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A B S T R A C T

In coronavirus disease-19 (COVID-19), four major factors have been correlated with worse prognosis: aging,
hypertension, obesity, and exposure to androgen hormones. Angiotensin-converting enzyme-2 (ACE2) receptor,
regulation of the renin-angiotensin-aldosterone system (RAAS), and transmembrane serine protease 2
(TMPRSS2) action are critical for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) cell entry
and infectivity. ACE2 expression and RAAS are abnormal in hypertension and obesity, while TMPRSS2 is
overexpressed when exposed to androgens, which may justify why these factors are overrepresented in COVID-
19.

Among therapeutic targets for SARS-CoV-2, we hypothesized that spironolactone, a long used and safe mi-
neralocorticoid and androgen receptors antagonist, with effective anti-hypertensive, cardioprotective, ne-
phroprotective, and anti-androgenic properties may offer pleiotropic actions in different sites to protect from
COVID-19. Current data shows that spironolactone may concurrently mitigate abnormal ACE2 expression,
correct the balances membrane-attached and free circulating ACE2 and between angiotensin II and Angiotensin-
(1-7) (Ang-(1-7)), suppress androgen-mediated TMPRSS2 activity, and inhibit obesity-related RAAS dysfunc-
tions, with consequent decrease of viral priming. Hence, spironolactone may provide protection from SARS-CoV-
2, and has sufficient plausibility to be clinically tested, particularly in the early stages of COVID-19.

Introduction

Specific characteristics of SARS-CoV-2 may explain the relative
unsuccessfulness of the virus contention policies, including long virus
shedding (20 days on average) [1] and period of incubation (up to
11 days) [2], the existence of multiple asymptomatic infections [1–3],
and the prolonged surviving in surfaces and aerosol.

Although preliminary, consistent data elude to the fact that three
major factors are atypically correlated with worse prognosis in SARS-
CoV-2: hypertension, obesity, and androgen hormones.

Indeed, hypertension alone seems to be overrepresented in patients
with acute respiratory distress syndrome (ARDS) due to Covid-19
(23.2%) when compared to type 2 diabetes mellitus (T2DM) (16.2%)
and established coronary heart disease (5.8%), in addition to the ap-
proximate increase of 10% risk per year of age [4,5]. In China, where
the prevalence of metabolic syndromes including obesity and T2DM are
lower compared to Europe and USA, hypertension emerged as the

strongest risk predictor for SARS-CoV-2 [6].
Obesity has been further identified as an important risk factor in

SARS-CoV-2, which have been noticed after the pandemic spread to
countries with higher prevalence of obesity. However, hypertension
remained as an independent risk factor for respiratory severe mani-
festations in COVID-19 in obese patients, and was still prevailing in
COVID-19 intensive care units (ICUs) in regions where obesity is highly
prevalent.

Strong epidemiological data also supports the hypothesis that an-
drogens are directly related to SARS-CoV-2 infectivity and pathogen-
esis. The larger incidence of severe COVID-19 in men compared to
women is not fully justified by differences in the prevalence of meta-
bolic disorders (obesity, T2DM, hypertension). Accordingly, pre-pub-
ertal children show an imperative protection from SARS-CoV-2 infec-
tion, once this population is not exposed to androgens. Further, an
indirect marker of dihydrotestosterone (DHT) activity and androgen
receptor (AR) regulation and sensitivity, baldness has been clinically
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observed to be particularly present in men that develop ARDS in
COVID-19.

The presence of angiotensin-converting enzyme-2 (ACE2) receptor
and transmembrane serine protease 2 (TMPRSS2) is mandatory for
SARS-CoV-2 cell entry, while ACE2 and TMPRSS2 expression may
modulate its infectivity. ACE2 and TMPRSS2 expressions abnormalities
in hypertension and obesity, and exposure to androgens, respectively,
may help justify why these are risk factors for COVID-19, as proposed
by recent theories [7–10]. ACE2 and TMPRSS2 altered expressions can

be concomitantly addressed by spironolactone and other miner-
alocorticoid antagonists, due to their actions in the renin-angiotensin-
aldosterone system (RAAS) and as androgen antagonists, respectively,
providing potential protection against SARS-CoV-2. Key characteristics
of COVID-19 according to the timing of the infection is presented in
Fig. 1.
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Fig. 1. COVID-19: Stages, key characteristics, ACE2 expression, and approaches.
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Hypothesis

Spironolactone: May the multi-purpose drug provide protection from SARS-
CoV-2?

