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Abstract

Single particle tracking (SPT) is often the rate-limiting step in live cell imaging studies of sub-

cellular dynamics. Here we present a tracking algorithm that addresses the principal challenges of 

SPT, namely high particle density, particle motion heterogeneity, temporary particle 

disappearance, and particle merging and splitting. The algorithm first links particles between 

consecutive frames and then links the resulting track segments into complete trajectories. Both 

steps are formulated as global combinatorial optimization problems whose solution identifies the 

overall most likely set of particle trajectories throughout the movie. Using this approach, we show 

that the GTPase dynamin differentially affects the kinetics of long and short-lived endocytic 

structures, and that the motion of CD36 receptors along cytoskeleton-mediated linear tracks 

increases their aggregation probability. Both applications indicate the requirement for robust and 

complete tracking of dense particle fields to dissect the mechanisms of receptor organization at the 

level of the plasma membrane.

With the development of bright fluorescent probes, stable microscopes and sensitive 

cameras, live cell imaging has become a standard technique to study sub-cellular dynamics. 

The resulting images often consist of punctate features, representing small molecular 

assemblies or even single molecules1–3. To gain insight into the molecular mechanisms that 

drive the observed dynamics, such experiments must be combined with single particle 

tracking (SPT) that captures the full spatio-temporal complexity of sub-cellular particle 

behavior.

SPT faces several challenges that in practice hinder such studies. Importantly, SPT goes 

beyond the detection and localization of particles; its key step is the establishment of 

correspondence between particle images in a sequence of frames. Establishing 
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correspondence is complicated by various factors, most notably high particle density, 

particle motion heterogeneity, temporary particle disappearance (e.g. due to out-of-focus 

motion and detection failure), particle merging (i.e. two particles approaching each other 

within distances below the resolution limit), and particle splitting (i.e. two unresolved 

particles diverging to resolvable distances)4, 5. Historically, many of these challenges have 

been overcome by diluting the fluorescent probes, resulting in a low particle density with 

almost unambiguous particle correspondence6, 7. Under such conditions, particle tracking is 

indeed reduced to a simple particle detection and localization problem8. However, while 

low particle densities reveal motion characteristics1–3, 9, 10, they do not allow probing of 

the interactions between particles11. Also, the amount of data collected per experiment is 

low, limiting the observation of spatially and temporally heterogeneous particle behavior 

and hindering the capture of infrequent events. Furthermore, even with low particle density, 

low signal-to-noise ratio (SNR) and probe flicker complicate the search for particle 

correspondence. Therefore, for most cell biological studies, there is a great need for robust 

SPT methods that address the challenges mentioned above.

The most accurate solution to SPT is provided by the method of multiple-hypothesis 

tracking (MHT)12. In MHT, given particle positions in every frame, all particle paths within 

the bounds of expected particle behavior are constructed throughout the whole movie. The 

largest non-conflicting ensemble of paths is then chosen as the solution, where non-

conflicting means that no two paths share in any frame the image of the same particle. This 

solution is globally optimal in both space and time, i.e. it is the best solution that can be 

found by simultaneously accounting for all particle positions at all time points. Clearly, 

MHT is computationally prohibitive even for problems with a few tens of particles tracked 

over a few tens of frames. Therefore, heuristic algorithms with higher computational 

efficiency have been proposed to approximate the MHT solution. Most of these algorithms 

are greedy, i.e. they seek to approach the globally optimal solution by taking a series of 

locally optimal solutions. Usually, this means that particle correspondence is determined 

step-by-step between consecutive frames13, reducing computational complexity at the 

expense of temporal globality. Many tracking algorithms then solve the frame-to-frame 

correspondence problem in a spatially global manner14–20, and seek to recover tracks after 

temporary particle disappearance14–18, 21. Some algorithms treat merging and splitting as a 

temporary disappearance of one of the particles14–16, while others treat them as separate 

events20, 22. Racine et al.23 are unique in their approach to SPT in that they use 

kymograms to maximally benefit from temporal information and thus avoid many of the 

problems of greedy algorithms. However, their method cannot track Brownian motion and is 

thus not generally applicable. While the many existing algorithms address one or the other 

of the issues in SPT, none of them tackles all the issues simultaneously. Consequently, 

investigators must sacrifice some tracking aspects for the sake of others, based on their 

specific application.

