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Abstract

Multiple sclerosis (MS) is a chronic neurodegenerative autoimmune
disease, characterised by the demyelination of neurons in the central
nervous system. Whilst it is unclear what precisely leads to MS, it is
believed that genetic predisposition combined with environmental
factors plays a pivotal role. It is estimated that close to half the
disease risk is determined by genetic factors. However, the risk of
developing MS cannot be attributed to genetic factors alone, and
environmental factors are likely to play a significant role by
themselves or in concert with host genetics. Epstein–Barr virus (EBV)
infection is the strongest known environmental risk factor for MS.
There has been increasing evidence that leaves little doubt that EBV
is necessary, but not sufficient, for developing MS. One plausible
explanation is EBV may alter the host immune response in the
presence of MS risk alleles and this contributes to the pathogenesis of
MS. In this review, we discuss recent findings regarding how EBV
infection may contribute to MS pathogenesis via interactions with
genetic risk loci and discuss possible therapeutic interventions.
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INTRODUCTION

Multiple sclerosis (MS) is a complex autoimmune
disorder targeting the central nervous system (CNS)
resulting in neuronal loss via demyelination.
Ultimately, left untreated, this condition leads to
significant neurological disability.1,2 It has a female
preponderance with a 2:1 female-to-male ratio at the

global level. This ratio varies demographically and
increases up to 4:1 in some regions such as the Middle
East.3–6 Typically, MS develops between the ages of
15 and 50, disproportionally affecting young people,
resulting in a variety of permanent disabilities,
including sensory, motor, autonomic and cognitive
impairment.7,8 The aetiology and pathogenesis of MS
have been extensively reviewed by others.9–12
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Although the exact cause of MS is still unclear,
multiple lines of evidence have implied that it might
be caused by a combination of a strong genetic
component along with several highly implicated
environmental factors including vitamin D
deficiency, sun exposure, age, gender, sodium
intake, smoking and viral infections, in particular,
Epstein–Barr virus (EBV).1,2,13 In fact, recent studies
have demonstrated that EBV is likely to be the
strongest environmental risk factor for developing
MS.14,15 Despite various studies exploring the
potential role of EBV in the aetiology of MS, with a
variety of mechanisms having been proposed to
drive MS pathogenesis, there is still a lack of focus on
the precise molecular mechanisms that allow EBV to
drive MS in some individuals but not others.16–19

There are few papers that show specific molecular
and phenotypic characteristics of EBV-infected B cells
and how these could contribute to the development
of MS. Obtaining a deeper understanding of the
interaction between EBV elements and MS risk loci
will be critical for advancing our understanding of
such molecular mechanisms and phenotypic traits
involved in MS. Furthermore, focusing on the
interaction between EBV and MS risk loci might
provide direct molecular clues to the pathogenic
effect of how some risk alleles associated with MS
might stem from their influence on host
susceptibility to EBV, which in turn might provide
strong direct evidence of a causative role of EBV in
developing MS. Ultimately, understanding the
molecular mechanisms underpinning how EBV may
drive pathogenesis is likely to be crucial in the holy
grail of developing a cure or in prevention strategies
for this debilitating disease. Thus, this review focuses
on how EBV may promote MS through its
interaction with host genetic risk factors and the
therapeutic opportunities that could arise from this
understanding.

EPSTEIN–BARR VIRUS

Epstein–Barr virus, also known as human
gammaherpesvirus 4, is one of nine human
herpesviruses that infect humans.20 It is a
ubiquitous pathogen with serological studies
showing consistently that > 90% of adults have
evidence of prior EBV infection.21,22 It primarily
infects epithelial cells of the oropharynx initially
before further infecting B cells, its major
reservoir,23–26 although EBV has been shown to
infect other cell types such as T cells and natural
killer (NK) cells.27,28

The EBV genome consists of linear double-
stranded DNA, which is covered by an icosahedral
nucleocapsid.29 The EBV outer envelope is spotted
with external glycoprotein spikes, and a protein
coat exists within the space between the
nucleocapsid and envelope.29 The EBV genome
encodes 89 genes, 43 core genes (common to all
herpesviruses), and 46 non-core genes, 28 of
which are specific to EBV.30,31

