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Abstract

Alginetin is the major product formed from pentoses and hexurionic acids. Alginetin is pro-

ducted by cooking process of food including pection, a naturally-occurring polysacharride

found in many plants. However, the biological interaction and toxicity of alginetin are not

known at all. The aim of the present study was to investigate the cellular actions of alginetin

on rat thymic lymphocytes. The effects of alginetin on the cell were examined using flow

cytometry with fluorescent probes. Alginetin increased cellular content of non-protein thiols

([NPT]i) and elevated intracellular Zn2+ levels ([Zn2+]i). Chelation of intracellular Zn2+

reduced the effect of alginetin on [NPT]i, and chelation of external Zn2+ almost completely

diminished alginetin-induced elevation of [Zn2+]i, indicating that alginetin treatment

increased Zn2+ influx. Increased [NPT]i and [Zn2+]i levels in response to alginetin were posi-

tively correlated. Alginetin protected cells against oxidative stress induced by hydrogen per-

oxide and Ca2+ overload by calcium ionophore. It is considered that the increases in [NPT]i

and [Zn2+]i are responsible for the cytoprotective activity of alginetin because NPT attenu-

ates oxidative stress and Zn2+ competes with Ca2+. Alginetin may be produced during

manufacturing of jam, which may provide additional health benefits of jam.

Introduction

Alginetin (3,8-dihydroxy-2-methylchromone) may be a forgotten compound, as nearly all

papers concerning this molecule were published 65–84 years ago [1]. Moreover, there have

been no reports of pharmacological and/or toxicological actions of alginetin. Therefore, our

study is probably the first investigation of alginetin bioactivity.

Pectin is a natural produced essential ingredient in preserves. Pectin is a type of starch,

called a heteropolysaccharide, that occurs naturally in the cell walls of fruits and vegetables and

gives them structure. Alginetin (3,8-dihydroxy-2-methylchromone) was first obtained by heat-

ing alginic acid with water in an autoclave and was also obtained from pectin and gummic
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acid in the 1930’s [1]. Alginetin is a hydrolysis degradation product of pectin [2] Pectin is used

as a food additive and occurs naturally in most fruits. Pectin is responsible for giving jellies

their gel-like consistency, resulting in better spreadability. Use of a pressure cooker to make

jam from fruits may result in alginetin production. Although bioactivity of alginetin has not

been studied, the chemical structure suggests that the compound possesses antioxidant activity

similar to other methylchromone derivatives with hydroxyl groups that have antioxidative

properties [3]. In this study, we examined bioactivity of alginetin in rat thymic lymphocytes

using flow cytometry with fluorescent probes. Beneficial cellular activity of alginetin would

provide additional value for foods in which alginetin is produced during the manufacturing

process.

Materials and methods

Preparation of alginetin

KH2PO4 and Na2HPO4 (9:1, 50 g) were added to a methanolic solution (50 mL) of D-glucuro-

nolactone (1 g), then mixed well. After removal of methanol in vacuo, residual solids were

heated at 130˚C for 1 h under N2. The resulting brown solid was extracted twice with methanol

(50 mL), and the combined extract was evaporated completely, resulting in a dark brown resi-

due (210 mg). The residue was purified by chromatography using an octadecyl silane silica gel

column with a stepwise gradient using 20%, 30%, and 40% aqueous methanol containing 1%

acetic acid, and 100% methanol containing 1% acetic acid (each 120 mL). Eluate was collected

in 60 mL fractions and the third fraction containing alginetin (17 mg) was evaporated in
vacuo. These chemicals were purchased from Wako Pure Chemicals (Osaka, Japan). The struc-

ture of the isolated alginetin was characterized by nuclear magnetic resonance spectroscopy

(NMR) as follows; 1H-NMR (400 MHz, CD3OD): δ 7.61 (1H, d, J = 7.6 Hz), 7.26 (1H, t,

J = 7.6 Hz), 7.19 (1H, d, J = 7.6 Hz), 2.55 (3H, s). NMR spectra were obtained from a

JNM-ECZ400S (400 MHz, JEOL, Tokyo, Japan).

Fluorescent probes and chemicals

Propidium iodide (PI) was used to assess cell death. Estimation of cellular content of nonpro-

tein thiols was performed with 5-chloromethylfluorescein diacetate (5-CMF-DA) [4]. Fluo-

Zin-3-AMTM was used to study changes in intracellular Zn2+ levels ([Zn2+]i) [5]. These probes

were commercially obtained from Invitrogen and Thermo Fisher Scientific Inc. (Eugene, Ore-

gon, USA). Membrane-impermeable and -permeable Zn2+ chelators, diethylenetriamine-N,N,

N’,N",N"-pentaacetic acid and N,N,N’,N’-tetrakis (2-pyridylmethyl)ethylenediamine (DTPA

and TPEN, respectively), were purchased from Dojin Chemicals (Kumamoto, Japan). Other

chemicals were products of Wako Pure Chemicals (Osaka, Japan).