Here we present a tracking algorithm that uses one mathematical framework, the linear 

assignment problem (LAP)24, 25, to provide an accurate solution to all the SPT challenges 

listed above. Given a set of detected particles throughout a time-lapse image sequence, the 

algorithm first links the detected particles between consecutive frames, and then links the 
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track segments generated in the first step to simultaneously close gaps and capture particle 

merge and split events. Thus, while the initial particle assignment is temporally greedy, the 

subsequent track assignment is accomplished via temporally global optimization, 

overcoming the shortcomings of algorithms relying solely on greedy assignment strategies. 

Both steps employ global optimization in space. Overall, this approach defines an accurate, 

yet computationally feasible, approximation to MHT, allowing the robust tracking of 

particles under high density conditions.

We demonstrate our approach based on two applications that critically depend on tracking 

robustness and globality: (1) Accurate, comprehensive lifetime analysis of endocytic 

clathrin-coated pits (CCPs), and (2) single molecule tracking of the macrophage trans-

membrane receptor CD36, revealing receptor aggregation and dissociation events.

Results

Tracking via spatially and temporally global assignments

Given the set of detected particles in a live cell time-lapse sequence (Supplementary Notes 

1, 2 online present the detection algorithms used for the two applications shown in this work 

and their performance), we generated particle tracks in two steps (Fig. 1a): First, we 

constructed track segments by linking the detected particles between consecutive frames, 

under the condition that a particle in one frame could link to at most one particle in the 

previous or following frame. These track segments started and ended not only due to the true 

appearance and disappearance of particles, but also due to apparent disappearances 

associated with limitations in imaging and SNR, for example when a particle temporarily 

moved out of the plane in focus, or when two particles approached each other within a 

distance smaller than the resolution limit. The track segments obtained in this step tended to 

be incomplete, resulting in a systematic underestimation of particle lifetimes. In addition, 

because of the one-to-one assignment of particles, this step could not capture particle merges 

and splits, which by definition required one particle in one frame to be assigned to two 

particles in the previous or subsequent frame, respectively. Therefore, in a second step, we 

linked the initial track segments in three ways: End-to-start, in order to close gaps resulting 

from temporary disappearance, end-to-middle, in order to capture merging events, and start-

to-middle, in order to capture splitting events.

We formulated both the frame-to-frame particle linking step and the gap closing, merging 

and splitting step as LAPs24, 25. In the LAP framework, every potential assignment 

(particle assignment in the first step, track segment assignment in the second step) was 

characterized by a cost (matrix entries Cij = ℓij, x, b, d in Fig. 1b and Cij = gij, mij, sij, x, b, b', 

d, d' in Fig. 1c). The goal of solving the LAP in each step was then to identify the 

combination of assignments with the minimal sum of costs:

(1)

such that
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(2)

In Eq. 1, A is any assignment matrix with entries = 1 (link) and 0 (no link), and Â is the 

assignment matrix with minimal sum of costs. The conditions on A (and consequently Â ) in 

Eq. 2 guaranteed that the selected assignments were mutually exclusive, i.e. no particle or 

track segment could be included in more than one assignment. Thus, when a particle or track 

segment had multiple potential assignments, the assignments competed with one another. 

While assignments with a lower cost tended to win, the requirement for a globally 

minimized cost could result in the selection of assignments where the costs were not the 

lowest.

In the frame-to-frame particle linking step, three types of potential assignments were in 

competition (Fig. 1b). A particle in the source frame t could link to a particle in the target 

frame t + 1 (cost function ℓ). Alternatively, a particle in the source frame could link to 

nothing, leading to a track segment end (cost function d), or a particle in the target frame 

could get linked by nothing, leading to a track segment start (cost function b). The decision 

between these possibilities was made globally in space (Eqs. 1, 2). However, the assignment 

was temporally greedy since it was based on particle configuration in the specific source and 

target frames only.