Epstein–Barr virus, as with other herpes viruses,
undergoes both latent (dormant) and lytic
(productive) phases during its lifecycle.32–34 The EBV
life cycle consists of four programs for latency phase
(0, I, II and III) and three programmes for the lytic
phase (early, intermediate and late).20,35–37 The
latent phase of the virus maintains EBV presence in
the host asymptomatically, along with the lytic
phase, which is responsible for producing virions
and spreading the virus throughout the host.32–34

In primary infection, EBV first establishes lytic
replication within the epithelial cells of the
oropharynx. As a result of this process, EBV spreads
throughout the lymphatic system, infecting B cells
and establishing latency III. Once EBV-infected
B cells reach the germinal centre, EBV antigens are
suppressed, resulting in the differentiation of
latency III infected B cells into a latency 0
(quiescent) phase, thus creating a reservoir of
infected memory B cells that are largely protected
from the host immune response. Through persistent
infection, EBV can replicate itself by proliferating
within infected B cells (latent) or by producing
virions through lysis (lytic), which can infect new
cells. Occasionally, infected B cells are recruited into
germinal centres, undergo different latency
programs, then re-enter the B-cell reservoir as
memory cells or undergo plasma cell differentiation
producing and releasing new virions, a process that
permits low-level viral shedding in the oropharynx,
which may in turn facilitate new latency III
infections of either naive or memory B cells.24

Type III latency is characterised by the expression
of a set of EBV proteins, including EBV nuclear
antigen genes (EBNA1, EBNA2, EBNA3A, EBNA3B,
EBNA3C and EBNA–LP) and latent membrane
proteins (LMP1, LMP-2A and LMP-2B). In addition,
two noncoding small RNAs (EBERs) and at 44
microRNAs (miRNAs) are expressed.20,36,37 The
current understanding of why EBV expresses large
quantities of miRNAs is that they use these miRNAs to
downregulate their own protein expression to
minimise exposure to the host cellular response.38 The
establishment of latency III in infected B cells
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is regulated under the control of an EBV transcription
factor, EBNA2. Lytic reactivation is a more complex
process and requires the activity of over 80 EBV
proteins.39 A combination of BZLF1 and BRLF1,
known as early lytic proteins, initiates the expression
of over 30 early lytic genes, which is followed by
expression of a set of late lytic genes that drive the
production of new viral particles.39

Epstein–Barr virus has been associated with a
number of malignancies (particularly in
immunosuppressed hosts)40 but has also been
implicated in a range of autoimmune diseases
in addition to MS including systemic lupus
erythematosus (SLE), rheumatoid arthritis, systemic
scleroderma, Sj€ogren’s syndrome and juvenile
dermatomyositis.41–50

MS GENETIC RISK

Multiple sclerosis was first hypothesised to be
caused by genetic factors in the 1890s when familial
aggregation was noted among some MS patients.51

Multiple sclerosis is disproportionately prevalent
among different races and ethnicities and is
reported to be virtually non-existent among Black
Africans, Native Americans and Pacific Islanders.6,52

It is important to note that the reliability of these
reports may be affected by the ability of less
established medical systems in accurately diagnosing
MS. However, the risk of MS varies significantly with
a 47% increase in MS risk noted in African
Americans, while in comparison, a 50% decrease risk
was found in Hispanics and an 80% decrease risk in
Asians, as compared with Caucasian Americans.52–54

Interestingly, African Americans tend to experience
a more severe disease course than people with
predominately European ancestry.55 The chance of a
twin sibling of a person with MS going on to
also develop MS is higher among monozygotic
than dizygotic twins, ~ 24–31% compared to about
~ 2.4–4.7%.53,56,57 These numbers in twin studies are
greater than the global prevalence which is
~ 0.2%51 and 15–35 times higher than the general
population.51,58 In studies of adoption and half-
siblings, those without a genetic connection to MS
patients have the same risk of recurrence as the
general population, suggesting that genetics play a
major role in familial aggregation in MS.51,58 Taken
together, the above accumulative evidence gained
from demographic, familial and twin studies
suggests the importance of genetic factors in
pathogenesis, but suggest that environmental factors
also play a significant role.

