0484QQ2). MT1-
MMP – mCherry was generated by PCR using the same strategy, resulting in 
the insertion of mCherry (a gift from R.Y. Tsien, University of California, 
San Diego, La Jolla, CA) between aa 534 and 535, N terminal to the 
transmembrane region. Expression vectors for myc-tagged Cdc42, Rac1, 
and RhoA mutant forms were gifts from A. Hall (University College London, 
London, UK). To obtain GFP-JIP3-LZII expression vector, a JIP3 fragment 
corresponding to aa 371 – 507 was amplifi ed by PCR and inserted into the 
XhoI – EcoRI sites of pEGFP-C3. 

 Cell culture 
 Unless specifi ed, reagents were obtained from Invitrogen. MDA-MB-231 
human breast adenocarcinoma cells were obtained from the European Col-
lection of Cell Cultures and were cultured in L-15 medium (Sigma-Aldrich) 
supplemented with 2 mM glutamine and 15% FCS. To generate MDA-MB-
231 cells stably expressing MT1-MMP – mCherry, cells were transfected with 
Lipofectamine 2000 (Invitrogen) and selected with 800  μ g/ml geneticin, 

multiple interactions with various cellular machineries. Besides 

its capacity to interact with the exocyst complex revealed by this 

study and, thus, the possibility to contribute to the delivery of 

invadopodial components, another function for IQGAP1 during 

invadopodia formation could be the stimulation of actin assembly 

by activation of a Neural Wiskott-Aldrich syndrome protein –

 Arp2/3 complex pathway known to control actin-driven invado  -

podial extension ( Fig. 7;   Yamaguchi et al., 2005a; Le Clainche 

et al., 2007 ). Another aspect of IQGAP1 activity at invadopodia 

may reside in its ability to capture microtubule plus ends via 

the formation of tripartite complexes with activated Cdc42 and 

microtubule-associated proteins CLIP-170 and adenomatous 

polyposis coli ( Fukata et al., 2002 ;  Watanabe et al., 2004 ). Micro-

tubules and microtubule motors are important for the formation 

and dynamics of invadopodia-like structures of monocyte-

derived cells called podosomes ( Kopp et al., 2006 ). Whether 

invadopodia formation and/or activity similarly involves the 

microtubule network is presently unknown. Our observation that 

stimulation of invadopodial activity by constitutively active 

IQGAP1-T requires the CLIP170/adenomatous polyposis coli 

C-terminal binding domain of IQGAP1 suggests that this may 

indeed be the case and will require further investigation. 

 The interaction of IQGAP1 with Sec3/Sec8 that we docu-

ment here, although it is promoted by GTP-Cdc42/RhoA, does 

not require direct binding of the GTPases to the GRD domain 

(Ras GTPase-activating protein – related domain) of IQGAP1. 

One possibility, which is supported by our coimmunoprecipita-

tion data, is that activated Cdc42/RhoA binds to the Sec3/Sec8 

subunits of the exocyst complex, leading to their interaction 

with IQGAP1. In  Saccharomyces cerevisiae , GTP-bound Cdc42p 

and Rho1p interact directly with the N-terminal domain of 

Sec3p ( Guo et al., 2001 ;  Zhang et al., 2001 ). However, mam-

malian Sec3 has only weak homologies with yeast Sec3p within 

the Rho-binding domain ( Matern et al., 2001 ). It should also be 

noticed that the counterpart of IQGAP1 in yeast, called Iqg1p 

(or Cyk1p), binds to and is required for the localization of Sec3p 

to the site of polarized growth ( Osman et al., 2002 ). So far, our 

attempts to pull down purifi ed recombinant N-terminal frag-

ments of Sec3 or Sec8 with immobilized GTP-Cdc42 failed 

(unpublished data). Whether the binding site of GTP-Cdc42/

RhoA on the mammalian exocyst complex is provided by the 

Sec3 or Sec8 subunit solely or by the Sec3/Sec8 interface or 

even a more complex interface consisting of Sec3/Sec8 in asso-

ciation with other exocyst subunits will require further study. 