Spironolactone, a safe anti-hypertensive and anti-androgenic drug
used since 1959 that acts as potassium-sparing diuretic drug by an-
tagonizing mineralocorticoid receptors (MRs), tend to disclose favor-
able patterns of the RAAS and ACE2 expression, reduces TMPRSS2
activity due to its antiandrogenic activity, and may prevent acute lung
injuries due to its pleiotropic effects. We hypothesize that spir-
onolactone my offer protection for some of the populations at highest
risk for severe COVID-19, including obesity, bald males (that present
enhanced TMPRSS2 expression), and hypertension.

Evaluation of the hypothesis

ACE2 expression in COVID-19: why hypertension and obesity are risk
factors?

Whether the atypical increased risk related to hypertension in
COVID-19 is derived from hypertension per se, due to secondary lung
alterations resulted from the effects of increased blood pressure on
tissues, or if the unexpected risk related to hypertension is actually
secondary to the effects of chronic exposure to speicific classes of anti-
hypertensives, is uncertain.

The large percentage of patients with hypertension undertaking
angiotensin-converting enzyme inhibitors (ACEi’s) or angiotensin re-
ceptor blockers (ARBs) [11–13] has been hypothesized to be the main
underlying mechanism that could justify the peculiar severity of
COVID-19 in hypertension, due to their inherent actions in the RAAS,
that could indirectly increase the availability of surface-attached ACE-2
in the lung endothelium, potentially leading to enhanced coupling of
SARS-CoV2 to ACE-2 and its consequent cell entry in the early stage of
COVID-19. However, despite the initial reports that have correlated
ACEi and ARB with increased risk of severe manifestations in COVID-
19, further findings including systematic reviews and meta-analyses
failed to demonstrate these correlations [14–16].

While ARB and ACEi disclosed inconsistent findings on COVID-19
related outcomes, the fact that hypertension, regardless of its control,
has been shown to be an important and independent risk factor for
COVID-19 severity, remains to be explained. Unlike diabetes, which the
level of control based on the HbA1c predicts COVID-19 outcomes, hy-
pertension did not show the same sort of correlation, and this should be
considered for further analyses [5].

Among the multiple mechanisms proposed to justify the severity of
COVID-19 related to obesity, the disruption of the RAAS system, ACE2
expression and activity, and the balance between the hypertensive and
pro-inflammatory angiotensin II and angiotensin receptor-1 (AT1) axis,
and the anti-inflammatory Angiotensin-[1-7] and its Mas receptor, a G-
coupled receptor, may explain the particular increased SARS-CoV-2
infectivity in this population.

Hypertension and obesity are two major representatives of the key
importance of the dysfunctions-related RAAS abnormalities for the
development of the SARS-CoV-2 infectiveness.

In regards with ACE2 expression, membrane-attached ACE2 should
be differentiated from freely circulating ACE2 due to their likely dis-
tinct roles in RAAS and COVID-19. While membrane ACE2 is expressed
broadly [17–20], particularly in the lungs, kidney, heart, testicles, and
gut, circulating ACE2 levels are low and its functional role in the lungs
seems not to be clinically relevant, when under physiological conditions
[21]. Despite the discussion on the clinical relevance under physiolo-
gical conditions, the fact that epithelial type II cells of the lungs re-
present up to 80% of the total ACE2 expression in the body [22] is of
clinical importance in pathologies that require the participation of
ACE2 to occur. Indeed, absence of ACE2 expression led to full resistance

to SARS-CoV infection [23,24]. Particularly, the receptor binding do-
main (RBD) of the SARS-CoV2 has a stronger interaction with angio-
tensin converting enzyme 2 (ACE2), compared to other virus infections
from the same family [25–29], and any increase of ACE2 expression
may potentially amplify the virus capacity to entry the cells.