It is likely that MS follows a non-Mendelian
inheritance pattern.59 The first associated risk
genetic variation for MS was discovered in 1972,
HLA-DRB1*1501. This variant is located in the
coding region of the Major Histocompatibility
complex (MHC) and increases the susceptibility to
MS by three times.60,61 The MHC is highly
polymorphic and performs a critical role in
adaptive immunity. Further insight into the
genetic contribution to MS risk has been gained
using genome wide association studies (GWAS),
described below.

LESSONS FROM MS GWAS

A GWAS is a hypothesis-free approach to search
for genetic variations associated with a particular
trait (or a disease) among the common genetic
variations across the genome (Single Nucleotide
Polymorphisms—SNPs). This occurs by analysing
the genotype data for a large number of both
healthy controls and individuals with the trait of
interest.62 To date, 32 MHC and over 200
non-MHC loci along with a locus on the X
chromosome have been identified as being
associated with MS through GWAS, which are
estimated to contribute 18.3–48%, depending on
the variables included in the models, of the
genetic influence on MS susceptibility.63 It is
important to note that GWAS, despite being a
powerful tool for studying the links between
disease and genetic variation, have some
important limitations. These include not
determining the precise pathogenic impact of risk
loci, not identifying the genes through which risk
loci contribute to the pathogenesis, explaining
only a small fraction of the heritability and not
distinguishing the causal genetic variants from
other variants within the same linkage
disequilibrium block of the risk locus.64,65 Thus,
GWAS results need to be interpreted in the light
of functional analysis to provide insight into the
genetic basis of disease pathogenesis.66–70

The transcriptomic analysis of MS risk genes (the
prioritised set of genes in close proximity to the
MS risk SNPs), identified by the most recent
GWAS, has strongly implicated multiple well-
described immune-related genes, which are
present in major immune cell types. Cell-specific
gene regulatory network analysis on non-MHC
risk genes for MS indicate the key role of the
immune system in susceptibility to MS, along with
B cells.71 Aligned with this finding, enrichment
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analysis of MS risk genes among genes which are
expressed predominantly in different cellular
contexts also confirmed the importance of
immune cells, particularly B cells, in MS
pathogenesis.72 Moreover, the genomewide
polygenic enrichment analysis of MS GWAS,
utilising linkage disequilibrium score regression,
revealed significant associations between GWAS
hits and open chromatin regions, highlighting the
genetic evidence that links specific cell types to
MS and emphasises the involvement of B cells in
the development of the disease.73,74 Furthermore,
B cells have recently received great attention in
the MS field because of the high efficacy of
monoclonal antibodies that target both na€ıve and
memory B cells in treating relapsing and
progressive forms of MS.17

A combination of the HLA-DRB1*1501 allele
(the strongest genetic risk factor for MS identified
by GWAS) and EBV infection increases the risk of
developing MS by up to five times compared to
either factor alone,14,75,76 suggesting a synergic
link between EBV molecular processes and MS risk
genetic background.17 Considering that B cells are
the most common reservoir for EBV and EBV
infection is a strong risk factor (32-fold) for the
development of MS,14 it has been postulated that
there is likely to be an interaction between EBV
molecular processes and those MS risk loci which
are active in B cells and drives (causality) or at
least contributes to (near causality) MS
pathogenesis.14,77 In fact, the therapeutic benefit
of targeting B cells may be a result of reducing
the impact of EBV within these cells, although this
has not been definitively proven.

INTERACTION BETWEEN EBV AND MS
GENETIC RISK LOCI

The genetic variation that increases the risk of
MS may indicate molecular pathways controlling
EBV and suggests targets for improved therapy.
At the genomic level, the role of EBV infection
in MS pathogenesis has been implicated by the
over-representation of EBNA2 binding at MS risk
loci,78 especially in conjunction with vitamin D
receptor binding sites.79 Following on from this,
using gene expression data derived from
lymphoblastoid cell lines (LCL—an in vitro model
of latency III EBV infected B cells), Afrasiabi et al.
identified that 25% of MS risk loci display
genotype-dependent differences in the expression
of risk genes more so in the LCL context than in