 Our data indicate that the activity of both Cdc42 and 

RhoA is required for promoting the association between 

IQGAP1 and the exocyst complex and that these two Rho 

GTPases are involved in separate nonredundant functions dur-

ing the mechanism of invadopodial proteolysis of the matrix. 

Rho proteins, which are well-known modulators of cytoskeletal 

changes that occur during cell migration, contribute to various 

aspects of tumorigenesis, including invasion of highly motile 

carcinoma cells ( Sahai and Marshall, 2002 ). This role in inva-

sion is correlated with the altered expression of Rho GTPases 

and some of their regulators and effectors in various human tu-

mors, particularly the most aggressive and metastatic forms of 

cancers ( Fritz et al., 2002 ;  Sahai, 2005 ). Along this line, Cdc42 
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instructions (see Table S1 for a list of the different siRNAs used in this study; 
available at http://www.jcb.org/cgi/content/full/jcb.200709076/DC1). 
Cells were assayed after 72 h of treatment. 

 Fluorescent gelatin degradation assay 
 FITC-labeled gelatin was obtained from Invitrogen. AlexaFluor350-conjugated 
gelatin was prepared by labeling porcine gelatin with AlexaFluor350 
(Invitrogen) according to the manufacturer ’ s instructions. Coverslips coated 
with fl uorescent gelatin were prepared as described by  Artym et al. (2006 ). 
In brief, coverslips (18-mm diameter) were coated with 0.5  μ g/ml (MDA-
MB-231 cells) or 50  μ g/ml poly- L -lysine (MDA-MT1ch cells) for 20 min at 
room temperature, washed with PBS, and fi xed with 0.5% glutaraldehyde 
(Sigma-Aldrich) for 15 min. After three washes, the coverslips were inverted 
on an 80- μ l drop of 0.2% fl uorescently labeled gelatin in 2% sucrose in PBS 
and incubated for 10 min at room temperature. After washing with PBS, 
coverslips were incubated in 5 mg/ml sodium borohydride for 3 min, 
washed three times in PBS, and fi nally incubated in 2 ml of complete me-
dium for a minimum of 2 h before adding the cells. 

 To assess the ability of cells to form invadopodia and degrade the 
matrix, 7  ×  10 4  cells/12 wells were plated on fl uorescent gelatin-coated 
coverslips and incubated at 37 ° C for 4 – 6 h as indicated. Cells were then 
fi xed with 4% PFA for 20 min, quenched with 50 mM NH 4 Cl for 10 min, 
permeabilized with 0.2% saponin for 5 min, and processed for intracellu-
lar immunofl uorescence labeling with AlexaFluor-phalloidin as indicated. 
Cells were imaged with 40 ×  or 63 ×  objectives of a wide-fi eld microscope 
(DM6000 B/M; Leica) equipped with a CCD camera (CoolSNAP HQ; 
Photometrics). For quantifi cation of degradation, the total area of de-
graded matrix in one fi eld (black pixels) measured using the Threshold 
command of MetaMorph 6.2.6 (MDS Analytical Technologies) was di-
vided by the total number of phalloidin-labeled cells in the fi eld to defi ne 
a degradation index. 

 MT1-MMP cell surface immunofl uorescence 
 For labeling of cell surface MT1-MMP, after incubation on fl uorescent gela-
tin as described in the previous section, cells were further incubated on ice 
for 30 min with anti – MT1-MMP mAb in PBS containing 10% FCS. Then, 
cells were fi xed and permeabilized with 4% PFA and permeabilized with 
0.2% saponin as described above and labeled with AlexaFluor-phalloidin 
and antibodies specifi c for invadopodial markers as indicated. Cells were 
imaged with the 100 ×  objective of a wide-fi eld DM6000 B/M microscope 
equipped with a CoolSNAP HQ CCD camera. 