In the gap closing, merging and splitting step, six types of potential assignments were in 

competition (Fig. 1c). The end of a track segment could link to the start of another track 

segment, thus closing a gap (cost function g), the end of a track segment could link to a 

middle point of another track segment, leading to a merge (cost function m), or the start of a 

track segment could get linked by a middle point of another track segment, leading to a split 

(cost function s). Alternatively, the end of a track segment could link to nothing, leading to a 

track termination (cost function d), the start of a track segment could get linked by nothing, 

leading to a track initiation (cost function b) or the track segment middle points introduced 

for merging and splitting could link to nothing, refusing a merge or a split (cost functions d' 

and b'). In this step, all track segments throughout the whole movie competed with each 

other. Thus, the LAP solution (Eqs. 1, 2) was global in both space and time.

The framework described up to this point is general. Its goal is to provide a robust yet 

computationally feasible approximation to MHT. It is independent of the actual cost 

functions used to weigh the various competing assignments. Thus, it is independent of 

problem dimensionality (we solve 2D and 3D tracking problems with the same framework; 

data not shown) as well as of the type of particle motion (Brownian motion, directed motion, 

etc.). It is also independent of the physical nature of the particle (single molecule, molecular 

assembly, organelle, etc.), which mainly influences the choice of an appropriate particle 

detection method.

The cost functions, on the other hand, must be tailored to the specific tracking application. 

In our implementation, this is technically solved by treating the cost functions themselves as 
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input variables together with their parameters. Here we demonstrate the definition of cost 

functions for tracking isotropic random motion, such as pure or confined Brownian motion, 

due to its prevalence in cell biological applications. In this case, the costs were functions of 

distance and intensity:

(3)

(4)

(5)

In Eq. 3, δij is the distance between particles i and j. In Eq. 4, δIJ is the distance between the 

end of track segment I and the start of track segment J. In Eq. 5, δIJ is the distance between 

the end or start of track segment I and the middle point of track segment J, while ρIJ is the 

ratio of the intensities AI (of track segment I) and AJ (of track segment J) before and after 

merging or splitting:

(6)

The intensity factor increased the cost when the intensity after merging or before splitting 

was different from the sum of intensities before merging or after splitting, with a higher 

penalty when it was smaller. This intensity penalty ensured that merging and splitting events 

were not picked up only due to the proximity of particle tracks, but that the associated 

intensity changes were consistent with the image superposition of merging or splitting 

particles. The alternative costs used to reject particle linking, gap closing, merging and 

splitting (b, b', d, d' in Fig. 1b,c) are described in Supplementary Note 3 online.

In order to exclude physically nonsensical solutions, in practice we did not allow every 

particle or track segment to potentially link to every particle or track segment, but rather 

introduced cutoffs that excluded impossible links a priori (x in Fig. 1b,c). For frame-to-

frame particle linking and for gap closing, the cutoff was based on distance. For merging 

and splitting, it was based on both distance and intensity. Distance-based cutoffs were data-

driven: they were derived for every particle from its observed motion, allowing for self-

adaptation (Supplementary Note 3 online).

Validation of tracking algorithm on simulated tracks

We validated our algorithm by tracking simulated particles at different densities and with 

different signal stability. The particle density and signal stability used in the simulations 

were varied from conditions similar to the experimental data (Supplementary Note 5 online) 

to much harsher conditions, the purpose of which was to identify the breakdown of the 

method. Simulated particles moved in a Brownian fashion (D = 0.75 pixels2/frame 

corresponding to an average displacement between frames of 1.7 pixels, similar to the 

average displacement observed for CD36 receptors and CCPs), underwent merge and split 
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events, and their lifetimes followed a Rayleigh distribution (chosen to reflect the maturation 

process of molecular aggregates such as CCPs). We varied their density by gradually 

decreasing the average nearest neighbor distance from 12 pixels to 4 pixels, corresponding 

to 6% – 42% of particles having nearest neighbors that were closer than twice their average 

displacement between frames (Simulations 1–5, Fig. 2a). Under these conditions, particles 

and track segments had on average more than one potential assignment in their respective 

linking steps, with the number of potential assignments increasing with particle density (Fig. 

