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Abstract

Motivation: The launch of the BioNano next-generation mapping system has greatly enhanced the

performance of physical map construction, thus rapidly expanding the application of optical map-

ping in genome research. Data biases have profound implications for downstream applications.

However, very little is known about the properties and biases of BioNano data, and the very factors

that contribute to whole-genome optical map assembly.

Results: We generated BioNano molecule data from eight organisms with diverse base composi-

tions. We first characterized the properties/biases of BioNano molecule data, i.e. molecule length dis-

tribution, false labelling signal, variation of optical resolution and coverage distribution bias, and

their inducing factors such as chimeric molecules, fragile sites and DNA molecule stretching.

Second, we developed the BioNano Molecule SIMulator (BMSIM), a novel computer simulation pro-

gram for optical data. BMSIM, is of great use for future genome mapping projects. Third, we eval-

uated the experimental variables that impact whole-genome optical map assembly. Specifically, the

effects of coverage depth, molecule length, false-positive and false-negative labelling signals, chi-

meric molecules and nicking enzyme and nick site density were investigated. Our simulation study

provides the empirical findings on how to control experimental variables and gauge analytical

parameters to maximize benefit and minimize cost on whole-genome optical map assembly.

Availability and implementation: BMSIM is freely available on: https://github.com/ping

chen09990102/BMSIM.

Contact: phao@sibs.ac.cn or lixuan@sippe.ac.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome physical mapping technologies have received increasing at-

tention in recent years because of their ability to effectively comple-

ment the shortfalls of short-read sequencing technologies. Whereas

the early physical mapping methods, such as OpGen optical

mapping, were often expensive and labour intensive(Paux et al.,

2008), the newly developed BioNano Irys system greatly enhances

the throughput and performance of physical mapping by leveraging

advances in nanoscale material engineering, fluorescent labelling of

DNA molecules and imaging processing algorithms (Lam et al.,
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2012). BioNano optical mapping technology rapidly expanded its

applications in many aspects of genome research, e.g. assessing and

guiding sequence assembly (Chen et al., 2017; Zhihai et al., 2016),

identification of satellite repeated sequences (Dong et al., 2016),

resolving haplotypes (Pendleton et al., 2015) and the detection of

structural variations (Cao et al., 2014).

As for popular sequencing technologies, data biases/errors are in-

evitable in the BioNano optical mapping system. BioNano optical

mapping experiments are vulnerable to variations and perturbations

of internal and external sources, creating data biases and variations

that have profound implications for downstream applications. A

non-random molecule distribution can hamper the haplotype reso-

lution in regions of low coverage depth. Labelling errors on DNA

molecules, i.e. BioNano molecules, can lead to false signals and in-

correct variant calls. However, very little is known about the proper-

ties, biases and error rates of BioNano data or the factors that induce

or contribute to them. The purpose of this study is threefold. First, it

was designed to investigate the properties such as molecule length,

false labelling signal, variation in optical resolution, coverage distri-

bution bias and the data variations due to factors such as chimeric

molecules, fragile sites and DNA molecule stretching, which have

great impact on common applications of BioNano optical mapping

technology. Based on our analyses, we developed statistical models

to model the properties, biases and error profiles of BioNano mol-

ecule data and provided guidelines for filtering BioNano data to miti-

gate their impact on downstream applications. Second, we developed

a novel optical data simulation program, BioNano Molecule

SIMulator (BMSIM), for the generation of simulated BioNano mol-

ecule data. With available models, BMSIM can also be extended to

simulate other optical mapping experiments. Third, we employed

BMSIM to evaluate the impact of variable factors on the outcome of

whole-genome optical map assembly. Specifically, the impacts of the

coverage depth, molecule length, false signal rates, nicking enzyme

and chimeric molecule were evaluated. We summarize the general

rules for the design of whole-genome optical map projects and pre-

sent guidelines for data processing and gauging the parameters for

whole-genome optical map assembly.

2 Materials and methods

2.1 Data source and basic processing
We generated BioNano molecule data from eight organisms

(Supplementary Table S1; and Supplementary Methods Section

S1.1). Molecule data were then aligned and compared to their refer-

ence genomes, which were converted in silico into a restriction map

according to the recognition signature of the nicking enzyme

Nt.BspQI. Alignment was performed using RefAligner. Custom

scripts (in Perl) were developed to process outputs from RefAligner

and to extract information, e.g. aligning the positions of molecules

and signals of labelling sites, etc. for further analysis. Statistical ana-

lysis and plotting were performed using R and MATLAB (R2016a).

2.2 Modelling the distribution of BioNano molecule

length
To model the BioNano molecule length in the BioNano data simula-

tor BMSIM, a molecule (with a size of i) was first randomly selected

from a distribution of molecules whose sizes are described by an ex-

ponential distribution i � exp onentialðkÞ with the average size k.

Next, the molecule with size i was randomly sliced from one

chromosome of the reference genome. If the molecule end exceeded

the end of the chromosome, the shorter molecule was also retained.

2.3 Modelling for false-positive (FP) and false-negative

(FN) labelling sites
It was reported (Valouev, 2006) that the false-positive sites resulting

from random DNA nicks or the nonspecific action of endonuclease

have no preference for regions of DNA molecules. Thus, the number

of false positives, RFP, per fixed length of DNA (sKb), obeys a

Poisson distribution with intensity parameter k (nick/Kb), i.e.

