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1 Abstract 1 

When multiple visual stimuli are presented simultaneously in the receptive field, the neural response 2 

is suppressed compared to presenting the same stimuli sequentially. The prevailing hypothesis 3 

suggests that this suppression is due to competition among multiple stimuli for limited resources 4 

within receptive fields, governed by task demands. However, it is unknown how stimulus-driven 5 

computations may give rise to simultaneous suppression. Using fMRI, we find simultaneous 6 

suppression in single voxels, which varies with both stimulus size and timing, and progressively 7 

increases up the visual hierarchy. Using population receptive field (pRF) models, we find that 8 

compressive spatiotemporal summation rather than compressive spatial summation predicts 9 

simultaneous suppression, and that increased simultaneous suppression is linked to larger pRF sizes 10 

and stronger compressive nonlinearities. These results necessitate a rethinking of simultaneous 11 

suppression as the outcome of stimulus-driven compressive spatiotemporal computations within 12 

pRFs, and open new opportunities to study visual processing capacity across space and time.  13 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.24.546388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.24.546388
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

2 Introduction 14 

The human visual system has limited processing capacity. We are worse at processing multiple 15 

stimuli presented at once than when the identical stimuli are shown one after the other in the same 16 

location. This drop in performance has been observed in a variety of visual tasks, such as searching 17 

for a target among distractors1,2, recognizing an object when surrounded by flankers3, or keeping 18 

multiple items in short-term visual working memory4. 19 

A prevailing explanation based on the influential biased-competition theory5-7, is that visual 20 

processing capacity is determined by the computational resources afforded by receptive fields, where 21 

the visual system prioritizes inputs that are behaviorally relevant for further processing. When a visual 22 

stimulus is presented alone in the receptive field, the item can be fully processed with the limited 23 

neural resources. However, when multiple stimuli are presented in the receptive field these stimuli 24 

compete for neural resources, resulting in a reduced neurophysiological response. Indeed, when 25 

multiple stimuli are presented simultaneously within a neuron’s receptive field, the response is lower 26 

than when the identical stimuli are presented one after the other in sequence7-9—a phenomenon 27 

called simultaneous suppression. 28 

Simultaneous suppression is robust and prevalent. It has been observed from the level of 29 

single-neuron spiking7-9, all the way to the level of entire visual areas using fMRI6,10-13, and the effect 30 

is large: up to 2-fold amplitude differences between sequential and simultaneous presentations of 31 

otherwise identical stimuli6,10,13. Stemming from the idea that competition for neural resources can be 32 

resolved by task or behavioral demands5, a large body of research has examined how visual 33 

attention6,7,14,15 and context11,12 modulate simultaneous suppression. However, it is unknown how 34 

simple stimulus-driven computations within receptive fields may give rise to simultaneous 35 

suppression in the first place. Thus, the goal of the present study is to operationalize and elucidate 36 

the computational mechanisms underlying simultaneous suppression in human visual cortex. 37 

One hypothesis stemming from the biased-competition theory is that simultaneous 38 

suppression will only occur in neurons which receptive fields are large enough to encompass several 39 

stimuli10. It is well documented that the size of receptive fields16 and population receptive fields (pRFs, 40 

aggregate receptive field of the neuronal population in an fMRI voxel17,18) progressively increase from 41 

lower to higher areas up the visual hierarchy. Consistent with this hypothesis, several studies 42 

reported that simultaneous suppression systematically increases across the visual hierarchy and is 43 

absent in V17,10,13, suggesting that the lack of suppression in V1 is because its receptive fields are 44 

too small to encompass multiple visual stimuli7,10,13. 45 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.24.546388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.24.546388
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 

 

Next to increasing receptive field sizes, compressive nonlinearities also progressively 46 

increase up the visual hierarchy. V1 pRFs sum visual inputs mostly linearly: spatially across the visual 47 

field and temporally over the duration of the stimulus19,20. Thus, regardless of size, V1 pRFs predict 48 

identical responses to simultaneous and sequential presentations for which the stimuli are identical 49 

in location and duration, and only differ in sequence order. However, pRFs in subsequent visual 50 

areas perform subadditive summation of the visual input, both spatially20-23 and temporally24-36. 51 