Cell suspension

The use of experimental animals in this study was approved by the committee of Tokushima

University and Tokushima Bunri University (Tokushima, Japan) (Registration number in

Tokushima university: T29-52, Registration number in Tokushima Bunri university: H30-3).

Cell suspensions were prepared from thymus glands as follows. Briefly, thymus glands were

dissected from 8- to 12-week-old male Wistar rats (Total number of rat; n = 8, 280–340 g /

Charles River Laboratories Japan, Kanagawa, Japan) anesthetized with 50 mg/kg i.p. thiopental

sodium (RavonalTM, Mitsubishi Tanabe Pharma, Osaka, Japan). The glands were sliced with a

razor. The slices were triturated in chilled Tyrode’s solution (150 mM NaCl, 5 mM KCl, 2 mM

CaCl2, 1 mM MgCl2, 5 mM glucose) to dissociate individual lymphocytes. The pH of solution
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was adjusted at 7.3–7.4 with 5 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid and

appropriate amount of NaOH. The solution containing dissociated cells was passed through a

mesh (diameter: 25 μm) to prepare the cell suspension (approximately 5 × 105 cells/mL). Cells

were incubated at 36–37˚C for 1 h before experimental use. The cell morphology images of the

cells cultured in the present of alginetin were performed by a inverted microscope (Nikon

Eclipse TS100, Nikon,Tokyo, Japan).

Fluorescence measurements of cellular parameters

Alginetin, 5-CMF-DA, FluoZin-3-AM, DTPA, and TPEN were initially dissolved in dimethyl

sulfoxide (DMSO). DMSO was present at concentrations of 0.1–0.3% in final conditions,

which did not induce cell death. Cellular and membrane parameters were measured using

fluorescent probes and a flow cytometer equipped with a software package for data collection

and analysis (CytoACE-150; JASCO, Tokyo, Japan). The excitation wavelength used for the

fluorescent probes was 488 nm, and emission was detected at 530 ± 15 nm for 5-CMF and

FluoZin-3 and at 600 ± 20 nm for PI. PI, which stains dead cells, was added to cell suspensions

at a final concentration of 5 μM. 5-CMF and FluoZin-3 fluorescence were measured only in

cells exhibiting no PI fluorescence (living cells with intact cell membranes). To estimate

changes in [NPT]i, primarily glutathione, cells were incubated with 1 μM 5-CMF-DA for 30

min before fluorescence analysis. The correlation coefficient between flow cytometric and bio-

chemical determination of glutathione was 0.965 [4]. To monitor changes in [Zn2+]i, cells were

incubated with 500 nM FluoZin-3-AM for 60 min before fluorescence measurements were

conducted.

Experimental protocol

Alginetin (3–100 mM in 2 μL of DMSO) was added to cell suspensions (1.998 mL per one test

tube) and the mixtures were incubated at 36–37˚C. Each cell suspension (100 μL) was analyzed

using flow cytometry to assess alginetin-induced changes in cellular parameters. Fluorescence

data acquisition from 3 × 103 cells required 10–15 s. In our previous study to examine the cyto-

toxicity of H2O2 as oxidative stress and A23187 (Calcimycin), a divalent cation ionophore

(Sigma-Aldrich Co, St. Louis, MO, USA) as Ca2+ overload [6], the cells were incubated with

H2O2 or A23187 for 3–4 h to induce cell death in 20–40% of cells. Change in [NPT]i by algine-

tin was examined 2 h after the application in order to suggest the [NPT]i before the occurrence

of cell death induced by H2O2.

Statistical analysis

Statistical analysis was performed using Excel Toukei 2010 (Social Survey Research Informa-

tion Co., Ltd. Tokyo, Japan). Statistical analysis was performed using ANOVA with post-hoc

Tukey’s multivariate analysis. P-value < 0.05 was considered statistically significant. Data

reported in this study were mean ± standard deviation of 4–8 experiments.