RFP � Poisson ksð Þ. The FPs were modelled as a homogeneous

Poisson process with the rate k in BMSIM.

It was also reported (Das et al., 2010) that the labelling of each

site is independent with an efficiency of p. Thus, the probability P of

molecules with m sites labelled from a total of n sites observed is
n!

m! n�mð Þ! P
m 1� Pð Þn�m. Thus, whether true nick sites are labelled can

be modelled as independent Bernoulli trials. Therefore, to model

missing label events (FNs), we treated the nicking of each site as a

Bernoulli event with the probability of success P in BMSIM.

2.4 Modelling for DNA molecule stretch variation in the

BioNano system
DNA stretching is a complex interaction of several stochastic varia-

bles, such as the Brownian motion of DNA (Tegenfeldt et al., 2004),

salt concentration (Jo et al., 2007) and flow voltage changes

(Reccius et al., 2008), many of which have unknown distribution

functions. It was reported (Chan, 2004) that the stretching of

DNA molecules with free termini is not homogeneous. We devised

the ‘stretch variation factor’ R as a measurement of stretch variation

for each DNA fragment between neighbouring sites in the BioNano

system.

Stretch variation factor R was defined as R ¼ lenmeasured=

lenreference, where the reference length, lenreference, represents the

number of DNA base between neighbouring sites, as obtained from

the reference genome sequence aligned to the DNA fragment, and

the measured length, lenmeasured, was computed for the DNA frag-

ment between neighbouring sites by converting the pixels into a base

number with a constant predefined for the Irys system (e.g. a con-

stant of 500 bases per pixel, corresponding to 85% of the theoretical

maximal DNA stretching; Lam et al., 2012; Shelton et al., 2015).

According to the central-limit theorem (Dedecker, 1998), the distri-

bution of the stretch variation factor R for each region of DNA be-

tween neighbouring sites in the BioNano system was assumed to be

Gaussian, R � N l;r2
� �

.

2.5 Modelling for the observed variation in optical

resolution
Under ideal conditions, the likelihood of resolving two particles,

presolving was defined as a unit step function H xð Þ:

H xð Þ ¼
0; x< t

1; x > t

(

which is a discontinuous function whose value is 0 when the dis-

tance between neighbouring sites x is smaller than a resolution

threshold t, and 1 when the distance between neighbouring site x is

larger than a threshold t.

However, we found that the optical resolution of the BioNano

system is influenced by variations in the Irys machine conditions

(e.g. temperature, flow-rate, emitted fluorescence light, vibration,

sample density and sample/solution purity) and sample preparations

(DNA quality, nicking and labelling reactions and fluorescent dye

quality/quantity). The combined function of these variables led to
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the variation in optical resolution, which we observed when operat-

ing the BioNano system.

According to the Central Limit Theorem (Dedecker, 1998), the

observed variation in optical resolution tends to have the effect of

convolution with a Gaussian kernel. Under the net effect of convolv-

ing with a Gaussian kernel, the step function of the likelihood of

resolving the neighbouring site presolving was expected as a cumula-

tive Gaussian kernel, i.e. the convolution of the unit step function

H xð Þ with a Gaussian function G xð Þ (Broadbent, 1954; Hirschman

and Vernon, 1955; Wang et al., 2005), which is defined as

presolving ¼ GðxÞ �HðxÞ

¼
ð1
�1

GðvÞHðx� vÞdv

¼
ðx

�1
GðvÞ � ð1Þ � dvþ

ðþ1
x

GðvÞ � ð0Þ � dv

¼
ðx

�1
GðvÞdv

where x is the distance between two neighbouring sites, G vð Þ is the

Gaussian function G vð Þ ¼ 1
r
ffiffiffiffi
2p
p exp � v�lð Þ2

2r2

� �
. Model parameter esti-

mation was based on non-linear regression using the curve fitting

tool from MATLAB (R2016a). Model parameters were estimated

with a mean of l ¼ 1:2, and a standard deviation of r ¼ 0:9.

Accordingly, two neighbouring sites 1.2 Kb apart have a 50%

chance of being resolved, and two neighbouring sites

1.2þ2 * 0.9¼3 Kb apart have an approximately 97.5% probability

of being resolved.

2.6 Modelling for fragile sites
A fragile site occurs when two nicking sites are located on opposite

strands in close proximity. Its occurrence probability can be mod-

elled as a function of the distance between two nicking sites on op-

posite strands. It should follow the exponential model that was

previously used to estimate the breakage probability related to

length (Griebel et al., 2012; Iyengar, 1981). The curve of the likeli-

hood of breakage against the distance between nicking sites on op-

posite strands was found to fit that of exponential decay.

Therefore, the model of fragile site formation, i.e. the likelihood

of breakage pbreakage against the distance (dis) between nicking sites

on opposite strands, was defined by the exponential model:

pbreakage ¼ a � exp b � disð Þ, where dis is the distance between nick-

ing sites on opposite strands, a and b are two empirical parameters

(a¼0.7758, b ¼ �0.006984) that are estimated from empirical data

using cftool. In simulation experiments using the BioNano molecule

simulator BMSIM, a Bernoulli trial was performed on pbreakage to de-

termine whether a break occurred at a fragile site of a simulated

BioNano molecule.