Consequently, responses to bigger or longer visual stimuli are typically smaller than the sum of 52 

responses to smaller or shorter stimuli. Therefore, we hypothesize that sub-additive (or compressive) 53 

summation within receptive fields may give rise to simultaneous suppression.  54 

We consider two possible compressive neural mechanisms that may generate simultaneous 55 

suppression. One possibility is compressive spatial summation of visual inputs within receptive fields. 56 

This mechanism predicts that the response to multiple stimuli presented together within the pRF (as 57 

in simultaneous condition) will be lower than the sum of responses to the individual stimuli shown 58 

alone (as in sequential condition). As the duration of stimuli are matched between the simultaneous 59 

and sequential conditions, the spatial hypothesis predicts that the level of simultaneous suppression 60 

will only depend on the spatial overlap between the stimuli and the pRF. 61 

A second possibility is compressive spatiotemporal summation. Neuronal responses to visual 62 

stimuli typically show an initial strong transient response (lasting for 100-200 ms) followed by a 63 

weaker sustained response lasting for the duration of the stimulus25,36-40, and a transient response at 64 

stimulus offset34,36,39. These nonlinear temporal dynamics suggest that presenting all stimuli at once 65 

in the pRF (as in the simultaneous condition) results in two transients (at stimulus onset and offset). 66 

This response will be lower than the accumulated response induced by multiple transients in the pRF 67 

when presenting the stimuli one-by-one in rapid fashion (as in the sequential condition). Thus, the 68 

spatiotemporal hypothesis predicts that the level of simultaneous suppression will depend on both 69 

the spatial overlap between the stimuli and the pRF and the number of visual transients in the pRF. 70 

Here, we used fMRI and a computational pRF framework to distinguish between these 71 

hypotheses. We conducted two fMRI experiments. In the first (SEQ-SIM, Fig 1A), we measured 72 

responses to sequentially or simultaneously presented stimuli and examined how stimulus size and 73 

presentation timing affect the level of simultaneous suppression in each voxel (Fig 1B). In the second 74 

experiment (retinotopy, Fig 1C), we estimated each voxel’s spatial pRF parameters and used those 75 

parameters in a pRF modeling framework to predict the BOLD time series for each voxel in the SEQ-76 

SIM experiment. We implemented several pRF models in our modeling framework to computationally 77 

test the spatial and spatiotemporal hypotheses. To test the spatial hypothesis, we used a 78 
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compressive spatial summation (CSS) pRF model22 as it successfully predicts subadditive responses 79 

to stimuli of different apertures in pRFs across the visual hierarchy. To test the spatiotemporal 80 

hypothesis, we used a novel compressive spatiotemporal (CST) summation pRF model41, which 81 

predicts fMRI responses in each voxel to rapid and brief stimuli in units of visual degrees and 82 

milliseconds, and captures spatiotemporal subadditivity for large range of spatial and temporal 83 

stimulus conditions. 84 

3 Results 85 

To investigate what factors affect simultaneous suppression, we designed an fMRI experiment in 86 

which participants viewed colorful patterned square stimuli in upper and lower quadrants while 87 

performing a 1-back RSVP fixation task. Squares could either be presented sequentially (one after 88 

the other, in random order) or simultaneously (all at once) (Fig 1A). For each pair of sequential and 89 

simultaneous conditions, individual square presentation is identical in size and duration within an 8-90 

s block such that linear summation of visual inputs in space and time will generate identical responses 91 

for both sequence types. To distinguish between spatial and spatiotemporal mechanisms of 92 

simultaneous suppression, we varied square size and timing (Fig 1B). Additionally, participants 93 

completed an independent retinotopy experiment42 to delineate visual areas and estimate spatial 94 

pRF parameters in each voxel (Fig 1C). 95 

In each visual area, we measured BOLD responses in voxels which pRF centers overlapped 96 

the quadrants with SEQ-SIM stimuli. We then determined how spatial and temporal stimulus 97 

properties affect simultaneous suppression for each pRF across visual areas spanning ventral, 98 

lateral, and dorsal processing streams. We predict that if simultaneous suppression is of spatial 99 

origin, there will be greater suppression in higher-level than early visual areas because those higher-100 

level areas contain larger pRFs that will overlap multiple squares and also show greater spatial 101 

compression22. Additionally, we predict that varying square size but not timing will affect simultaneous 102 

suppression. If simultaneous suppression is of spatiotemporal origin, in addition to observing greater 103 

suppression for larger pRFs in higher-level areas, we also predict stronger suppression for long (1 s) 104 

than short (0.2 s) presentations because the former has longer sustained stimulus periods, resulting 105 

in four times fewer visual transients in the 8-s blocks than the latter (Fig 1B). 106 