2a). The tracking of particles under these high density conditions requires a global 

optimization approach that can resolve assignment ambiguities and conflicts.

To test the performance of the tracking algorithm independently of the detection algorithm, 

we simulated trajectories (ground truth; GT) and directly derived from them a list of particle 

positions and intensities per frame. The effect of signal stability on detection was accounted 

for by deleting a fraction of the particles from the list, where a lower signal stability (e.g. 

because of lower SNR) led to a larger fraction being deleted (Supplementary Notes 1, 2 

online show the relationship between SNR and the fraction of particles missed by the 

detection algorithms employed). For the validation process, the fraction of particles missed 

by the detection algorithm was varied from 0% to 50%. We did not include false detection 

positives in the validation process because in practice false positives tended to have very 

short trajectories (2–3 frames long) which could be identified and removed from the 

ensemble of trajectories a posteriori.

We evaluated the tracking results in terms of the fraction of true positive and false positive 

links, closed gaps and merging and splitting events, relative to the GT (Fig. 2b–d). As 

expected, the tracking algorithm performed best for the lowest density simulation with 0% 

detection misses, and its performance decreased almost monotonically with increasing 

particle density and increasing detection misses. Under all tested conditions, there were 

more correct links, gaps, merges and splits than wrong ones. Importantly, even at the highest 

density (Simulation 5, 0% misses), where ~40% of particles had nearest neighbors closer 

than twice their average displacement, there were only 10% false links, demonstrating the 

power of a global tracking approach.

We also evaluated the tracking results in terms of the particle lifetime distribution, which we 

compared to the GT lifetime distribution via the Kolmogorov-Smirnov test (Fig. 2e; 

Supplementary Note 6 online). Lifetime measurements rely on all aspects of tracking, and 

thus are the most sensitive to tracking errors. Any mistakes in the particle linking or gap 

closing steps break up particle trajectories, resulting in the systematic underestimation of 

particle lifetimes. Therefore, the comparison of simulated and retrieved particle lifetime 

distributions was the most comprehensive performance measure for tracking. This 

comparison indicated that robust tracking required a trade-off between particle density and 

signal stability. As the particle density increased, less detection misses could be tolerated 

(i.e. higher signal stability was required): At the lowest density, tracking was reliable even 

with 50% detection misses; with no detection misses, tracking was reliable up to the highest 

density.
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Clathrin-coated pit lifetime is regulated by dynamin

We employed our tracker to assay the lifetime of endocytic clathrin-coated pits (CCPs) in 

BSC1 cells expressing a fully functional clathrin light chain EGFP construct26 (Fig. 3a). 

CCP dynamics can be visualized at high time resolution by total internal reflection 

fluorescence microscopy (TIR-FM)27. However, it has remained a challenge to extract 

reliable lifetime data from TIR-FM movies, since lifetime measurements are notoriously 

susceptible to tracking errors, as caused for example by the temporary loss of the fluorescent 

signal of a CCP or by ambiguity in the assignment of CCP images between consecutive 

frames. As a result, tracking has previously been accomplished either manually for a low 

number of well-discernable CCPs27, 28 or using semi-automated tracking restricted to 

isolated and bright CCPs that do not have close neighbors that can potentially confuse the 

tracking algorithm26, 29.