2.7 Simulation for chimeric molecules
Chimerism resulted primarily from the concatenation of unrelated

molecules in a nanochannel during imaging. Types of chimera

included ‘Bimera’, ‘Trimera’ or higher-order chimeras. To simulate

random concatenation events in BMSIM, chimeric molecules were

generated in the following steps: i) assigning a target proportion of

overall chimeric molecules; ii) determining the ratio of Bimera,

Trimera and higher-order chimeras; iii) randomly selecting parent

molecules and joining them with random orientations (to simplify

simulation, we assumed randomly occurring overlapping regions be-

tween parent molecules); and iv) repeating step iii until the target

properties are attained.

3 Results

3.1 Characterizing properties of BioNano genome

mapping data
3.1.1 Distribution of the BioNano molecule length

The molecule length is an essential property of BioNano data.

Because genomic DNA is randomly broken by a shearing force,

BioNano molecules should be uniform in distribution along a gen-

ome. The shearing of DNA molecules follows a homogeneous

Poisson process; thus, the molecule lengths, as independent and

identically distributed exponential variates, should fit an exponen-

tial model (Sarkar, 2006). Our results confirmed that the length dis-

tribution was consistent with an exponential model among the eight

datasets (Supplementary Fig. S1), which was also validated by quan-

tile plot analysis (Supplementary Fig. S2). Notably, the length of the

BioNano molecules is often benchmarked with the N50 values,

which varied between 133 and 246 Kb for the eight datasets

(Supplementary Table S1).

3.1.2 Distribution of false-positive and false-negative sites

The enzymatic process for DNA nicking and labelling is prone to

errors. However, the distribution of false signals has not been fully

investigated for BioNano genome mapping technology. The two

types of errors were gauged for BioNano molecules: i) false-positive

(FP) signals observed at non-restriction sites and ii) false-negative

(FN) signals at restriction sites with missed labels. FP errors were

mainly attributed to naturally occurring nicks on DNA molecules

(Jo et al., 2007; Neely et al., 2011; Xiao et al., 2007; Zohar and

Muller, 2011), non-specific digestion by enzymes (Lam et al., 2012)

or noise generated during the imaging process, e.g. shot noise

(Thompson et al., 2002). FN errors, in contrast, were due to incom-

plete nicking or labelling (Das et al., 2010; Xiao et al., 2007). We

characterized the profile of FP and FN errors using the eight datasets

by aligning and comparing them to their reference genomes. The FP

error rates were found to vary from 2.2 to 9.04%, with an average

of 5.2%, whereas the FN error rates were much higher on average:

12.2% ranging from 5.25 to 15.9% (Supplementary Table S1). We

further looked at whether FP and FN errors were biased along DNA

molecules. DNA molecules were first divided into five equally sized

intervals. The FP rates had a uniform distribution along DNA mole-

cules (Fig. 1, left panel), which appeared to have no bias towards

any regions of DNA molecules (Kruskal-Wallis rank sum test,

P¼0.978), thus supporting the random assumption. In contrast, the

FN error rates were significantly elevated in the middle intervals of

Fig. 1. Distribution of false-positive (FP) and false-negative (FN) signals along

whole molecules. BioNano molecules are divided into five equal-sized inter-

vals, 0–20, 20–40, 40–60, 60–80 and 80–100%. For FN rates, pairwise compari-

son between three middle interval groups (20–40, 40–60, 60–80%) and two

outside groups (0–20, 80–100%) showed the three middle interval groups sig-

nificantly differed from the two outside groups (t-test: P< 0.05)
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DNA molecules (Kruskal-Wallis rank-sum test: P<0.05) (Fig. 1,

right panel).

3.1.3 Data variations due to the stretching of DNA molecules

Stretching of DNA molecules under various conditions, e.g. salt con-

centration, temperature, electrical field strength, nano-channel pore

size, etc. may cause changes in the measured length of BioNano mol-

ecules, thus affecting downstream applications such as mapping or

the assembly of BioNano molecules. We investigated the changes in

the stretch variation factor (Section 2) between nanochips, between

flow cells of the same chips, between runs for the same flow cells,

and between scans within a run.

First, although no difference in the stretch variation factor

was detected between flow cells within the same nanochips

(Supplementary Fig. S3, second row, Chip2 Flowcell1 versus Chip2

Flowcell2: Kruskal-Wallis rank-sum test, P>0.05), a significant dif-

ference in the stretch variation factor was observed between differ-

ent nanochips (Supplementary Fig. S3, first row, Chip1 versus

Chip2; Kruskal-Wallis rank-sum test, P<0.05). Second, in practice,

multiple runs (with the same sample preparation) were often applied

to the same flow cells, for which a new run was often started with

the addition of a new sample volume. Changes in the stretch vari-

ation factor between different runs of the same flow cells can occa-

sionally be significant (Supplementary Fig. S3, third row;

and Supplementary Fig. S4G). Changes in the stretch variation fac-

tor between different runs were found to be larger than within the

same run. Third, considering the scans within runs, we found

that the stretch variation factor decreased during a single run

(Supplementary Fig. S3, fourth row). Reduction in stretch variation

factor were the result of the increased salt concentration (Kim et al.,

2011). We noticed that higher flow rates and a short run time

reduced the impact of salt concentration on the stretching variation

(Supplementary Fig. S4F). We further considered the distribution of

the stretch variation factor for molecules of the same run. They were

found to approximate a Gaussian distribution (Supplementary Fig.

