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A Gut Feeling to Cure Diabetes: Potential Mechanisms 
of Diabetes Remission after Bariatric Surgery
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A cure for type 2 diabetes was once a mere dream but has now become a tangible and achievable goal with the unforeseen suc-
cess of bariatric surgery in the treatment of both obesity and type 2 diabetes. Popular bariatric procedures such as Roux-en-Y 
gastric bypass and sleeve gastrectomy exhibit high rates of diabetes remission or marked improvement in glycemic control. How-
ever, the mechanism of diabetes remission following these procedures is still elusive and appears to be very complex and encom-
passes multiple anatomical and physiological changes. In this article, calorie restriction, improved β-cell function, improved in-
sulin sensitivity, and alterations in gut physiology, bile acid metabolism, and gut microbiota are reviewed as potential mecha-
nisms of diabetes remission after Roux-en-Y gastric bypass and sleeve gastrectomy. 

Keywords: Bariatric surgery; Diabetes mellitus, type 2; Obesity; Roux-en-Y gastric bypass; Sleeve gastrectomy

Corresponding author:  Young Min Cho
Department of Internal Medicine, Seoul National University College of 
Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
E-mail: ymchomd@snu.ac.kr

INTRODUCTION

A potential cure for diabetes has arisen in an unexpected way. 
As diabetologists, we have tried to determine the pathophysiol-
ogy of type 2 diabetes so that we can normalize glucose homeo-
stasis without using any oral or injected medications. However, 
the results of our ceaseless efforts leave us far from a cure. With 
heart-aching disappointment in mind, we have practiced with-
in a paradigm of “care not cure,” which suggests that a cure is 
impossible to attain but that care is currently the best option. In 
1995, Dr. Pories published a paper with a somewhat provoca-
tive title, “Who would have thought it? An operation proves to 
be the most effective therapy for adult-onset diabetes mellitus 
[1].” At that time, Dr. Pories observed a drastic improvement in 
blood glucose levels after Roux-en-Y gastric bypass (RYGB) in 
obese subjects who had diabetes or impaired glucose tolerance. 
This was the earliest glimpse of a potential diabetes cure by sur-
gical treatment. In a meta-analysis performed in 2004 includ-
ing approximately 5,000 patients with type 2 diabetes [2], dia-
betes remission was observed in 76.8% of obese patients with 

type 2 diabetes who underwent any type of bariatric surgery. 
However, diabetes remission rates differed according to the 
type of surgery that patients received (47.9% for gastric band-
ing, 71.6% for vertical banded gastroplasty, 83.7% for RYGB, 
and 98.9% for biliopancreatic diversion [BPD]) [2], which im-
plies that the mechanism of diabetes remission is complex and 
encompasses a variety of anatomical, physiological, and molec-
ular changes. In a recent randomized controlled trial with obese 
type 2 diabetes patients [3], the rate of diabetes remission (de-
fined as a fasting glucose level of <100 mg/dL and an hemoglo-
bin A1c (HbA1c) level of <6.5% with no antidiabetes medica-
tions) was 0% with medical therapy alone, 75% with RYGB, and 
95% with BPD. In a 1-year randomized controlled trial in obese 
patients with uncontrolled type 2 diabetes [4], both RYGB and 
sleeve gastrectomy (SG) achieved improved glycemic control, 
defined as an HbA1c level of <6.0%, more frequently (42% and 
37% of patients, respectively) than medical therapy alone (12% 
of patients). Therefore, bariatric surgery has evolved into met-
abolic/diabetes surgery. Furthermore, the benefits of bariatric 
surgery extend far beyond glycemic control. In the Swedish 
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Obese Subjects Study, mostly composed of patients who un-
derwent vertical banded gastroplasty, risk factors for cardiovas-
cular diseases, including high blood pressure, dyslipidemia, 
hypercholesterolemia, and hyperuricemia, were greatly re-
duced at 2 years postsurgery, and these effects persisted over 10 
years after surgery [5]. Furthermore, bariatric surgery reduced 
all-cause mortality [6], cardiovascular events and mortality [7], 
and the incidence of cancer [8]. Bariatric surgery was also ef-
fective in preventing type 2 diabetes [9] and in reducing micro-
vascular and macrovascular complications [10]. Overall, bar-
iatric surgery improved the quality of life in obese subjects [11]. 
In the following article, I would like to present a succinct re-
view regarding the current understanding of the mechanism of 
diabetes remission after bariatric surgery focused on RYGB 
and SG. 