We detected CCPs using a method based on the à trous wavelet decomposition30 

(Supplementary Note 1 online). Because of the globality and gap closing feature of our 

tracker, we could extract complete CCP tracks independent of their brightness and position 

relative to other CCPs (Fig. 3b, Supplementary Video 1 online). We verified that our gap 

closing maximized the retrieval of tracks interrupted by temporary particle disappearance 

while minimizing the erroneous linking of true track terminations to true track initiations by 

analyzing the distribution of gap lengths identified by our tracker (Supplementary Note 7 

online). First, longer gaps were less abundant than shorter gaps, indicating that the time 

window of eight frames chosen for gap closing captured most gaps in the system, preventing 

the systematic underestimation of CCP lifetimes. Second, the distribution of gap lengths, 

expressed in frames, was independent of frame rate (0.5 Hz vs. 2.5 Hz), demonstrating that 

the gaps closed resulted from detection failure in the noisy images. In contrast, the erroneous 

linking of true track terminations to true track initiations would have lead to a gap length 

distribution that exhibited a characteristic time scale expressed in seconds, resulting in 

systematic differences between the gap length distributions expressed in frames.

We measured CCP lifetimes in control cells and in cells in which the function of dynamin, a 

key component of the endocytic machinery31, was altered (Fig. 3c,d). Overexpression of 

wildtype dynamin decreased the mean CCP lifetime, while dynamin knockdown with 

siRNA increased the mean lifetime. Treatment of cells with dynasore, a small-molecule 

inhibitor of dynamin32, also increased the average lifetime. Interestingly, the third quartiles 

of the lifetime distributions changed more dramatically than the second quartiles, suggesting 

that dynamin might differentially affect short and longer-lived CCP subpopulations. We 

explored these behaviors in more detail elsewhere (Loerke, Mettlen et al., manuscript 

submitted). Importantly, the differentiation between these lifetime histograms critically 

depended on the application of temporally global gap closing. For example, while proper 

gap closing revealed that the treatment of cells with dynasore increased CCP lifetimes, 

tracking without gap closing resulted in an apparent decrease in CCP lifetimes (Fig. 3e,f), 

due to the decreased stability of CCP signals under dynasore treatment. Thus, tracking 

without gap closing resulted in lifetime distributions that were simply a reflection of the 

breakage of tracks due to limited SNR, masking away the effects of dynamin on CCP 

maturation kinetics.

Jaqaman et al. Page 7

Nat Methods. Author manuscript; available in PMC 2009 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD36 receptor aggregation activity depends on motion type

We also employed our tracker to follow the motion of the macrophage trans-membrane 

receptor CD36 and to characterize the aggregation state of individual surface bound CD36 

molecules. At rest, CD36 is thought to exist as quiescent monomers, which are activated and 

internalized in response to oligomerization by multivalent ligands like oxidized LDL and 

malaria-infected red blood cells33. However, we found that CD36 resided predominantly in 

multi-molecular complexes containing several copies of the receptor (intensity analysis of 

single molecule movies of CD36; Jaqaman, Kuwata et al., manuscript in preparation). The 

ability of our tracker to capture merging and splitting events enabled us to determine 

whether the observed CD36 aggregates were stable or instead underwent dissociation and 

re-association.

We immuno-labeled surface-bound CD36 receptors in primary macrophages by a primary 

Fab fragment and a Cy3-conjugated secondary Fab fragment, and recorded single-molecule 

movies using epi-fluorescence microscopy at a frame rate of 10 Hz (Fig. 4a, Supplementary 

Video 2 online). Both individual receptors and receptor aggregates generated diffraction-

limited image features, i.e. particles. Thus, we estimated their positions by first detecting 

local maxima, and then fitting Gaussian kernels in areas around these local maxima to 

achieve sub-pixel localization34. To enhance detection efficiency under the low SNR 

conditions of single molecule movies, we performed the search for local maxima in time-

averaged images, followed by Gaussian kernel fitting in individual frames (Supplementary 

Note 2, Supplementary Video 2 online).