To give a gist of the data, we first show results from example voxels in early (V1) and higher-107 

level (VO1/2) areas of the ventral stream. These visual areas differ in overall pRF size (and spatial 108 

compression): V1 pRFs are small and typically overlap only one square, and VO1/2 pRFs are large 109 

and overlap multiple squares. 110 
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 111 

Figure 1. Overview of fMRI experiments. (A) SEQ-SIM experiment. Example trial sequences for small and 112 
short stimuli. Four colorful squares were presented in the upper left and lower right quadrants, presented either 113 
sequentially in random order (top) or simultaneously (bottom) interspersed by blank periods to match the trial 114 
duration. Thus for each SEQ-SIM pairing, individual squares were shown for the same duration within a single 115 
trial (red bracket). Trials were repeated within an 8-s block (black bracket), where square content was updated 116 
for each trial. Insets: Example time course of an 8-s block for sequential (top) and simultaneous (bottom) stimuli. 117 
Observers performed a 1-back RSVP letter task at fixation. Letter is enlarged for visibility. (B) Stimulus 118 
conditions. Square stimuli were shown in one of two sizes (4 or 16 deg2) and in one of two presentation timings 119 
(0.2 s or 1 s). Number of trials per block was adjusted to create a 4:1 ratio in number of transients (stimulus 120 
onsets or offsets) for short vs long durations. The number of transients indicated is based on a pRF overlapping 121 
all four squares, e.g., for 1-s sequentially-presented squares there are 16 transients per block: 4 stimulus 122 
frames x 2 on/offsets x 2 trials. If a pRF overlaps only a single square (time course not shown), the number of 123 
transients will be identical for SEQ and SIM pairs. (C) Retinotopy experiment. Observers viewed bars 124 
containing cropped cartoon stimuli traversing the visual field (top) while fixating and performing a color change 125 
detection task at fixation42. Data were used to define visual areas and select pRFs with centers overlapping 126 
stimulus quadrants in the main experiment (bottom). Fixation dot is enlarged for visibility. 127 

3.1 V1 voxels with small pRFs show modest to no simultaneous suppression 128 

As predicted, for a single V1 voxel with a small pRF overlapping only a single square, we find similar 129 

responses for simultaneous vs sequential presentations in the two stimulus sizes and presentation 130 

timings (Fig 2A). In other words, this voxel shows no simultaneous suppression. Additionally, we 131 

observe that for this V1 voxel responses are larger for short presentations (with many visual 132 

transients) vs long presentations (few visual transients). However, there is no difference in the 133 

response amplitude for small vs big squares of the same duration (left vs right panels). 134 
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 135 
Figure 2. V1 voxels show no to little simultaneous suppression. (A) Example V1 voxel with small pRF 136 
overlapping a single square. The example voxel’s pRF (yellow circle) is superimposed on square locations 137 
(black). Gray time courses show the example voxel’s average BOLD time series ± SEM across block repeats 138 
for each stimulus condition. Above each time series is an example stimulus sequence for each condition in an 139 
8-s block. Gray sequence: time course including all square stimuli. Black sequence: time course for small pRF 140 
overlapping one square. (B) Relation between BOLD amplitude (% signal) for simultaneous vs sequential 141 
blocks, for each size/duration condition. Data include all V1 voxels from participant S3 with pRFs 142 
overlapping squares, averaged across a 9-s time window centered on the peak response. Each dot is a voxel, 143 
colored by effective pRF size from the retinotopy modelfit (σ/√n). Dashed line: No suppression. Solid black line: 144 
Linear mixed model (LMM) line fit for this participant’s V1 data. Slope (±SE) are from this participant’s line fit. 145 