While expression and availability of attached ACE2 is directly cor-
related with Covid-19 severity during the first stage of viral replication,
the free circulating form of ACE2 may couple to SARS-CoV2 and
hamper its entry in the pulmonary endothelium. It has been hypothe-
sized that recombinant human soluble ACE2 could play a protective
role against the development of severe manifestations, ARDS, and death
in Covid-19, which has been clinically demonstrated by the beneficial
effects of recombinant ACE2 in the prevention of coronaviruses-induced
lung injury [30–34], despite its unaffordability for regular medical use.
Under physiological conditions, circulating plasma ACE2 may not be
present in levels sufficient to protect membrane-attached ACE2 from
coupling to SARS-COV2 [30]. However, under particular conditions
including soluble ACE2 and drugs that increase its levels in the plasma,
its protective actions may become relevant. Hence, a speculative ratio
between attached ACE2 availability and expression, and freely circu-
lating ACE2 could predict the lung pathogenicity of Covid-19, although
methods to assess this ratio have not been developed and validated to
date. Hence, as mentioned, the differences between plasma and mem-
brane ACE2 should not be ignored.

Together with the aberrancies in ACE2 expression, another hy-
pothesis has postulated that an unbalance between angiotensin II and
angiotensin 1–7 levels and effects would also be responsible for the
severity of clinical manifestations [35–37].

Due to the high level of uncertainty regarding the expression and
activity of ACE2 in different organs during COVID-19, hypotheses re-
garding the correlations between ACE2 and COVID-19 severity should
be generated from epidemiological data, which is consistent with the
overrepresentation of obesity and hypertension. Fig. 2 depicts a hy-
pothetical model of the first stage of (SARS-CoV-2 infectivity and re-
plication) under different scenarios of physiological, untreated hy-
pertension, use of different drug classes, and hyperandrogenism.

Androgen-driven theory to explain overrepresentation of males in severe
COVID-19

Despite the lack of clinical data of the androgen effects on SARS-
CoV-2, its strong mechanistic plausibility and corresponding epide-
miological data provide theoretical basis for an androgen mediated
SARS-CoV-2 infectiveness [8].

The androgen-regulated transmembrane protease serine 2
(TMPRSS2) is the important enzyme that cleaves the spike protein of
the virus and the ACE2 receptor for viral cell entry [8]. Male mice are
known to be extremely more vulnerable to SARS-CoV infection [38].

Recent American data showed a drastic difference of over 6 times
more male fatalities in a very productive age range (40–49 years) and
approximately two times more male admissions from 30 to 49 years
[39].

SARS-CoV-2 entry into type II pneumocytes in the lung is driven by
androgens [8–10]. This theory explains the findings that females and
pre-puberty subjects are relatively protected from COVID-19 ARDS.
Interestingly, infants under one year old may have increased risk of
COVID-19 complications, which is in accordance with the occurrence of
the mini-puberty i.e., a transient expression of androgens at this age. In
their report, the authors provide a detailed hypothesis of the molecular
mechanisms of COVID-19 disease mediated by androgens. Among the
drugs mentioned as potential candidates to test, spironolactone, a
steroidal androgen receptor competitive blocker, was singled out as a
possible safe and potentially effective alternative. Fig. 2 shows a hy-
pothetical scenario of the first stage of COVID-19 in hyperandrogenic
states.

Of great interest regarding the pre-clinical data regarding how
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androgen blockade impacts survival, the non-steroidal androgen re-
ceptor blocker flutamide was the only drug to date that demonstrated in
experimental model male mice survival from lethal dose of SARS-CoV
[40]. Other drugs, such as remdesivir, failed to demonstrate male mice
survival and based their conclusions on female mice analysis [41].

Consequences of the hypothesis and discussion

Spironolactone: a multi-purpose drug that may provide protection from
SARS-CoV-2

Spironolactone is currently the main representative of the po-
tassium-sparing diuretic class of drugs, may be as effective as ACEi and
ARB to maintain normal blood pressure [42,43], addresses heart
function, and provides cardio- and renoprotection [44–49]. Unlike ACEi
and ARB, that specifically increase lung membrane-attached ACE2 ex-
pression, spironolactone tend to disclose favorable patterns of ACE2

Fig. 2. Simplified hypothetical model of the proposed scenarios in the first stage of COVID-19, during SARS-CoV-2 cell infection and replication period.
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expression, including a more extensive increase of circulating ACE2
when compared to membrane-attached ACE2, enhancing its potential
protective role in SARS-CoV-2, once plasma ACE2 may couple to SARS-
CoV-2 and avoid its entry in the cells [50–55], and may downregulate
the androgen-mediated TMPRSS2 due to its antiandrogenic activity
[56–58], without the adverse events of male sexual castration. In ad-
dition, spironolactone has been demonstrated to mitigate the detri-
mental effects of obesity on the RAAS [58–65], including hyper-
activation of the RAAS due to increased angiotensinogen production by
adipose tissue and imbalance towards angiotensin-2-AT-1 axis, possibly
reducing obesity-related COVID-19 complications, and has direct spe-
cific anti-inflammatory effects in the lungs, possibly reducing acute
lung injuries [66–73].