Results

Changes in 5-CMF fluorescence in response to alginetin

The histogram representing distribution of 5-CMF fluorescence in cells incubated with

100 μM alginetin for 2 h was shifted to a higher fluorescence intensity compared with the con-

trol histogram (Fig 1A) demonstrating that alginetin treatment increased [NPT]i. Alginetin

augmented 5-CMF fluorescence at 10 μM and significant augmentation was observed across

the range of 30–100 μM alginetin (Fig 1B). Moreover, alginetin was changed the cell
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morphology on rat thymic lymphocytes (Fig 1C). A previous study demonstrated that eleva-

tion of [Zn2+]i precedes increases in [NPT]i [7]. Therefore, to determine if Zn2+ contributed to

increased [NPT]i, the effect of 100 μM alginetin was evaluated in the presence of 10 μM TPEN,

an intracellular Zn2+ chelator. As shown in Fig 2, incubation of cells with TPEN for 2 h

reduced steady state intensity of 5-CMF fluorescence. Furthermore, TPEN significantly

reduced alginetin-induced 5-CMF, indicating involvement of intracellular Zn2+ in alginetin-

induced elevation of [NPT]i.

Change in FluoZin-3 fluorescence in response to alginetin

To determine whether alginetin increases [Zn2+]i, alginetin-induced changes in [Zn2+]i were mea-

sured. As shown in Fig 3A, the histogram of FluoZin-3 fluorescence shifted to a higher intensity 1

h after treatment with 100 μm alginetin. Treatment with 30–100 μM alginetin for 1 h significantly

increased the intensity of FluoZin-3 fluorescence (Fig 3B), indicating that alginetin induced eleva-

tion of [Zn2+]i. The observed changes in FluoZin-3 fluorescence induced by alginetin were posi-

tively correlated with those of alginetin-induced 5-CMF fluorescence (Fig 4).

Increases in [Zn2+]i can occur due to Zn2+ influx from the extracellular environment and/

or intracellular Zn2+ release. To determine the source of alginetin-induced elevation of [Zn2

+]i, changes in FluoZin-3 fluorescence induced by 100 μM alginetin were examined in the pres-

ence of 10 μM DTPA, an external Zn2+ chelator. Removal of external Zn2+ by DTPA signifi-

cantly reduced steady state intensity of FluoZin-3 fluorescence and significantly attenuated

alginetin-induced augmentation of FluoZin-3 fluorescence (Fig 5). Thus, alginetin-induced

increases in [Zn2+]i were dependent on extracellular Zn2+.

Fig 1. Augmentation of 5-CMF fluorescence by alginetin. (A) Shift of 5-CMF fluorescence histogram in response to

2 h alginetin treatment. The inset shows the chemical structure of alginetin. (B) Concentration-dependent

augmentation of mean intensity of 5-CMF fluorescence induced by alginetin. Asterisks (��) indicate significant

differences (P< 0.01) in 5-CMF fluorescence intensity between the control group (CONT) and the groups of cells

treated with 30–100 μM alginetin. (C) The cell morphology images in response to 2 h alginetin treatment.

https://doi.org/10.1371/journal.pone.0241290.g001

Fig 2. Augmentation of 5-CMF fluorescence by alginetin in the absence and presence of TPEN. Asterisks (��)

indicate significant differences (P< 0.01) in 5-CMF fluorescence intensity between the control group (CONT) and the

groups of cells treated with 100 μM alginetin (ALG) in the absence (left pair / open column) and presence (right pair /

filled column) of 10 μM TPEN. Pound signs (##) show significant difference (P< 0.01) between the groups of cells

treated with alginetin.

https://doi.org/10.1371/journal.pone.0241290.g002
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Fig 3. Augmentation of FluoZin-3 fluorescence by alginetin. (A) Shift of the FluoZin-3 fluorescence histogram in

response to 1 h alginetin treatment. (B) Concentration-dependent augmentation of mean intensity of FluoZin-3
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Cytoprotective actions of alginetin

Glutathione protects cells against oxidative stress [8, 9]. Therefore, alginetin-induced increases

in [NPT]i may result in resistance to H2O2 toxicity. The effects of 10–100 μM alginetin on

changes in cell lethality induced by 300 μM H2O2 were evaluated. As shown in Fig 6, incuba-

tion of cells with H2O2 for 4 h increased PI fluorescence, indicating increased cell death, while

treatment with 100 μM alginetin for 4 h did not result in increased PI fluorescence. Cell death

induced by H2O2 was significantly attenuated by simultaneous treatment with alginetin in a

concentration-dependent manner (10–100 μM alginetin) (Fig 7A).

Treatment of cells with H2O2 increases intracellular Ca2+ concentration ([Ca2+]i) [10], and

sustained elevation of [Ca2+]i is linked to cell death [11]. Furthermore, Zn2+ partially attenu-

ates Ca2+-dependent cell death [12]. As alginetin treatment elevated [Zn2+]i, the possibility

that alginetin treatment could protect against cell death induced by the calcium ionophore,

A23187, was evaluated. As shown in Fig 7B, incubation of cells with 100 nM A23187 for 3 h

significantly increased cell lethality. Simultaneous treatment with 30–100 μM alginetin signifi-

cantly attenuated this effect.