A substantial subset of surface-bound CD36 receptors and receptor aggregates moved along 

linear tracks that were radiated from the perinuclear region (Fig. 4b, Supplementary Video 

3, Supplementary Note 8 online). The molecules moving along linear tracks took larger 

steps (both forward and backward) along the preferred direction of motion than 

perpendicular to it. To accurately track both subsets of CD36 molecules –those moving 

randomly and those moving along linear tracks – we modified the cost functions of Eqs 3–6 

such that particles with significant evidence for motion along linear tracks could benefit 

from an explicit linear motion model (Supplementary Note 9 online describes the modified 

cost functions and illustrates the shortcomings of tracking CD36 molecules with the random 

motion model of Eqs 3–6; Supplementary Note 7 online shows detailed statistics on the 

recovered gaps, merges and splits in CD36 tracks).

Due to the radial arrangement of the linear CD36 tracks, we suspected that the linear 

component of CD36 motion was dependent on actomyosin driven flow of the cortical 

network and/or on microtubule-guided motors or diffusion. To test this hypothesis, we 

treated macrophages with either Blebbistatin to inhibit myosin II activity, or Nocodazole to 

depolymerize microtubules. Blebbistatin (10 µM for 10 min) stopped the linear motion 

almost completely (Fig. 4c, Supplementary Video 4 online). Nocodazole (50 µM for 30 min) 

also reduced the linear motion, but to a lesser extent (Fig. 4d, Supplementary Video 5 

online). The decrease in the fraction of particles undergoing linear motion was statistically 

significant in both cases (Fig. 4e; t-test p-values < 10−10). These results imply that the linear 

component of CD36 motion may depend on receptor engagement with both microtubules 

and cortical actomyosin. They also illustrate the ability of the tracker to distinguish random 
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motion from linear motion: Inclusion of an explicit linear motion model did not generate 

artificial linear tracks under drug perturbations.

Under all conditions, the CD36 receptors and receptor aggregates underwent merging and 

splitting events (Fig. 4f highlights two examples of merging and splitting particles, 

illustrating the strong geometric and intensity cues for merge and split events). We 

calculated the conditional probability of particles merging and splitting while undergoing 

linear motion vs. the conditional probability of merging and splitting while undergoing 

random motion (Fig. 4g) (Supplementary Note 11 online discusses the conditional 

probability analysis). For control as well as drug perturbation experiments, the conditional 

probability of merging and splitting while undergoing linear motion was about two times 

higher than the conditional probability while undergoing random motion. This implies that 

CD36 receptors moving along linear tracks aggregated and dissociated about twice as often 

as CD36 receptors not moving along linear tracks. Importantly, there were no significant 

differences between control and drug perturbation experiments in terms of the conditional 

probabilities and their ratios (p-values > 0.01). These findings indicate that the motion along 

linear tracks increases the association and dissociation of CD36 receptors, regardless of 

whether the receptors are in control or in drug-perturbed cells.

Discussion

This paper presents an algorithm for single particle tracking in complex live cell image 

sequences. The algorithm utilizes one compact mathematical framework, the linear 

assignment problem, to first link particles between consecutive frames, and then to close 

gaps and capture merging and splitting events between the initial track segments. In both 

steps, particle and track segment assignments are accomplished by spatially global 

optimization, increasing tracking accuracy under high-particle density conditions. In 

addition, track segment assignment in the second step is accomplished by temporally global 

optimization. The combination of these two optimization conditions brings our algorithm 

close to the theoretically best, yet practically too expensive, multiple-hypothesis tracking 

approach. While MHT generates tracks by constructing all possible paths starting from 

particle positions in all frames, our algorithm generates tracks by constructing in the second 

step all possible paths, starting from the initial track segments obtained in the first step. 

Starting with track segments substantially reduces the combinatorial space of potential 

assignments, bringing the solution of the assignment problem into the realm of high-end 

computing on a state-of-the-art desktop workstation. The price to pay for this reduction in 

computational complexity is that the initial track segments are generated in a greedy 

approach which can lead to irreparable particle assignment errors. However, this limitation 

can be circumvented by imposing conservative cutoffs on particle assignment in the first 

step, and then rescuing the resulting track interrupts in the second step, which – because of 

its temporal globality – is less prone to error and can afford wider cutoffs. Thus, by 

balancing the cutoffs of the first and second assignment steps, our method yields effectively 

an MHT solution.