CHARACTERISTICS OF RYGB AND SLEEVE 
GASTRECTOMY

RYGB isolates approximately 95% of the stomach from the pas-
sage of food; therefore, a gastric pouch with approximately 5% 
of the total stomach volume receives orally ingested food. The 
configuration of RYGB shown in Fig. 1A consists of the Roux 
limb or alimentary limb, the biliopancreatic limb, and the com-
mon channel. In the common channel, the orally ingested food 
meets digestive enzymes secreted by the pancreas and bile acids 
secreted by the hepatobiliary system. Thus, the RYGB proce-
dure (1) restricts the amount of food intake; (2) bypasses most 

of the stomach, duodenum, and proximal jejunum; and (3) ex-
pedites the passage of unabsorbed nutrients to the distal intes-
tine where glucagon-like peptide-1 (GLP-1) and peptide-YY 
(PYY) secreting L-cells are abundant. Indeed, GLP-1 and PYY 
secretion is markedly increased after RYGB.
  The SG procedure removes approximately 75% of the stom-
ach to restrict food intake (Fig. 1B). With this surgery, the in-
tragastric pressure increases upon ingestion of foods, which in 
turn increases the tension of the gastric wall [12]. Both gastric 
emptying and intestinal transit are markedly increased after SG 
[12]. Interestingly, GLP-1 secretion is noticeably augmented 
with SG, even though the anatomy of the gastrointestinal tract 
is not altered except with regard to the restriction of gastric vol-
ume. Rapid gastric emptying may contribute to the increased 
GLP-1 secretion. However, direct intraduodenal infusion of 
dextrose increased GLP-1 secretion in mice subjected to SG 
relative to control animals, which indicates that altered gastro-
intestinal physiology independent of altered gastric emptying 
plays an important role in the exaggerated GLP-1 response af-
ter SG [12].

POTENTIAL MECHANISMS OF DIABETES 
REMISSION FOLLOWING BARIATRIC 
SURGERY

Decreased calorie intake and weight loss
RYGB typically results in 35% to 40% body weight loss from 
baseline and 50% to 80% excess body weight loss [13]. Howev-
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Fig. 1. Schematic representation of (A) Roux-en-Y gastric bypass and (B) sleeve gastrectomy.
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er, a dramatic improvement in glucose control frequently oc-
curs immediately after the surgery, usually within 1 week, when 
significant weight loss has not yet taken place [1,14]. Therefore, 
the mechanism of immediate diabetes remission or improve-
ment appears to be weight loss-independent. However, adjust-
able gastric banding (AGB) is typically accompanied by a grad-
ual improvement in glucose control in obese type 2 diabetes pa-
tients [15], which is in contrast to results observed from RYGB. 
The discrepancy in the time-course of diabetes remission be-
tween RYGB and AGB suggests that there are mechanisms oth-
er than weight loss per se for the rapid remission or improve-
ment of diabetes after RYGB. However, it was shown that calo-
rie restriction is required for rapid improvement in insulin sen-
sitivity immediately after RYGB (within 1 week) by comparing 
the effects of calorie restriction and RYGB in obese subjects 
[16]. Similarly, in a within-subject time series study comparing 
the effects of calorie restriction and RYGB, both treatments re-
sulted in similar marked improvements in glucose homeostasis 
in obese type 2 diabetes patients [17]. In addition, when nondi-
abetic obese subjects achieved 20% weight loss from baseline 
after either RYGB (average 16±2 weeks after surgery) or AGB 
(average 22±7 weeks after surgery), similar changes in β-cell 
function, insulin sensitivity, and gene expression in adipose tis-
sue were observed [18], which indicates that weight loss is im-
portant in improved glucose homeostasis. However, both calo-
rie restriction without surgical stress [16,17] and weight loss in 
nondiabetic subjects [18] have substantial limitations in reca-
pitulating the processes that occur in obese type 2 diabetes pa-
tients after RYGB. Nevertheless, acute energy restriction and 
long-term weight loss play an important role in the improve-
ment of glucose homeostasis following RYGB [19].