other immune cells.80 An over-represented
number of these risk loci were located near EBV
transcription factor binding sites, particularly so
for EBNA2, and mapped onto the LMP1/LMP2
signalling pathway. They also demonstrated a
functional consequence of the interaction between
EBV infection and MS risk loci where it was shown
that inhibition of LCL proliferation by CD40L was
affected by genotype of the MS risk SNP in cis with
CD40.80 Collectively, these findings suggest that
the EBV life cycle is affected by MS risk loci and
mainly orchestrated through CD40-LMP1/LMP2
pathways mediated by EBNA2 in a genotype-
dependent manner.80 To tackle this hypothesis,
Keane et al. showed that EBNA2 binding was risk
allele dependent in LCLs for five of the six MS risk
loci proposed by Afrasiabi et al.81 EBNA2 was
found to bind preferentially to the risk allele of
two loci, TRAF3/RCOR1 (rs1258869) and CD40
(rs1883832); and to the protective allele of three
loci, TNFAIP8 (rs32658), TNFRSF1A (rs180069) and
TBX6 (rs3809627). This provided further supportive
evidence of crosstalk between MS risk genetic
factors and EBV infection mediated by EBNA2 (see
Figure 1). The key role of EBNA2 in regulating this
interaction network indicates importance of the
EBV latency III life cycle phase in the MS
pathogenesis. A possible mechanism could be MS
risk genetic factors facilitating the transformation
of B cells by EBV (poor control of EBV infection)
that can then lead to stimulating autoimmune
T-cell responses, some of which are cross-reactive
to myelin antigens, and thereby drive
autoimmunity in the CNS.82,83

Despite the large transcriptomic changes that
occur in a B cell upon infection with EBV and
subsequent immortalisation, MS risk loci have
been shown to be over-represented in genes that
are differentially expressed in LCLs compared with
uninfected B cells.80 Whilst there are also large
epigenetic changes in response to EBV
transformation of B cells to LCLs, with over two-
third of the genome exhibiting hypomethylation,84

MS risk loci were in fact shown to be under-
represented in the hypomethylated regions.85 It has
been also reported that MS risk genes are highly
over-represented among host genes correlated with
EBV DNA copy number level, whereas risk genes for
diseases and traits not associated with EBV were
only slightly or not over-represented.86 This study
also showed that EBV DNA copy number is
associated with 13% of MS risk loci in a genotype-
dependent manner.86
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Afrasiabi et al. also investigated the role of
EBV-encoded and host–encoded miRNAs in MS
pathogenesis. They provided evidence that EBV
infection can dysregulate the miRNA machinery in B
cells, including MS risk miRNAs.87 Here, it was also
shown that has-let-7b-5p may interact with
ZC3HAV1, an MS risk gene with antiviral function,
differently in LCLs than in B cells. In vitro assays
indicated that the risk allele decreases ZC3HAV1
expression in LCLs, but not in B cells (Figure 1). This
supports the notion of decreased ZC3HAV1 leading
to a reduced interferon response and less viral
mRNA degradation, leading to increased immune
evasion by EBV.

There is also evidence of gender differences in the
interaction between EBV and the MS genetic risk
factors. Using a large LCL gene expression data
set, it was shown that two of the MS risk loci,

TRAF3/RCOR1 and TBX6 (that had earlier displayed
allele dependent binding of EBNA2), showed sex
differences in their associations with gene
expression.88 The expression level of TRAF3 also
showed a female-biased correlation with expression
of the oestrogen receptor 2 (ESR2) gene. The
authors also found that CD40 and ZC3HAV1
demonstrated a male-biased response to oestradiol
treatment of LCLs. Furthermore, this study showed
that oestradiol treatment can alter the EBV latency
III characteristics including EBNA2 level, and cell
proliferation rate in a sex-dependent manner. These
data indicate that the interplay between MS risk loci
and EBV infection may contribute to a sex-biased
immune response to EBV infection and explain in
part the sex differences in MS susceptibility.