The algorithm is highly versatile and applicable to a broad set of tracking tasks in live cell 

imaging. We have used this framework to track cell motility in tissue culture, chromosome 
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motion in 3D, synaptic vesicles, and cytoskeleton dynamics. Here, we showed two 

applications that highlight two of the most important features of our tracking algorithm. The 

endocytosis study critically depended on the algorithm’s ability to produce complete tracks 

in dense particle fields, yielding reliable lifetime distributions for all CCPs in the field of 

view. The CD36 study critically depended on the algorithm’s ability to capture merge and 

split events, and thus reveal the association and dissociation of receptors on a single 

molecule level. Both the CCP and the CD36 studies revealed the existence of mechanisms 

by which a cell might organize the kinetics and dynamics of signal transduction at the level 

of the plasma membrane. The power of a robust SPT algorithm, in combination with 

specific molecular interventions, will allow us to uncover the molecular mechanisms 

underlying this organization in the context of living cells.

Materials and Methods

Software

The tracking software is available for download at http://lccb.scripps.edu. Software details 

are provided in Supplementary Note 12 online.

CCP labeling and imaging

BSC1 (monkey kidney epithelial) cells stably expressing rat brain clathrin light chain-EGFP 

(kindly provided by T. Kirchhausen, Harvard Medical School, Boston, MA) were cultured 

and prepared as specified in Supplementary Note 13 online. For live cell imaging, BSC1 

cells were plated on glass coverslips, and through-the-objective TIR-FM was performed on a 

Nikon TE2000U inverted microscope using a 100X/1.45NA oil-immersion objective. 

Images were captured at 0.5 Hz with 200ms exposure time using a Hamamatsu Orca II-

ERG.

CD36 receptor labeling and imaging

Human primary macrophages were isolated from human blood samples and cultured in 

medium as specified in Supplementary Note 13 online. Immunolabeling of individual CD36 

receptors was accomplished by incubation of cells first with anti-CD36 Fab fragments 

derived from mouse monoclonal antibodies to human CD36, and then with Cy3-conjugated 

donkey anti-mouse Fab fragments. Live-cell imaging was performed using a Zeiss Axiovert 

200 inverted epifluorescence microscope equipped with a 100X/1.45NA oil-immersion 

objective. Image streams were captured at 10 Hz for 10 seconds using an EM-CCD camera 

(Hamamatsu).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Tracking particles via spatially and temporally global assignments
(a) Tracks were constructed from an image sequence by detecting particles in each frame 

(Step 0), linking particles between consecutive frames (Step 1), and then closing gaps and 

capturing merging and splitting events between the initial track segments (Step 2). (b) Cost 

matrix controlling particle assignments between frames. λij: cost for linking particle i in 

frame t to particle j in frame t + 1, x: impossible link whose cost exceeded the cutoff, d: cost 

for allowing particles in frame t to link to nothing in frame t + 1, b: cost for allowing 

particles in frame t + 1 to get linked by nothing in frame t. The lower right block is an 

auxiliary block required to satisfy the topological constraints of the LAP (Supplementary 

Note 4 online). (c) Cost matrix controlling gap closing, merging and splitting. gIJ: cost for 

closing a gap between the end of track segment I and the start of track segment J, mIJ: cost 

for the end of track segment I merging with a middle point of track segment J, sIJ: cost for 

the start of track segment J splitting from a middle point of track segment I. Central cross: 

links between track segment middle points introduced for merging and splitting were not 

allowed. The upper and middle right blocks, lower left and middle blocks, and lower right 

block were as described in (b). In (b) and (c), ‘…’ means index continuation.
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Figure 2. Validation of tracking algorithm on simulated tracks
5 simulations of increasing particle density, each combined with 8 detection efficiencies 

represented by percentages of particles missing from the detection, were used to test the 

performance of the tracking algorithm. The results shown are the averages over 6 repetitions 

of each simulation. (a) Criteria to assess particle density as related to tracking: Average 

nearest neighbor distance (upper panel, left y-axis) and fraction of particles with nearest 

neighbors closer than twice their average frame-to-frame displacement (upper panel, right y-

axis), evaluated at 0% detection misses; average number of potential assignments per 

particle (middle panel, left y-axis) and fraction of particles with > 1 potential assignment 