S5; Section 2.4), which was used to model the DNA molecule stretch

variation in the BioNano molecule simulator BMSIM.

3.1.4 Variation in the optical resolution of the BioNano system and

its modelling

We investigated the resolution within our BioNano datasets that

was likely a combined function of many variables. By aligning

BioNano molecules to their reference sequences, we analyzed the

distribution of neighbouring labelling sites, and their relationship to

distance on the reference genome. We found that neighbouring sites

within 1–3 Kb of each other were only partially resolved by

BioNano with resolution limit approaching 1 Kb (Fig. 2). The likeli-

hood of two labelling sites being distinguished decreased as the dis-

tance between them was reduced from 3 to 1 Kb, which was

modelled as a cumulative Gaussian distribution (Section 2.5). The

fitness of the model to the observed data was confirmed using a

curve fitting test (Fig. 2). Notably, the eight BioNano datasets dis-

played a high consistency in curve fitting. In addition to the optical

resolution that determines the minimum detectable unit, the pres-

ence of restriction sites in a region is required to map structural fea-

tures by BioNano. Thus, the frequency of restriction sites is another

important factor limiting the detectability of the BioNano genome

mapping system. Based on the profile, the variation in optical reso-

lution for BioNano molecules was modelled as a cumulative

Gaussian distribution in the BioNano molecule simulator BMSIM

(Section 2.5).

3.1.5 Formation of chimeric molecules

The formation of chimeric molecules from the joining of multiple

unrelated genomic regions has not been systematically character-

ized for the BioNano genome mapping system to date. Because

the BioNano experiments did not involve PCR or DNA-ligation

steps, the chimerism most likely resulted from the concatenation

of random DNA molecules in nanochannels during imaging. By

analyzing the BioNano molecules that were aligned to two or

more regions in the reference genome, we identified the joining of

two, three or more BioNano molecules from unrelated genomic

regions (Fig. 3A). Among the eight BioNano datasets, on average,

�15% of all molecules were chimeric (Fig. 3B and C) and

shared a similar profile of chimerism. ‘Bimera’ was the most com-

mon type, accounting for �87% of all chimeric instances.

Higher-order chimeras, such as ‘Trimera’ and ‘Quadramera’,

occurred at a much lower frequency, accounting for �12 and

�1%, respectively. Considering the frequency of chimeric events

for molecules of different length, not surprisingly, we found

that longer molecules generally had a higher frequency of

chimeric events (Fig. 3D). For example, molecules longer than

300 Kb were found to have an approximately 30% chance to be

chimeric.

Fig. 2. Variation in the optical resolution of the BioNano system, as revealed

by the ratio distribution of resolved neighbouring sites in BioNano molecules

from eight organisms. ‘Resolved neighbouring site ratio’ represents the ratio

of the resolved neighbouring sites to the total neighbouring sites on BioNano

molecules at the same distance. Dots are the distribution for BioNano mol-

ecule data, and lines represent the fitting curves of the cumulative Gaussian

distribution. R2 (coefficient of determination) and RMSE (root mean squared

error) were computed for each dataset

Fig. 3. Formation of chimeric BioNano molecules. (A) Examples of chimeric

molecules identified in our E.coli sample sets. To identify a chimaera, some

more stringent thresholds were used, i.e. mapping confidence score >8 (for

anchoring molecule regions to reference genome) and the ratio of the anch-

ored regions to the total molecule length >70%. The lines represent the

boundary for aligned regions between chimeric molecules and reference

genomes. (B) Chimera fraction detected for each BioNano molecule dataset.

(C) Proportion of Bimera, Trimera and Quadramera among all chimeric mole-

cules for each BioNano molecule dataset. (D) Longer molecules having a

higher rate of chimeric events
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3.1.6 Coverage distribution bias and fragile sites

BioNano molecules should distribute uniformly over genomes be-

cause of the shotgun process. Ignoring the edge effect, it was an

equivalent of a homogeneous Poisson process (Sarkar, 2006). To

examine the coverage uniformity, we aligned the BioNano molecule

data to those of reference genomes and tabulated the coverage

depth per labelling site for each genome to produce coverage

density plots (Fig. 4A). The coverage distributions of P.pudita and

D.melanogaster were found to deviate from theoretical Poisson dis-

tribution. To identify the cause of deviation, we looked more closely

at the P.Putida dataset, which had over 1000-fold average coverage

and severe deviation (Fig. 4A). Eight spots with dramatically lower

coverage were found to correspond to so-called fragile sites in the

P.putida genome (Fig. 4B, dots).

To determine the distance range between sites in a fragile site,

we plotted the likelihood of breakage against the distance between

nicking sites on opposite strands (Fig. 4C inner panel). The likeli-

hood of breakage was estimated using the relative coverage of

aligned molecules, i.e. a lower coverage representing higher

breakage likelihood. We concluded that a fragile site was likely to

form when two nicking sites on opposite strands were within 400 bp

of each other (Fig. 4C inner panel, dash line). The potential fragile

sites for the eight datasets in our study were calculated

(Supplementary Table S2). The likelihood of breakage increased as

the two nicking sites on opposite strands getting closer to each other,

following a curve approximating exponential decay (R2 ¼ 0.7615;

Fig. 4C) (Section 2.6).