Notably, since spironolactone mostly targets the virus entry in the
cells, which is the hallmark of the first phase of Covid-19, spir-
onolactone should be preferably administrated in the earlier stages of
the infection, prior to the complications of respiratory manifestations,
when SARS-CoV-2 activity becomes secondary and the exacerbated
inflammatory response is the responsible for the Covid-19 induced
ARDS.

Discussion

The current COVID-19 pandemic urges for rapid responses to
change its course and mortality rate. The learnings of the mechanisms
of SARS-CoV-2 cell entry and infectivity, which meet corresponding
epidemiological data and identification of risk factors, allowed more
precise predictions regarding efficacy of drugs proposed to protect from
COVID-19.

Among current options, researchers should preferably focus on ex-
isting drugs that have been long used, i.e., to repurpose old drugs for
COVID-19, due to five major reasons that are inherent to these mole-
cules: 1. The short- and long-term safety profile of these drugs are
known, whereas can only be obtained after longer studies with new
molecules; 2. Risks are known, which allow directed monitoring and
allows, in opposition to newly released drugs, for which multi-organ
and multi-risk monitorization is recommended due to the little known
effects, particularly because very few have been tested in large popu-
lations; 3. Contraindications are known, avoiding the use on those that
may present harms, in contrast to the lack of awareness of the contra-
indications of new drugs, among which several contraindications can
only be detected in large-scale studies; 4. Clinicians are familiarized
with the clinical management of old drugs, including posology, mon-
itoring for risks, contraindications, and potential complications, which
is desirable since the number of infected subjects does not allow COVID-
19 to be managed within specialized centers; on the contrary, general
practitioners, family medicine physicians, and all medical doctors
should be skilled to manage these patients, which is unfeasible in case
novel molecules unfamiliar to medical community is largely used; 5.
The cost of new, patented drugs is unaffordable by public health sys-
tems, and unlikely has favorable cost-effectiveness, since the level of
evidence of benefits is too weak compared to costs due to the in-
sufficient time of studies to provide supporting data for their use
massively.

The above-mentioned advantages of old drugs are imperative for the
massive clinical use of these drugs against COVID-19. In this regard,
oppositely to other alternatives, that may cause undesired harms that
led to questionings regarding their use, spironolactone offers solid
safety, extensive effectiveness, and has strong plausibility that meets
according in vitro, in vivo, and clinical evidence that spironolactone
provides active protection for those organs centrally affected in COVID-
19: lungs, heart, and kidneys.

In addition, as demonstrated in the present article, unlike the ma-
jority of the current proposed drugs, that only offer potential protection
in the first stage of COVID-19, during SARS-CoV-2 viral replication and
spread, spironolactone has demonstrated actions that may provide

protection during all three stages of COVID-19, since it may reduce
SARS-CoV-2 infectivity, inhibit cytokine and inflammatory storm as an
overresponse to the virus, and alleviate lung, heart, and kidney injuries,
for the first, second, and third stages of COVID-19, respectively.

To us, there is sufficient data to support the employment of spir-
onolactone for large-scale studies, and an empirical alternative for
compassionate use due to the lack of relevant risks [74,75].

Perspectives and conclusion

Abnormal ACE2 expression, angiotensin II and angiotensin 1–7
imbalance, and androgen activity seem to be key regulators of SARS-
CoV-2 infectivity, in accordance with epidemiological observations.
Since spironolactone exhibits concurrent actions in the modulation of
ACE2 expression that would direct- and indirectly avoid SARS-CoV-2
cell entry, in the increase of angiotensin 1–7 levels, that can attenuate
the harms of the overexpression of angiotensin II-AT-1 axis, and as an
anti-androgenic agent, that would decrease viral priming through
TMPRSS2 activity, spironolactone seems to be an ideal candidate drug
for the prophylactic and early treatment of SARS-CoV-2.
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