(middle panel, right y-axis) in the frame-to-frame linking step, evaluated at 0% detection 

misses; average number of potential assignments per track segment (lower panel, left y-axis) 

and fraction of track segments with > 1 potential assignment (lower panel, right y-axis) in 

the gap closing, merging and splitting step, evaluated at 20% detection misses (at 0% 

misses, there are no gaps to close). (b–d) Percentage of true and false positives in particle 
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linking (b), gap closing (c) and merging and splitting (d) relative to the ground truth (GT). 

(e) P-value of the Kolmogorov-Smirnov test comparing the measured and GT lifetime 

distributions. The 0.05 significance threshold is indicated by a dashed line. In (b–e), the 

conditions similar to the experimental data are highlighted with a dotted oval.
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Figure 3. Clathrin-coated pit lifetime is regulated by dynamin
(a) TIR-FM image of a BSC1 cell fluorescently labeled with clathrin light chain-EGFP. 

Scale bar = 5 µm. (b) Clathrin-coated pit (CCP) trajectories in the 10 ×10 µm area indicated 

by a red box in (a). (c) Normalized lifetime histogram of 21,518 CCP trajectories pooled 

from 11 control cell movies. Shaded blue and pink areas: second and third data quartiles. (d) 

CCP lifetimes for control and for alterations of dynamin function (DynOX: Dynamin over-

expression, DynKD: Dynamin knockdown). Blue and pink bars: second and third data 

quartiles. Round black markers: mean. Black error bars: Cell-to-cell standard deviation 

(calculated for 11 control, 4 DynOX, 15 DynKD and 5 dynasore). KS-test: * p-value < 10−5, 

** p-value < 10−10. (e) Cumulative frequency of CCP lifetimes in control and dynasore 

treated cells, resulting from tracking with gap closing (as in (b–d)) and without gap closing. 

(f) CCP lifetimes for control and for alterations of dynamin function resulting from tracking 

without gap closing.
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Figure 4. CD36 receptor aggregation activity depends on motion type
(a) Epifluorescence image of CD36 immuno-labeled in a control macrophage using a 

primary Fab fragment followed by a Cy3-conjugated secondary Fab fragment. (b) CD36 

tracks in a control macrophage. (c) CD36 tracks in a Blebbistatin (Bleb.) treated 

macrophage. (d) CD36 tracks in a Nocodazole (Noc.) treated macrophage. All tracks are 

from 10s/100 frame movies. Tracks are classified as linear (red) or random (cyan) 

(Supplementary Note 10 online). Scale bar = 1 µm. (e) Fraction of particles undergoing 

linear motion. (f) Two sample trajectories represented as x-coordinate, y-coordinate and 
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amplitude over time, highlighting merging events (green ovals), splitting events (purple 

ovals) and closed gaps (orange ovals). The two colors (pink and blue) highlight the two 

track segments brought together by capturing merge and split events. (g) Conditional 

probabilities of merging and splitting while undergoing linear motion and while undergoing 

random motion, and ratio of conditional probability while undergoing linear motion to 

conditional probability while undergoing random motion. In (e) and (g), error bars indicate 

standard deviation as calculated from a sample of size 200 generated by the bootstrap 

method. ** p-value < 10−10. Statistics were calculated from 14 control cells (7527 

trajectories ≥ 5 frames long), 11 Blebbistatin-treated cells (5148 trajectories ≥ 5 frames 

long) and 12 Nocodazole-treated cells (4926 trajectories ≥ 5 frames long). Trajectories 

shorter than 5 frames were excluded as non-classifiable with respect to motion type.
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