Uneven labelling density along a genome was another factor that

might contribute to coverage bias. By analyzing the relationship be-

tween the uniformity of the labelling site distribution and coverage

depth, we found a correlation (averaged R¼0.41) between the local

label density (labelling sites/100 Kb) and the relative coverage depth,

indicating a biased coverage against genome regions with sparse

labelling sites. The existence of large sparse labelling regions in

the P.pudita genome (R¼0.63), and D.melanogaster genome

(R¼0.76), may explain their derivations from theoretical Poisson

distribution in coverage depth. Apart from fragile sites and uneven

labelling site distribution, molecule length, alignment parameters

(Supplementary Figs S6 and S10) as well as repetitive elements, gaps

and ambiguous sequences in reference genomes, DNA stretching

variations, FN or FP errors and chimeric molecules may play a role

in making coverage distribution over-dispersed and/or skewed.

3.2 BioNano molecule simulator (BMSIM)
Based on the properties and statistical models of the BioNano

molecule data (detail information of the models can be found in

Section 2 and Supplementary Methods), we developed a program,

BioNano Molecule SIMulator (BMSIM), to generate BioNano mole-

cules data in silico. BMSIM comprises five major steps: in silico frag-

mentation, nicking site labelling, error modelling, SNR score

assigning and coverage depth iteration (Fig. 5). To evaluate the per-

formance of BMSIM, we generated simulated BioNano molecule

data for four organisms (E.coli PL, P.putida, S.pombe and O.sativa).

The synthetic datasets were found to closely match the measured

properties of the experimental data (Supplementary Table S3).

Remarkably, BMSIM reproduced coverage bias due to fragile sites.

When the function for simulating fragile sites was disabled for

BMSIM, the signature of fragile site bias, i.e. reduced coverage

depth at fragile sites disappeared (Supplementary Fig. S7).

3.3 Evaluation of factors impacting whole-genome

optical map assembly using simulated BioNano data
The assembly of a whole-genome optical map is an essential applica-

tion of BioNano genome mapping technology, which can facilitate

the construction of a reference genome, resolving highly repetitive

sequences and correcting of some gnome assembly errors. The fac-

tors that impact whole-genome optical map assembly have not been

systematically investigated, and their effects have not been quantita-

tively evaluated. Thus, it is imperative to investigate how whole-

genome optical map assembly is affected by the biases and errors of

BioNano molecule data and to seek the optimal conditions/parame-

ters under which the best practice of BioNano experiments should

be carried out.

To perform the study, we used synthetic datasets generated with

BMSIM, which simulated broad data features/conditions that were

not possible without the BioNano data simulator. The simulated

datasets were assembled using the BioNano in-house Assembler

Version 3370 from the IryView package. The analysis was designed

to investigate the effects that factors such as coverage depth,

molecule length, FN/FP errors, chimerism, enzyme selection and

Fig. 4. Coverage distribution bias and fragile sites of BioNano molecules. (A)

Density plots of the coverage depth per labelling site for eight organisms.

The solid (BioNano) and dashed (Poisson) lines represent the distributions

of real molecules and the theoretical Poisson model with the same mean, re-

spectively. Note that the gap regions and mapped outliers (count greater

than two times the median count) along the chromosome are excluded. (B)

Coverage depth and fragile sites along the P.putida genome. The dots repre-

sent the predicted fragile sites. (C) Curve fitting of the breakage likelihood

versus deduced neighbouring site distance. The distance between two

neighbouring sites was deduced based on their locations on the reference

genome. The breakage likelihood of fragile sites is designated 1 minus the

relative coverage (RCOV) at potential fragile sites. The relative coverage

(RCOV) is the ratio of the coverage depth at a fragile site to the average

coverage depth of the whole genome. The inner panel illustrates the distri-

bution of RCOV versus the binned neighbouring sites distance. When the

distance between neighbouring sites increases to �400 bp, RCOV is close to

1, indicating a low (near 0) likelihood of breakage. SSE, the sum of squares

due to error; R-square, coefficient of determination; Adjusted R-square, de-

gree-of-freedom adjusted coefficient of determination; RMSE, root mean

squared error
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nicking/labelling site density had on the outcome of whole-genome

optical map assembly.

3.3.1 Coverage depth of BioNano molecule data

Coverage depth is a critical factor for the design of BioNano experi-

ments. To estimate the sensitivity and specificity at various coverage

depths, we generated simulated BioNano data for four organisms of

various genome sizes: S.coelicolor, H.sapiens, D.melanogaster and

O.sativa. Although the other factors, e.g. average length, FN/FP,

nicking site density and chimeric molecules, remained constant

among the four datasets, each genome was assembled with BioNano

molecule data of various coverage depths between 10� and 100�
(Fig. 6A). The results of assemblies were evaluated with assembly

completeness, contig N50 and contig number. While a high assem-

bly completeness (95%) was achieved at 40� coverage depth for a

smaller genome, larger genomes required a much higher coverage

depth (100�) to reach the same level. However, contig N50 behaved

similarly among the genomes below 80� coverage depth and started

to differentiate above that point (Fig. 6A middle panel). Notably,

for large genomes, e.g. D.melanogaster and O.sativa, a coverage

depth of 80� was required to have a contig N50 larger than 1 Mb.

For assembly fragmentation, we observed that the number of contigs

increased initially before it was reduced (Fig. 6A right panel). The

turning point was intrinsic to each genome, probably closely related

to its genome size.