 Matrigel invasion assay 
 Matrigel invasion inserts and control (without matrigel) inserts (8- μ m pores) 
for 24-well tissue culture plates were purchased from BD Biosciences. 
In brief, matrigel invasion inserts (top chambers) were rehydrated for 2 h 
at 37 ° C in culture medium. Then, both rehydrated matrigel invasion and 
control inserts were placed in bottom chambers containing culture medium 
supplemented with 20 ng/ml hepatocyte growth factor (EMD) as chemo-
attractant. MDA-MB-231 cells were transfected with siRNA for 72 h and de-
tached, and 2  ×  10 4  cells were added into the top chambers and incubated 
at 37 ° C for 18 h. Cells that had not migrated were thoroughly removed 
from the upper surface of the insert membrane with a cotton swab. Inserts 
were then washed with PBS, and cells were fi xed with 4% PFA in PBS for 
20 min and stained with 0.1% crystal violet (Bio-Rad Laboratories), 200 mM 
MES (MP Biomedicals), pH 6.0, for 10 min. Inserts were washed twice 
with water and allowed to air dry. Membranes were then scanned with a 
scanner (Perfection 3200 Photo; Epson) at maximal resolution (6,400 dpi) 
and analyzed with multidimensional image analysis segmentation software 
to count the number of cells present on the membranes. This software uses 
wavelet decomposition to detect cells based on their homogeneous mor-
phology on the scanned images, even when the background is not homo-
geneous. To allow better cell separation in aggregates, a watershed operator 
is applied in the wavelet maps. To obtain the invasion index, the number 
of cells that had migrated through the matrigel was divided by the number 
of cells that had migrated in the control inserts without matrigel. The invasion 
index of mock-treated cells was set as 100%. 

 Online supplemental material 
 Fig. S1 presents a summary of yeast two-hybrid and GST pull-down inter-
actions of IQGAP with the exocyst complex subunits. Fig. S2 shows an in-
teraction of in vitro – translated exocyst subunits with C-terminal fragments of 
IQGAP1 and mapping of the IQGAP1-binding region of Sec3 and Sec8. 
Fig. S3 shows that activated Cdc42 promotes IQGAP1 association with 
Sec3 in transfected HEK293 cells. Fig. S4 shows that Cdc42 and RhoA are 

and mCherry-positive cells were sorted by fl ow cytometry with FACSAria 
(BD Biosciences). MDA-MT1ch cells were maintained in medium supple-
mented with 500  μ g/ml geneticin. HEK293 and HeLa cells were main-
tained in DME supplemented with 10% FCS, penicillin, and streptomycin. 

 Antibodies and reagents 
 Mouse monoclonal antibody against MT1-MMP (clone 2D7;  Chenard 
et al., 1999 ) was a gift from M.C. Rio (Institut de G é n é tique et de Biologie 
Mol é culaire et Cellulaire, Illkirch, France). Monoclonal mouse anti-GFP 
(mixture of clone 7.1 and 13.1) and rat anti-HA (clone 3F10) antibodies 
were purchased from Roche. Monoclonal mouse anti-myc tag (clone 9E10) 
was purifi ed on protein G – Sepharose. Monoclonal mouse anti-V5 was pur-
chased from Invitrogen. Monoclonal mouse anti-Sec8 (clone 14) and anti-
Sec6 (clone 9H5) antibodies were obtained from BD Biosciences and 
Nventa, respectively. Rabbit polyclonal anti-Sec10 antibodies have been 
previously described ( Prigent et al., 2003 ). Monoclonal (clone AF4) and 
polyclonal anti-IQGAP1 (H-190) antibodies were obtained from Millipore 
and Santa Cruz Biotechnology, Inc., respectively. Monoclonal anti-RhoA 
(clone 26C4) was provided by J. Bertoglio (Institut National de la Sant é  et 
de la Recherche M é dicale, Unite 461, Chatenay-Malabry, France). Mono-
clonal anti-Cdc42 (clone 44) antibody was purchased from BD Biosci-
ences. Monoclonal anticortactin antibody (clone 4F11) was obtained from 
Millipore. AlexaFluor-labeled phalloidin and anti – mouse IgG antibodies 
were purchased from Invitrogen. HRP-conjugated anti – rat IgG antibodies 
were purchased from GE Healthcare. HRP-conjugated anti – mouse IgG, 
Cy3-conjugated F(ab ’ )2 anti – rabbit, and anti – mouse IgG antibodies were 
obtained from Jackson ImmunoResearch Laboratories. 