Discussion

Cytoprotective actions of alginetin

Our study demonstrated that alginetin protects cells against oxidative stress induced by H2O2

and Ca2+ overload induced by A23187. It is generally recognized that oxidative stress and Ca2+

overload trigger cell death [13, 11]. Therefore, alginetin may be cytoprotective against many

damaging stimuli. Alginetin, a degradation product of pectin, may be produced during jam

fluorescence by alginetin. Asterisks (��) indicate significant differences (P< 0.01) in FluoZin-3 fluorescence intensity

between the control group (CONT) and the groups of cells treated with 30–100 μM alginetin.

https://doi.org/10.1371/journal.pone.0241290.g003

Fig 4. Correlation between mean intensities of 5-CMF and FluoZin-3 fluorescence in cells treated with 10–100 μM

alginetin for 1 h.

https://doi.org/10.1371/journal.pone.0241290.g004
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Fig 5. Augmentation of FluoZin-3 fluorescence by alginetin in the absence and presence of DTPA. Asterisks (��)

indicate significant differences (P< 0.01) in FluoZin-3 fluorescence intensity between the control group (CONT) and

groups of cells treated with 100 μM alginetin (ALG) for 1 h in the absence (left pair / open column) and presence (right

pair / filled column) of 10 μM DTPA. Pound signs (##) indicate significant differences (P< 0.01) between the groups of

cells treated with alginetin.

https://doi.org/10.1371/journal.pone.0241290.g005

Fig 6. Changes in the population of PI-stained cells treated with alginetin, H2O2, or both. The dotted line under

the cytogram indicates the region of cells exhibiting PI fluorescence.

https://doi.org/10.1371/journal.pone.0241290.g006
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production [1, 2]. Development of a process for jam production which produces alginetin may

be attractive to health-oriented individuals.

Cellular actions of alginetin

[NPT]i is required to maintain protein thiols in a reduced state and to support a variety of

redox reactions for reducing ROS, detoxifying xenobiotics, and facilitating cell signaling. How-

ever, excessive oxidative stress results in indiscriminate and irreversible oxidation of protein

thiols, depletion of [NPT]i and cell death [14]. Recently, Oyama et al. showed that the excessive

of [Zn2+]i increased [NPT]i [15]. Our results showed that alginetin elevated intracellular Zn2+

levels and increased cellular content of non-protein thiols. Moreover, treatment with TPEN

did not completely attenuate alginetin-induced increases in [NPT]i. Alginetin treatment also

Fig 7. Protective effects of alginetin against oxidative stress induced by H2O2 (A) and Ca2+ overload by A23187 (B).

Asterisks (��) show significant differences between the groups of cells under insult-induced stress in the absence and

presence of 10–100 μM alginetin.

https://doi.org/10.1371/journal.pone.0241290.g007
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resulted in increased [NPT]i in the presence of DTPA, which almost completely suppressed

alginetin-induced elevation of [Zn2+]i. These phenomena indicate that alginetin induced Zn2

+-dependent and -independent increases in [NPT]i. Zn2+ increases glutathione synthesis

through an ARE-Nrf2–dependent pathway [8]. Zn2+-independent mechanisms of action of

alginetin will be evaluated in future studies. Increased [NPT]i in response to alginetin may pro-

tect against oxidative stress because [NPT]i is important in preventing pathological changes

resulting from increased levels of reactive oxygen species [16]. A previous study demonstrated

that removal of intracellular Zn2+ by TPEN increased cytotoxicity of A23187, a calcium iono-

phore that causes Ca2+ overload [12]. Zn2+ competes with Ca2+ at calcium binding proteins

[17]. Therefore, increased [Zn2+]i in response to alginetin may reduce Ca2+ binding-related

cell death, resulting in protection against Ca2+ overload. Elevation of [Zn2+]i in response to

alginetin was extracellular Zn2+-dependent because augmentation of FluoZin-3 fluorescence

by alginetin was almost completely attenuated by cotreatment with DPTA. Zn2+ influx is regu-

lated by many zinc transporters such as ZIP4, 5, 6, 10, and 14 [18]. Alginetin may activate zinc

transporters or increase membrane Zn2+ permeability via zinc transporter-independent

mechanisms.

Conclusions

The biological interaction and toxicity of alginetin has not been studied in detail. Our study

showed that alginetin increased cellular content of non-protein thiols and elevated intracellu-

lar Zn2+ levels on rat thymic lymphocyte. These results indicate that alginetin increases cell

vulnerability to oxidative stress on rat thymocytes. This study provides that alginetin, possess-

ing cytoprotective activity, would provide additional health benefits of jam if it is produced

from fruit pectin during jam manufacturing.
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