Together these findings support the hypothesis
that the EBV-infected B-cell latency III phenotypes,

Figure 1. Interaction between EBV and MS risk loci in the latency III infected B cell. Epstein–Barr virus (EBV) dysregulates the B-cell

transcriptome, including genes proximal to MS risk loci (MS risk genes), either directly or indirectly, which may contribute to MS pathogenesis.80

EBNA2, an EBV encoded transactivator protein specific to latency III, regulates the expression of MS risk genes by preferentially binding to the

protective or risk alleles at the respective MS risk loci.81 This preferential binding could alter the effect of risk alleles on gene expression. In the

case of ZC3HAV1, the MS risk allele reduces expression.87 This may happen through EBV elements, or as a consequence of EBV-related molecular

processes in the infected B cell context. The net effect of these interactions may alter molecular pathways in B cells resulting in less control of

EBV infection via a reduction in anti-viral responses and apoptosis as well as an increase in cell proliferation. Further experimental validation is

needed to prove this postulated model at the physiological level. The image was created using BioRender.com, under the agreement number

OB24ZS37BU.
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EBV DNA copy number and proliferation rate, are
correlated with the expression of MS risk genes,
associated with risk variants, and affected by
these in a manner suggesting that targeting EBV
viral load would reduce EBV-driven pathogenesis
in MS. Also, it suggests that this process is likely
regulated by EBNA2 and may also be influenced
by oestrogen. Moreover, it is likely that the
interaction of EBNA2 with MS risk loci can alter
MS susceptibility. These data also provide strong
support for further studies into targeting the
interaction between the most associated host
MS risk genes and EBV genes affecting EBV
DNA copy number and that this pathogenic
process could be inhibited in MS by anti-EBV
therapies. They provide strong support for a
facilitative role of EBV infection in MS but do not
definitively prove it. These findings align with the
autoreactive B-cell hypothesis, in the way that MS
risk alleles lead to the establishment of more
transformed EBV B cells, which can efficiently
stimulate autoimmune T-cell responses and some
of these responses may be cross-reactive to myelin
antigens, leading to the development or
progression of MS.83 They indicate molecular
processes important in regulating the EBV life
cycle in B cells and suggest molecular targets for
control of EBV infection and potentially reducing
MS progression through reducing EBV
reactivation. In addition, EBV infection and the
HLA-DRB1*1501 MS risk haplotype likely interact
in susceptible individuals and contribute to MS
pathogenesis, as recently reviewed by Thomas
et al.89 Despite the established correlation
between HLA-DRB1*1501 and EBV, there is a lack
of specific studies examining the interaction
between EBV and the HLA region at a genomic
level. Our research, as well as others, has primarily
focused on non-MHC risk loci. Interestingly,
several EBV miRNAs have been observed to
directly or indirectly down-regulate HLA class
I and class II, potentially reducing immune
surveillance by virus-specific CD4+ and CD8+

T cells.90–92 However, these findings are yet to be
validated in latency III EBV-infected B cells, which
are believed to play a more significant role in MS
pathogenesis.78,80 An in-depth understanding of
the possible genomic level interaction between
EBV and HLADRB1*1501 within the context of MS
pathogenesis is pivotal, as it could shed light on
the currently ambiguous role of heightened
antibody responses against EBV antigens in the
development and progression of MS.

TARGETING EBV THERAPEUTICALLY

Controlling EBV infection as a therapeutic
strategy to treat MS is a logical step in the light
of the strong association between the virus and
pathogenesis of MS. The advent of recent
therapeutics that target B cells directly using
monoclonal antibodies (such as ocrelizumab)
raises the possibility that part of their therapeutic
action may be partially related to reducing EBV
reservoirs. Whilst B cell depletion is standard
treatment for EBV lymphoproliferative disease, it
is not entirely clear how B cell depletion reduces
MS progression and whether this is directly or
indirectly related to EBV being targeted in B cells
or by other mechanisms (such as eliminating
antigen presentation to T cells). The long latency
between EBV infection and the development of
autoimmunity, and the fact that most individuals
with EBV have no signs of an EBV related
autoimmune disease, makes it a particularly
challenging area to study.