3.3.2 Molecule length of BioNano molecule data

The length of BioNano molecules can vary greatly depending on

the organism, experimental protocol for DNA isolation, and often

the skill of the researcher. Thus, we determined whether the length

of the BioNano molecules (assuming the same standard distribu-

tion as described above) impacts the outcome of map assembly.

We generated synthetic BioNano molecule data of the O.sativa

genome (�380 Mb), with N50 lengths at 140, 170, 200 and 230

Kb and coverage depths fixed at 40, 60, 80 and 100�. Our

results showed that, at a lower coverage depth, the molecule length

had a greater impact on the assembly completeness (Fig. 6B, left

panel). However, a larger molecule length needed only a low

coverage depth to achieve a high completeness rate. As the mol-

ecule length increased, contig N50 became larger, accompanied by

the decrease in the contig number (Fig. 6B middle and right

panels).

3.3.3 FP/FN errors of BioNano molecule data

The FN and FP rates of the BioNano data varied depending on the

quality of DNA samples and conditions of the nicking/labelling

reactions. It was unclear how FN and FP errors impacted the out-

come of whole-genome optical map assembly. Using BMSIM, we

generated simulated BioNano data for O.sativa (�380 Mb) with

combinations of different FN and FP rates (5, 10, 15 and 20%).

For this analysis, the coverage depth was fixed at 40, 60, 80

and 100�.

The result plane of variable FN rates had a steeper slope than

that of variable FP rates (Fig. 6C), suggesting the FN rate had a

greater influence on whole-genome optical map assembly complete-

ness than the FP rate. The assembly completeness dropped sharply

from 99 to 0.04, 0.07, 0.5 and 2% as the FN rate increased from 5

to 20% for the coverage depths of 40, 60, 80 and 100�, respectively

(Fig. 6C). On the other hand, the assembly completeness decreased

from 99 to 7, 20, 36 and 49% as the FP rate increased to the same

extent. However, at high error rates, e.g. 20%, of either FP or FN,

the result of whole-genome optical map assembly became unaccept-

able. An increased coverage depth may have been able to compen-

sate for the slightly elevated error rates of FP or FN. For example,

with an FN rate of 15% (FP¼10%), the coverage depths of 80�
and 100� led to assembly completeness values of 50 and 95%, re-

spectively (Fig. 6C). With an FP rate of 15% (FN¼10%), the cover-

age depths of 80� and 100� resulted in assembly completeness

values of 67 and 81%, respectively.

3.3.4 Chimerism of BioNano molecule data

Molecule chimerism is a common issue for BioNano molecule data

and might cause assembly errors using overlapping graphs. To

evaluate the impact of chimeric molecules on whole-genome optic-

al map assembly, simulated BioNano molecule data (with coverage

depths of 40� and 80�) were generated for O.sativa with chimera

fractions at 0, 10, 25 and 40%. Whereas chimeric molecule artifi-

cially increased the valid molecule quantity (>100 kb), the mol-

ecule length, label density, FP rate and FN rate changed little

(Fig. 6D). In contrast, as the chimera fraction increased, the mol-

ecule mapping rate, the molecule usage, the assembly completeness

and contig N50 were reduced. Further, the assembly with lower

coverage molecule data had a much greater impact in the presence

of chimeric molecules (Fig. 6D). Notably, the experimentally gen-

erated BioNano datasets had an average chimera fraction between

8.7 and 26.4% (Fig. 3B). Thus, molecule chimerism is an import-

ant factor when considering BioNano experiments for whole-

genome optical map assembly. To minimize the chimeric rate, we

may reduce the DNA concentration when running DNA samples

through nanochips.

Fig. 5. Scheme diagram of BioNano Molecule SIMulator (BMSIM). BMSIM

comprises of five major steps: in silico fragmentation, nicking sites labelling,

error modelling, SNR score assigning and coverage depth iteration (see

Supplementary Methods Section S1.3 for details)
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3.3.5 Choice of nicking enzyme and nick site density

The choice of nicking enzyme is genome specific and critical to pro-

duce informative data for whole-genome optical map assembly.

BioNano currently offers the choice of four nicking enzymes for

labelling, Nt.BspQI, Nb.BbvCI, Nb.Bsml and Nb.BsrDI. To under-

stand how different enzymes and their nicking patterns affect the

outcome of whole-genome optical map assembly, we designed and

performed a comprehensive analysis using sample genomes of

organisms with different GC content, D.discoideum (GC% ¼ 23),

S.ratti (GC% ¼ 22), A.thaliana (GC% ¼ 37), H.sapiens (GC% ¼
41), D.melanogaster (GC% ¼ 43), O.sativa (GC% ¼ 44), P.putida

(GC% ¼ 63) and S.coelicolor (GC% ¼ 73) (Supplementary Table

S4). BioNano molecule data were generated in silico with the four

available nick enzymes using BMSIM, producing a spectrum of nick

site densities ranging from 1.0 to 82.2/100 Kb that were translated

to labelling densities ranging from 2.0 to 34.3/100 Kb due to the col-

lapse of nearby sites (Fig. 6E, and Supplementary Table S4).