To assess simultaneous suppression, we compare single voxel response amplitudes for 146 

simultaneous vs sequential presentations for a given stimulus condition. No suppression will result 147 

on voxels falling on the identity line, whereas simultaneous suppression will result in voxels below 148 

the diagonal. In V1, we find that many voxels fall closely or just below the identity line (Fig 2B, 149 

example participant; Supplementary Fig 1, all participants) even as response levels were higher for 150 

short vs long stimulus presentation timings. To quantify this relationship, we fit a linear mixed model 151 

(LMM) relating the simultaneous amplitude to the sequential amplitude across V1 voxels using a 152 
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fixed interaction effect for conditions, and random participant effect (intercepts and slopes vary per 153 

participant and condition, Equation 1). LMM slopes of 1 indicate no suppression, slopes less than 1 154 

indicate simultaneous suppression, where smaller slopes correspond to stronger suppression levels. 155 

Across participants, the LMM captures 86% of the variance in V1, with the following average 156 

(± SEM) suppression levels: small and long squares: 0.81±0.069 (CI95%=0.56–1.06), small and short 157 

squares: 0.85±0.058 (CI95%=0.73–0.96), big and long squares: 0.85±0.090 (CI95%=0.56–1.4), and big 158 

and short squares: 0.84±0.081 (CI95%=0.57–1.1). Thus, V1 voxels with relatively small pRFs show 159 

modest to no simultaneous suppression. 160 

3.2 Strong simultaneous suppression for large pRFs in higher-level visual areas 161 

For a single VO voxel with a large pRF overlapping all four large squares, we find lower responses 162 

for simultaneous than sequential presentations for both square sizes and presentation timings (Fig 163 

3A). In other words, this voxel shows simultaneous suppression across all experimental conditions. 164 

Additionally, we observe that the overall response amplitudes of this voxel are larger for the big 165 

squares and short presentations compared to the small squares and long presentations. 166 

We observe this pattern of results across VO voxels. Plotting the average amplitude for 167 

simultaneous vs sequential presentations, we find a linear relationship between responses to 168 

simultaneous and sequential pairings, where voxels show simultaneous suppression and the level of 169 

suppression varies across experimental conditions (Fig 3B, example participant; Supplementary 170 

Fig 1, all participants). This relationship is not a given, as simultaneous suppression could have 171 

tapered off with response level. Instead, our data suggests that suppression can be summarized with 172 

a single slope per visual area and experimental condition. 173 

Quantitative analyses using a LMM (R2=97%) revealed significant simultaneous suppression 174 

varying with stimulus size and duration, with the following suppression levels: small and long squares: 175 

0.40±0.075 (CI95%=0.15–0.65), small and short squares: 0.65±0.052 (CI95%=0.55–0.75), big and long 176 

squares: 0.62±0.11 (CI95%=0.31–0.93), and big and short squares: 0.70±0.033 (CI95%=0.54–0.87). 177 

Notably, for stimuli of the same duration, there is larger suppression (smaller slopes) for the small vs 178 

big squares. However, for the same square size, there is larger suppression for long vs short 179 

presentation timings. This suggests that in VO1/2, in addition to stimulus’ spatial overlap with the 180 

pRF, timing also contributes to simultaneous suppression. 181 
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 182 
Figure 3. Individual VO1/2 voxels with large pRFs show strong simultaneous suppression effects. Same 183 
layout as Fig 2, but for high-level visual area VO1/2. Data are from participant S3. (A) Example time series of 184 
a VO1 voxel. Voxel has a large pRF that covers all the four squares of both sizes (yellow circle). (B) 185 
Simultaneous vs. sequential BOLD amplitude for all voxels in VO1/2. Dashed line: No suppression; Solid 186 
black line: LMM line fit for this participant VO1/2 data. 187 