A number of therapeutic interventions are
currently being tested to combat EBV infection,
including immunomodulating agents, antiviral
agents, chemotherapy, cytotoxic T-cell therapy
and stem cell transplantation. These agents are
used to treat chronic EBV infection, but their
effectiveness has been limited. There have been
attempts to treat EBV with existing antiviral
medications that are designed specifically for
other viruses but these have demonstrated poor
clinical efficacy.93 In addition, vaccines against
EBV are currently being developed but are not
currently available for routine clinical use.94

There remains an unmet need to develop more
specific and efficient therapies for targeting EBV
to treat MS. According to a recent study by
Bjornevik et al., targeting EBV at an earlier stage
may be a more effective way of treating MS.14

Among the possible strategies, one could be to
target the initial symptomatic EBV infection (IM)
in young adults harbouring MS risk alleles. As
vaccinating against EBV or filtering EBV-infected B
cells are challenging tasks,17,95 investigating
nucleic acid inhibitors against EBV elements may
be a beneficial solution. EBV elements (protein
coding, non-coding and miRNAs) are especially
attractive targets since normal host cellular
machinery could be left intact which minimises
adverse reactions. If it can be demonstrated that
nucleic acid inhibitors alter the expression of EBV
life cycle markers, particularly latent phase, EBV
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DNA load, EBV-infected B cell proliferation, and
the expression of MS risk genes, this would serve
as a proof-of-concept that this approach is
effective for controlling EBV infection and
potentially slowing the progression of MS.

Small interfering (si)RNAs have started to enter
the therapeutic space in recent years, with five siRNA
currently FDA-approved and in clinical use.96–100 They
are highly specific and offer the potential to
target viral sequences without affecting host genes.
However, there are no established siRNA
therapeutics that have entered clinical trials for EBV
treatment. Further, targeting just one of the EBV
elements may not necessarily be a one-size-fits-all
solution for therapeutic purposes. For example,
in most EBV-associated cancers, the latency I
(Hodgkin lymphoma) or II (Burkitt’s lymphoma)
programmes are involved,101 while diseases
associated with immune deficiencies or
autoimmunity are associated with the latency III
programme.102 According to one proposed
model, EBV lytic switching may contribute to the
pathogenesis of Systemic Lupus Erythematosus
(SLE),103 contrary to the proposed model for
MS,80 which suggests that latency III plays a
greater role in MS development. Since there are
some shared risk genetic loci between MS and
SLE, particularly those genes that are linked to
EBV molecular processes such as CD40,104,105

therapeutic advantage may be gained by
focusing on targeting EBV elements that arrest
latency III but do not induce lytic activation. An
alternative option to address this issue could be a
nuanced approach to avoid triggering possible
adverse effects through dual targeting of latency
and lytic genes simultaneously. Delivering nucleic
acid inhibitors to the EBV-infected B cells
effectively is one the challenging tasks in
targeting EBV elements. The attachment of
nucleic acid inhibitors to antibodies or aptamers
(reviewed by Kim and Rossi106), which could bind
to a surface marker specific to EBV-infected B
cells such as LMP1 or LMP2A or LMP2B, may be a
beneficial approach to improve the efficiency of
delivering anti-EBV nucleic acid inhibitors.

CONCLUSIONS

Epstein–Barr virus infection has been shown to be
an important environmental risk factor for the
development of MS. Recent studies suggest that
there are important interactions between the virus
and host genetics that may explain some elements

of MS pathogenesis. The long latency between
primary EBV infection and disease outcome makes
it challenging to study these interactions. It is
unclear whether the pathogenic pathways are
directly and/or indirectly linked to EBV infection
itself or to an aberrant immune response to the
virus. In future, the possibility of vaccinations that
prevent infection with EBV in the first place could
offer new hope in reducing the incidence of
various autoimmune diseases. Therapeutics that
target specific elements of EBV such as the
transcription factor EBNA2 could also lead to new
avenues to treat MS and other autoimmune
diseases. A better understanding of the interplay
between MS risk alleles and EBV could potentially
lead to a better insight into the disease processes
and the development of targeted therapeutics.
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There has been increasing evidence that leaves little doubt that Epstein–Barr virus (EBV) infection is necessary,

but not sufficient, for developing multiple sclerosis (MS). In this review, we discuss recent findings regarding

how EBV infection may contribute to MS pathogenesis via interactions with genetic risk loci and discuss

possible therapeutic interventions.
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