The properties and quality of simulated BioNano molecule data

were evaluated using the labelling ratio (ratio of the labelling density

to the nicking density), valid molecule (>100 Kb) length ratio (ratio

of the valid molecule length with fragile sites to that without fragile

sites) and valid molecule (>100 Kb) quantity ratio (ratio of the valid

molecule quantity with fragile sites to that without fragile sites). As

expected, assuming an optimized nicking reaction protocol, we

observed a decrease in the labelling ratio, valid molecule length ratio

and valid molecule quantity ratio with the increase in nick site dens-

ity (Fig. 6E) because a higher nick density would result in more fra-

gile sites, thus making the molecule length shorter. For example,

with a nick site density at 23.85/100 Kb, the labelling density was

15.8/100 Kb, a �34% drop in the labelling ratio, a �20% drop in

the valid molecule length ratio and a �22% drop in the valid

molecule quantity ratio. In the extreme case of a nick site density at

62.6/100 Kb, the labelling density would be 28.4/100 Kb, with a

70% decrease in the valid molecule quantity ratio. Thus, for

Fig. 6. Simulation study of whole-genome optical map assembly using synthetic BioNano molecule data by BMSIM. (A) Effect of coverage depth on results of

whole-genome optical map assembly. Assembly completeness is the ratio of assembled map size to reference genome size. (B) Effect of BioNano molecule

length (N50) on results of whole-genome optical map assembly. The genome of O.sativa, IRGSP1.0, was used in the simulation analysis. (C) Impact of FP/FN error

rates on results of whole-genome optical map assembly. The genome of O.sativa, IRGSP1.0, was used in the simulation analysis. The variable error rate of 0.05,

0.10, 0.15 and 0.20 was simulated with the other one fixed at 0.1, and coverage depth at 40, 60, 80 and 100�. The result plane of variable FN rates has a steeper

slope than that of variable FP rates. (D) Effect of different chimera fractions on results of whole-genome optical map assembly. The genome of O.sativa,

IRGSP1.0, was used in the simulation analysis. (E) Effect of nicking enzyme selection and nick site density on results of whole-genome optical map assembly.

Synthetic BioNano molecule data were generated in silico with sampled genomes of the eight organisms with different GC contents (Supplementary Table S4)

using four nicking enzyme, Nt.BspQI, Nb.BbvCI, Nb.Bsml and Nb.BsrDI. Labelling ratio, the ratio of labelling density to nick density; valid molecule length ratio,

the ratio of valid molecule (>100 Kb) N50 with fragile sites to valid molecule (>100 Kb) N50 without fragile sites; valid molecule quantity ratio, the ratio of valid

molecule (>100 Kb) quantity with fragile sites to valid molecule quantity (>100 Kb) without fragile sites; assembly completeness, the ratio of assembled map size

to reference genome size
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enzymes that produced a high nick site density, the reduction of the

labelling ratio and valid molecule became significant.

Next, we evaluated the effects of nicking enzymes and the nick-

ing site density on the outcome of map assembly. We observed that

although the labelling density ratio remained high at low nick site

density (<8.9/100 Kb; labelling density<7.1/100 Kb), the assembly

completeness was poor (Fig. 6E, dash line). In contrast, at a high

nick site density (>42.0/100 Kb; labelling density>20.2/100 Kb), a

50% drop in the labelling density led to the assembly completeness

dropping significantly to below 80%. Thus, decreasing the labelling

ratio is an important signal to monitor, and new experiments may

be warranted if the ratio becomes too low.

Considering the results, it was suggested that enzymes with a

nick site density above 40/100 Kb or below 9.0/100 Kb should be

avoided. For enzymes with a nick site density in the range of 20–40/

100 Kb, the labelling ratio, valid molecule length ratio, valid

molecule quantity ratio and assembly completeness declined sub-

stantially. Hence, a nick site density between 9 and 20/100 Kb

(labelling site density between 7 and 14/100 Kb) would be optimal

to guarantee high-quality molecule data and complete map assembly

at an acceptable cost (Fig. 6E, shaded regions).

4 Discussion

To investigate the property, bias and error profile of BioNano data,

we generated BioNano molecule data and exploited organisms with

varying genome sizes. Although we revealed many common descrip-

tive properties for physical mapping data, some pertain only to the

BioNano system. Summary of the properties of BioNano data and

the observation of these properties are listed in Supplementary Table

S6. The FP and FN signals are distributed differently for BioNano

molecules. While FP signals are random events with a physically uni-

form distribution along DNA molecules, FN signals are elevated in

the middle intervals of DNA molecules, attributed to the tertiary

structure of DNA molecules in nicking and labelling reaction solu-

tions that limit the access of enzymes. DNA molecule stretching

varies between different nanochips, runs and scans and is likely

affected by factors such as nano-channel size, labelling reagent and

salt concentration. Optical resolution of the BioNano system varied

with the low boundary approaching �1 Kb, whereas neighboring

sites within 1 Kb of each other may be detected but un-reliable. The

likelihood of two neighbouring sites within 1–3 Kb being resolved

follows a cumulative Gaussian distribution. Chimeric molecules, on

average, account for �15% of total molecules and have a substan-

tially higher frequency for longer DNA molecules (>300 Kb). A

good option is to reduce chimeric rates of long molecules, by remov-

ing long molecules with a backbone intensity greater than a certain

threshold that are likely chimeric. Additional work is needed to ex-

plore the method to detect the cases of multi-molecule pileups in

nano-channel, and exam its relationship with occupancy. The cover-

age distribution of BioNano molecules is found to be deviated from

homogeneous Poisson, for which fragile sites, sparse labelling, mol-

ecule length, repetitive elements, DNA molecule stretching vari-

ation, chimerism and reference genome quality, among others, are

likely contributing factors. For whole-genome optical map assembly,

low coverage due to sparse labelling can be remedied by increasing

the overall molecule length or total BioNano data. However, higher

coverage depth is often useless for fragile sites. For example, al-

though up to 1783� BioNano molecule data were generated for

P.putida, its whole-genome optical map assembly was still frag-

mented due to break-up at four fragile sites. For such cases, we

propose that a ‘stitching’ procedure utilizing rare molecules covering

fragile sites or a combination of BioNano maps with different nick-

ing enzymes can be explored. In addition, algorithmic enhancements

to BioNano pipeline, for example, normalization for DNA molecule

stretching, chimeric molecule analysis with split/partial alignments

or detection/filtering of false signals, may be pursued to improve op-

tical data mapping and genome map assembly.