Changes in gut physiology
As explained earlier, RYGB causes enormous changes in the gas-
trointestinal anatomy, and therefore, altered gastrointestinal 
physiology is expected to occur after surgery. In this regard, both 
foregut and hindgut factors have been suggested as important 
players [13]. Although many factors have been demonstrated to 
independently contribute to the remission of diabetes from a re-
ductionist’s point of view, careful interpretation from a holistic 
point of view is necessary because many anatomic, physiologic, 
and molecular changes coalesce after bariatric surgery.
  Ghrelin is the only orexigenic gastrointestinal peptide se-
creted mainly from the gastric fundus. Evaluation of ghrelin se-
cretion in patients after RYGB showed mixed results, perhaps 

due to different surgical techniques [13,20]. Therefore, intui-
tively, the role of ghrelin appears to be dispensable during dia-
betes remission after RYGB. However, in patients who receive 
SG, which removes most of the ghrelin-producing tissue, a 
marked and persistent decrease in ghrelin secretion is typically 
observed [21]. Yet, SG influences appetite, body weight, and 
glucose metabolism even in ghrelin knockout mice [22]. There-
fore, ghrelin is unlikely to be a critical factor in diabetes remis-
sion after bariatric surgery.
  As illustrated in Fig. 1A, one of the components of RYGB is 
the exclusion of the duodenum and the proximal jejunum from 
the passage of food. To examine the role of excluding the duo-
denum and upper jejunum, an experimental procedure called 
the duodenal-jejunal bypass (DJB) surgery was created and 
tested in Goto-Kakizaki rats, a nonobese type 2 diabetic animal 
model. With this elegant surgical model, the exclusion of the 
duodenum and proximal jejunum without gastric volume re-
striction exhibited significant improvement in glycemic control 
in Goto-Kakizaki rats [23,24]. Although DJB was designed to 
assess the contribution of the upper small intestine to improve-
ments in glucose homeostasis after RYGB [23,24], exendin9-39, a 
GLP-1 receptor antagonist, abolished the glucose-reducing ef-
fect of DJB [25]. This finding suggests that GLP-1, a representa-
tive hindgut hormone, is critical in mediating the glucose re-
duction resulting from DJB. Interestingly, it was reported that 
the number of K/L cells, which produce both GIP and GLP-1, 
was increased in the jejunum attached to the stomach in Goto-
Kakizaki rats after DJB [26], indicating that GLP-1 secreted 
from this proximal intestinal segment may improve glucose 
homeostasis. Although GLP-1, a typical hindgut hormone, is 
important in improved glucose homeostasis after DJB, proteins 
obtained from the duodenum of db/db mice or insulin-resis-
tant humans trigger insulin resistance both in vitro and in vivo 
[27]. Therefore, the so-called foregut factor (also known as an-
ti-incretin) may contribute to the pathophysiology of type 2 di-
abetes. Interestingly, DJB or intrajejunal nutrient administra-
tion suppresses endogenous glucose production through the 
gut-brain-liver axis, presumably by stimulating the jejunal nu-
trient sensor [28]. Therefore, the mechanism of action of DJB is 
very complex. Aside from the debate whether the foregut factor 
or the hindgut factor is the major player in the improved glu-
cose homeostasis after DJB, an endoluminal liner bypassing the 
duodenum and proximal jejunum showed promising results in 
body weight control and glucose metabolism in obese patients 
with type 2 diabetes [29]. 
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  RYGB accelerates gastrointestinal transit of ingested food and 
thereby stimulates L-cell secretion of GLP-1, PYY, and oxynto-
modulin, which regulates energy and glucose metabolism [30]. 
In patients with type 2 diabetes, RYGB increased plasma levels of 
GLP-1, PYY, and oxyntomodulin after oral glucose load, where-
as calorie restriction alone did not [31]. Just as in RYGB, plasma 
GLP-1 levels markedly increased after BPD [32], which also ex-
pedites the transit of orally ingested foods to the distal intestine. 
However, the AGB procedure, which simply restricts food intake 
without accelerating gastrointestinal transit, does not increase 
plasma GLP-1 levels [33]. Unexpectedly, SG, which had previ-
ously been considered as a mere restrictive bariatric procedure, 
induces a marked increase in plasma GLP-1 levels [34,35]. Ac-
celerated gastrointestinal transit and altered gastrointestinal 
physiology may explain the drastic increase in plasma GLP-1 
levels after SG [12]. Considering the mechanism of action of 
GLP-1 [36], GLP-1 could be a critical factor in weight loss and 
diabetes remission after RYGB. However, the administration of a 
GLP-1 receptor antagonist (exendin9-39) did not reveal a signifi-
cant increase in blood glucose levels in patients who showed re-
mission of type 2 diabetes after RYGB [37], which indicates that 
factors other than GLP-1 may play an important role in diabetes 
remission following RYGB. To examine the role of the hindgut 
in an isolated fashion, an experimental surgical procedure called 
ileal transposition (or interposition) was developed [38-40]. Ileal 
transposition increases plasma levels of GLP-1 and PYY by pro-
moting early contact between ingested nutrients and the ileal tis-
sue transposed to the proximal jejunum [39-43]. However, the 
overall effect of ileal transposition on glucose metabolism and 
body weight is typically modest [38-43]. Therefore, the hindgut 
effect after RYGB may partly explain its diabetes remission 
mechanism.
  Altered glucose metabolism of the intestine may partially 
explain the diabetes remission observed after RYGB. Increased 
aerobic glycolysis in the Roux limb was observed in rats treat-
ed with RYGB [44], which allows this segment of the intestine 
to play a major role in glucose utilization. Consistent with this 
finding, one of the antidiabetic mechanisms of metformin is 
to induce a marked increase in intestinal glucose utilization 
[45]. Just like the liver and the kidneys, the intestine is able to 
produce glucose via gluconeogenesis. Interestingly, increased 
intestinal gluconeogenesis, particularly in the ileum, was seen 
after enterogastro-anastomosis (EGA), which does not create 
the Roux limb, in C57Bl/6 mice fed a high-fat diet. Increased 
gluconeogenesis in this model was accompanied by reduced 