 Yeast two-hybrid assay 
 The yeast two-hybrid screens were performed using the Sec3, Sec8, 
Exo70, and Exo84 exocyst subunits as baits to screen a human placenta 
random-primed cDNA library using a previously described mating protocol 
( Formstecher et al., 2005 ). 

 GST pull-down assay 
 GST-IQGAP1 fusion proteins expressed in  Escherichia coli  (BL21 DE3) 
were purifi ed using glutathione – Sepharose 4B (GE Healthcare). GST-
IQGAP1 fusion proteins or 2  μ M GST was incubated with 500  μ g of total 
protein of HeLa cells extracted in binding buffer (50 mM Tris-HCl, pH 7.5, 
137 mM NaCl, 1% Triton X-100, 10 mM MgCl 2 , and 10% glycerol) sup-
plemented with protease inhibitors (Complete EDTA free; Roche) and 
0.5% BSA. Then, 30  μ l of 50% glutathione bead slurry was added and 
further incubated for 60 min at 4 ° C. Beads were washed four times with 
binding buffer, and bound proteins were eluted in SDS sample buffer, 
separated by SDS-PAGE, and detected by immunoblotting with the indi-
cated antibodies. 

 For GST pull-down assays using in vitro – synthesized proteins, biotin-
labeled in vitro – translated proteins were synthesized by TNT T7 Quick 
Coupled Transcription/Translation System and Transcend NonRadioactive 
Translation Detection systems (Promega). GST-IQGAP1 fusion proteins or 
2  μ M GST was incubated with 10  μ l of in vitro – synthesized biotin-labeled 
protein for 30 min at 4 ° C in 300  μ l of the aforementioned binding buffer 
supplemented with protease inhibitors and 0.5% BSA. Then, 30  μ l of 50% 
glutathione bead slurry was added and further incubated for 60 min at 
4 ° C. Beads were washed four times with binding buffer, and bound pro-
teins were eluted in SDS sample buffer, separated by SDS-PAGE, and de-
tected with streptavidin-HRP (Thermo Fisher Scientifi c). 

 Immunoprecipitation 
 HEK293 cells were transfected using FuGENE 6 (Roche). 24 h after trans-
fection, cells were lysed in lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM 
NaCl, 1% Triton X-100, and 1 mM EDTA) with protease inhibitors and cen-
trifuged at 13,000 rpm for 10 min at 4 ° C. Supernatants (1 – 2 mg of total 
proteins in 1 ml) were incubated with 1  μ g of antibody for 30 min at 4 ° C, 
and then protein A or protein G Sepharose 4 Fast Flow (GE Healthcare) 
was added and further incubated for 1 h at 4 ° C. Beads were washed three 
times in lysis buffer, and bound proteins were eluted in SDS sample buffer, 
separated by SDS-PAGE, and detected by immunoblotting analysis with the 
indicated antibodies using Lumi-Light PLUS  substrate (Roche). 

 siRNA and plasmid transfection 
 Lipofectamine 2000 was used for transfection of MDA-MB-231 cells with ex-
pression vectors, and cells were assayed 24 h later. For siRNA treatment, 
MDA-MB-231 cells were transfected with 50 – 200 nM of specifi c siRNA 
duplex with Oligofectamine (Invitrogen) according to the manufacturer ’ s 
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