Coverage depth and molecule length are two essential variables

for BioNano experiments, and it is important to put them in per-

spective for whole-genome optical map assembly. It is apparent that

as genomes become larger, coverage depth becomes more critical for

the three measurements of whole-genome optical map assembly: the

assembly completeness, contig N50 and contig number (Fig. 6A).

Under normal experimental conditions, a 40� to 60� coverage

depth is sufficient for the map assembly of bacterial genomes, but an

80� to 100� coverage depth is required for eukaryotic genomes

over 100 Mb in size. When the assembly completeness approaches

100%, the contig N50 and contig number for whole-genome optical

map assembly continue to improve with higher coverage. Thus, we

recommend even higher coverage when designing BioNano experi-

ments for applications that desire long continuity of whole-genome

optical maps. Increasing the length of BioNano molecule data has a

significant effect (somewhat surprising) on the quality of whole-

genome optical map assembly, as evidenced by the near linear cor-

relation between molecule length and completeness of assembly,

contig N50 and contig number (Fig. 6B). Although these results

demonstrate the benefit of a large molecule length in whole-genome

optical map assembly, more often in practice, the benefit of a large

molecule length is not achievable due to the technical difficulty to

preserve long DNA through isolation and labelling steps.

FP/FN signals and chimeric molecules are two intrinsic factors

that may not be easy to control or manipulate. However, it is critic-

ally important to understand the impact of their variations on

whole-genome optical map assembly. FP/FN signals are found to

have an uneven effect on whole-genome optical map assembly, with

an increase in the FN rate having a greater influence than that in the

FP rate (Fig. 6C). We suggest using a sufficient amount of enzyme

and possibly a longer reaction time in the nicking/labelling steps to

keep the FN rate low. Additionally, based on simulation results, the

quality filter parameter ‘snrFilter’ in BioNano assembly pipeline can

be relaxed to avoid missing true positive signals with the cost of a

slightly higher FP rate. Furthermore, an increased coverage depth

may be recommended to mitigate the effect of elevated FN and FP

rates for whole-genome optical map assembly. Note that, among the

eight BioNano datasets generated experimentally, the FP and FN

rates were found to be no greater than 9.04 and 15.9%, respectively

(Supplementary Table S1). Thus, for genomes over 100 Mb in size, a

coverage depth of 80� to 100� should be at least considered for

whole-genome optical map assembly. The effect of chimeric mole-

cules on whole-genome optical map assembly was found to be more

severe at a low coverage depth than at high coverage ones (Fig. 6D).

However, at a higher coverage depth (e.g. �80�) the impact of chi-

meric molecules on whole-genome optical map assembly was

minimized.

Nicking enzyme selection is often the first decision to make in

BioNano experiments. Researchers often rely on general suggestions

from BioNano to perform test runs for an unknown genome. By

simulating the whole spectrum of nicking and labelling densities

with combinations of enzymes and synthetic datasets of organisms

with variable GC content, we revealed a complete picture of variable

nicking/labelling densities with the outcome of whole-genome optic-

al map assembly. With higher nicking densities, increases in fragile
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sites and FN rates severely reduce the labelling ratio, valid molecule

length ratio and valid molecule quantity ratio. In particular, the de-

crease in the labelling ratio is the benchmark signal to monitor.

With the labelling ratio decreasing to 50%, whole-genome optical

map assembly collapses and becomes unacceptable in terms of com-

pleteness and fragmentation. In such a scenario, new experiments

with different nicking enzymes should be pursued. Our results dem-

onstrate that a nick site density between 9 and 20/100 Kb (labelling

site density between 7.0 and 14/100 Kb) is the optimal range for

BioNano experiments. For a new organism, these parameters may

be estimated using a closely related genome or Illumina sequencing

data. Further, to develop a guideline on how to choose appropriate

nicking enzymes for organisms of various GC contents, we obtained

a total of 128 genomes covering broad phylogenetic systems

(Supplementary Table S7). Basing on their nicking/labelling density

predicted using recognition sequences of nicking enzymes, we rec-

ommend the nicking enzymes Nb.Bsml and NbBsrDl for genomes

with a low GC content (<25%), Nt.BspQI for those with a medium

GC content (25–40%), and both Nt.BspQI and Nb.BbvCI for those

with a higher GC content (>40%) (Supplementary Fig. S11).

BMSIM simulator can be extended to other applications. For

example, it can help investigate on the robustness of haplotype-

sensitive assembly for various BioNano data. By simulating haplo-

type blocks of various length for diploid genomes, the accuracy and

sensitivity of haplotype-sensitive assembly can be evaluated.
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