food intake, increased insulin sensitivity, and decreased endog-
enous glucose production [46]. It was hypothesized that the in-
creased glucose concentration in the portal vein may explain 
the beneficial effects of EGA. In this process, GLUT2 appears 
to be essential because GLUT2 knockout mice were not subject 
to the metabolic effects of EGA [46]. In addition, portal vein 
denervation also abolished the metabolic effects of EGA [46]. 
Therefore, altered glucose metabolism in the intestine, either 
through increased glucose utilization or increased gluconeo-
genesis, may contribute to improved systemic glucose metabo-
lism after bariatric surgery.

Pancreatic β-cell function
Pancreatic β-cell function is improved in obese patients with 
type 2 diabetes in accordance with exaggerated GLP-1 secre-
tion immediately after RYGB and SG [47]. However, the extent 
of recovery of β-cell glucose sensitivity (as measured by insulin 
secretion rates in response to increasing plasma glucose levels) 
usually falls short of the normal value [48], and baseline β-cell 
glucose sensitivity was reported to be a major determinant of 
diabetes remission after RYGB [47,49]. Antagonism of GLP-1 
signaling by exendin9-39 decreases postprandial insulin secre-
tion in these patients [50], which indicates that the restored 
β-cell function is largely mediated by the exaggerated GLP-1 
response. Unlike the insulin response to oral glucose, the insu-
lin response to intravenous glucose was unchanged relative to 
the preoperative value [51], which also highlights the impor-
tance of gastrointestinal factors in improving β-cell function. 
However, the disposition index (a measure of insulin secretory 
capacity considering the insulin sensitivity of an individual) 
during the frequently sampled intravenous glucose tolerance 
test increased mainly due to increased insulin sensitivity [52]. 
Although improved β-cell function after RYGB is largely as-
cribed to increased GLP-1 secretion, administration of exen-
din9-39 hardly deteriorated postprandial hyperglycemia in pa-
tients who showed improved postprandial glycemia after 
RYGB [37]. Therefore, factors other than GLP-1 play a major 
role in improved glucose homeostasis after RYGB. 

Hepatic and peripheral insulin sensitivity 
Changes in insulin sensitivity after RYGB vary among differ-
ent tissues. Marked improvement in hepatic insulin sensitivity 
was observed as early as 1 week after RYGB and persisted for 
up to 1 year, while the insulin sensitivity of peripheral tissues, 
including skeletal muscle and adipose tissue, was not changed 
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during the early postoperative period but improved gradually 
thereafter [51]. Improved hepatic insulin sensitivity is crucial 
in normal glucose homeostasis because it leads to decreased 
hepatic glucose production. Of note, hepatic insulin sensitivity 
dramatically improves even before any significant weight re-
duction occurs [51]. In this process, calorie restriction from the 
early postoperative period may play a critical role [53]. Al-
though the exact mechanism of improved hepatic insulin sen-
sitivity after RYGB is still elusive, decreased intrahepatic fat 
content may be responsible [54]. In a study using the euglyce-
mic-hyperinsulinemic clamp, an improvement in peripheral 
insulin sensitivity after RYGB was observed only after a sub-
stantial weight loss [55]. In this regard, there appear to be many 
potential mechanisms for improved insulin sensitivity after 
RYGB [56]. Among these, weight loss-associated mechanisms 
are essential because improved insulin sensitivity is closely cor-
related with the degree of weight loss [47,51]. To summarize, 
hepatic insulin sensitivity improves immediately after RYGB 
and is largely explained by calorie restriction, while peripheral 
insulin sensitivity gradually improves in accordance with 
weight loss.