3.3 Simultaneous suppression increases up the visual hierarchy and depends on stimulus 188 

size and presentation timing 189 

We next quantified the relationship between responses in simultaneous vs sequential presentations 190 

across the visual hierarchy. Our data show four findings. First, in each visual area and stimulus 191 

condition, we find a linear relationship between voxels’ responses to simultaneous and sequential 192 

stimuli (Fig 4A, big and short stimuli; Supplementary Fig 1, all conditions). Second, when 193 

quantifying this linear relationship by its slope, we find that simultaneous suppression is prevalent at 194 

the voxel level in almost every visual area across participants. Third, across all stimulus conditions, 195 

we find that suppression levels progressively increase from early visual areas (V1 to V2 to V3) to 196 

intermediate areas (hV4, LO1/2, V3A/B), with the strongest simultaneous suppression in TO1/2 (Fig 197 

4B and Supplementary Table 1). Fourth, up the visual hierarchy, simultaneous suppression levels 198 
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depend on stimulus condition. In particular, higher-level visual areas show stronger suppression for 199 

long vs short presentation timings, and stronger suppression for small vs big square sizes. A two-200 

way repeated measures ANOVA revealed significant effects of visual area (F(8)=23, p=7.3x10-27) 201 

and stimulus condition (F(3)=27, p=2.3x10-15) on suppression slopes. There was no significant 202 

interaction between stimulus condition and visual area (Supplementary Table 2; post-hoc 203 

Bonferroni-corrected t-tests). 204 

 205 
Figure 4. Simultaneous suppression increases up the visual hierarchy. (A) Average sequential vs 206 
simultaneous BOLD amplitude of individual voxels for small and short stimulus condition. Each point 207 
is a voxel, colored by effective pRF size estimated from the retinotopy data. Each panel shows data of all 10 208 
participants. Black solid line: LMM fit (average across participants). Dashed line: identity line. Shaded area: 209 
CI95% across participants. Yellow circles: illustration of average pRF size per area, ranging from 1 in V1 to 7.8 210 
in TO1/2. (B) Suppression levels for each stimulus condition and visual area. Slopes are derived from 211 
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LMM fit to simultaneous vs sequential average BOLD amplitude data from all 10 participants, for each visual 212 
area. A slope of 1 indicates no suppression. Smaller slopes indicate larger suppression. Large colored dots: 213 
Group average of a visual area. Error bars: SEM across participants. Light gray dots: Individual participant 214 
slopes (random effects). Early visual areas are in blue colors (V1: indigo. V2: dark blue. V3: light blue), ventral 215 
visual areas in green colors (hV4: dark green. VO1/2: light green), dorsal visual areas are in purple colors 216 
(V3A/B: purple. IPS0/1: pink), and lateral visual areas are in warm colors (LO1/2: red. TO1/2: yellow). 217 

The increasing suppression levels across the visual hierarchy are in line with our prediction 218 

that simultaneous suppression will be stronger in visual areas that have larger pRF sizes. This 219 

relationship is evident at the level of entire visual areas (Fig 4B), but not across voxels within an area 220 

(Fig 4A). Within an area, we find similar suppression levels for voxels with pRFs that drastically vary 221 

in size (e.g., VO1/2), yet their level of suppression is predicted by a single line. Thus, while pRF size 222 

is an important predictor of simultaneous suppression at the level of an entire visual area, our data 223 

suggest that by itself, summation within pRFs that vary in size is insufficient to explain different 224 

suppression levels observed across stimulus conditions. Together, these results reveal robust 225 

simultaneous suppression at the individual voxel level that depends both on pRF size alongside 226 

stimulus size and timing parameters. 227 

3.4 A spatiotemporal pRF modeling framework to predict simultaneous suppression at the 228 

single voxel level 229 

To gain insight into the stimulus-driven computations that give rise to different levels of simultaneous 230 

suppression at the voxel level, we developed a computational framework that predicts the neural 231 

population response in each voxel from its pRF given the frame-by-frame stimulus sequence of the 232 

SEQ-SIM experiment (Fig 5). To capture the brief nature of the stimuli and the neural response, both 233 

stimulus sequence and predicted pRF responses have millisecond resolution. This neural pRF 234 

response is then convolved with the hemodynamic response function (HRF) to predict the voxel’s 235 

BOLD response and downsampled to 1 second resolution to match the fMRI acquisition (Fig 5A). 236 

Crucially, for each voxel, we use a single pRF model and the stimulus sequence of the entire SEQ-237 