Altered bile acid metabolism
Plasma levels of bile acids are increased after RYGB [57] or SG 
[58], which prompted researchers to hypothesize that bile acids 
play a role in meditating the effects of bariatric surgery. Bile ac-
ids are known as detergents for fat absorption and routes of 
cholesterol elimination; however, many genomic and nonge-
nomic actions largely related to metabolism have also been re-
ported for this class of molecules [59]. In this regard, the nucle-
ar receptor FXR and a G-protein coupled receptor TGR5 are 
known to mediate the genomic and non-genomic effects of bile 
acids, respectively [60]. In the absence of FXR signaling in 
mice, the beneficial effects of SG on body weight and glucose 
metabolism were abolished [61]. Further studies are needed to 
elucidate the exact mechanism of bile acids in weight control 
and glucose metabolism.

Changes in gut microbiota
The role of gut microbiota is currently discussed in terms of 
host-microbial interactions modulating host metabolism [62]. 
After bariatric surgery, a substantial change in gut microbiota 
has been reported not only in rodents but also in humans. In 
one study including humans, rats, and mice, RYGB induced 
rapid increases in the proportion of Gammaproteobacteria 

(Escherichia) and Verrucomicrobia (Akkermansia) in the gut 
[63]. Interestingly, a recent study showed that metformin, a 
representative antidiabetes medication, increased the relative 
abundance of Akkermansia muciniphila in mice [64]. However, 
whether metformin and RYGB similarly affect gut microbiota 
and thus improve glucose homeostasis is uncertain. When gut 
microbiota from mice subjected to RYGB were transferred to 
nonoperated germ-free mice, weight loss and decreased fat 
mass were observed [63]. However, transfer of gut microbiota 
from sham-operated mice to germ-free mice did not induce 
substantial weight loss [63]. The mechanism of weight loss via 
altered host-microbial interactions after RYGB is still elusive, 
but changes in the production of short-chain fatty acids by gut 
microbiota may play a role [63]. Although the causal relation-
ship between altered gut microbiota and improved glucose 
control after RYGB is uncertain in humans, it is very interesting 
that fecal transplant from lean donors to metabolically un-
healthy people improved insulin sensitivity and increased pop-
ulations of butyrate-producing gut microbiota [65]. Further 
studies are mandatory to exploit the mechanisms of altered 
host-microbial interactions for the treatment of diabetes and 
obesity in humans. 

CONCLUSIONS

The current obesity and type 2 diabetes epidemics may only be 
halted by breakthrough knowledge, as conventional treat-
ments have thus far proven unsuccessful. The dramatic im-
provement in glucose metabolism observed following RYGB 
and SG prompted “gut feelings” regarding a cure for diabetes. 
However, such surgical procedures are not always simple and 
safe but sometimes cause considerable morbidity and mortali-
ty, although the incidence of complications is low. For some 
patients and doctors, medical treatment is preferred to surgi-
cal treatment. By elucidating the mechanisms of diabetes re-
mission after RYGB and SG, we may be able to develop both 
efficacious and safe medical treatments for diabetes and/or 
obesity. However, our understanding of the mechanisms of di-
abetes remission following bariatric surgery is still very limit-
ed, although the body of knowledge is rapidly expanding (Fig. 
2). It is pertinent to recall the history of antituberculosis treat-
ment [66]. Once, thoracoplasty, which removes the ribs and 
collapses the diseased lung, was widely used to treat pulmo-
nary tuberculosis but was abandoned after development of ef-
fective antimycobacterial pharmacotherapy. It is our hope that 
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Fig. 3. Paradigm shift from surgery to medical therapy. (A) An historic example of the evolution of the anti-tuberculosis treat-
ment and (B) the outlook for potential bariatric/metabolic medicines instead of bariatric/metabolic surgery.
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Fig. 2. Potential mechanisms of diabetes remission after Roux-en-Y gastric bypass. Altered gut physiology and systemic (or cir-
culating) factors contribute to improved metabolic states in concert after Roux-en-Y gastric bypass. See text for detailed explana-
tion. GLP-1, glucagon-like peptide-1; PYY, peptide-YY; OXM, oxyntomodulin.
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bariatric surgery may be replaced by medical therapy, just as 
in the case of thoracoplasty (Fig. 3). 
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