SIM experiment to predict its time series across all stimulus conditions at once. For all tested pRF 238 

models, spatial parameters of each voxel’s pRF are identical and estimated from the independent 239 

retinotopy experiment (Fig 1C). 240 

We tested three pRF models. First, a compressive spatiotemporal pRF model (CST41) (Fig 241 

5B) to quantitatively examine if and to what extent compressive spatiotemporal summation within 242 

pRFs can predict simultaneous suppression across all stimulus manipulations. The CST pRF model 243 

contains three spatiotemporal channels that have the same spatial pRF (2D Gaussian) but different 244 

neural temporal impulse response functions (IRFs): a sustained, on-transient, and off-transient 245 
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channel that captures stimulus duration, onsets, and offsets; neural IRFs use default temporal pRF 246 

parameters from Stigliani et al.32. These spatiotemporal filter outputs are rectified and subjected to a 247 

compressive static nonlinearity, which produces subadditive spatiotemporal summation for both 248 

sustained and transient channels. 249 

 250 
Figure 5. Computational modeling framework. (A) Model overview. From left to right: Given a binarized 251 
stimulus sequence and pRF model, the neural response is predicted at millisecond time resolution. This neural 252 
response is convolved with hemodynamic response function (HRF) to predict the BOLD response. After the 253 
convolution with the HRF, data are downsampled to 1-s resolution (TR in SIM-SEQ experiment). (B-D) Tested 254 
pRF models. For each voxel, spatial pRF parameters are identical for all models and estimated from the 255 
retinitopy experiment (Fig 1C). Both CSS and LSS models sum linearly over time. For simulated pRF model 256 
predictions, see Supplementary Fig 2. (B) Compressive Spatiotemporal summation (CST)41. Temporal pRF 257 
parameters are default parameters from Stigliani et al.32. Static power-law exponent parameter (<1) is the same 258 
for all three spatiotemporal channels and fitted to each voxel’s SEQ-SIM data. The overall predicted BOLD 259 
response by the CST model is the weighted sum of the sustained and combined transient channel. (C) 260 
Compressive spatial summation (CSS)22. 2D Gaussian followed by a static compressive nonlinearity 261 
(exponent <1, estimated from retinotopy data). (D) Linear spatial summation (LSS)17. LSS pRFs sum linearly 262 
across space and time by computing the dot product between the binarized stimulus frame and the 2D 263 
Gaussian pRF. 264 

Second, a compressive spatial summation pRF model (CSS22) (Fig 5C) to quantitatively test 265 

if subadditive spatial summation alone can explain simultaneous suppression. The CSS model has 266 
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a 2D Gaussian followed by a compressive static nonlinearity and is successful in predicting spatial 267 

subadditivity in voxels with larger pRFs beyond V1. 268 

Third, a linear spatial summation pRF model (LSS17) (Fig 5D) to quantitatively test if small 269 

voxels that show little to no simultaneous suppression, such as those in V1, can be predicted by 270 

linear summation in space and time. The LSS pRF contains a 2D Gaussian for each voxel and sums 271 

stimulus input linearly over time and space. This model was also used as a benchmark for higher-272 

level visual areas and to validate our experimental design, because linear summation of stimuli in 273 

paired SEQ-SIM conditions should not result in simultaneous suppression. 274 

3.5 Comparing pRF model performance in predicting observed SEQ-SIM data 275 

For each voxel, we generate three predicted BOLD responses, one for each tested pRF model (CST, 276 

CSS, LSS; see Supplementary Fig 2 for example pRF model predictions). We fit each model using 277 

split-half cross-validation, resulting in a cross-validated variance explained (cv-R2) for each voxel. 278 

This provides a principled and unbiased way to test the hypotheses. 279 

For our example, small V1 pRF, both spatial models (LSS and CSS) predict the same BOLD 280 

response for sequential and simultaneous pairs (Fig 6A, bottom and middle rows). This is because 281 

the pRF covers only one small square, and consequently, spatial summation is identical across SIM 282 

and SEQ presentations. Comparing predictions to data, both LSS and CSS models capture the 283 

voxel’s response to long stimulus conditions, but underpredict the voxel’s response for short stimulus 284 

conditions, resulting in the same cross-validated variance explained (cv-R2) of 43% for this V1 voxel. 285 

In comparison, the CST pRF model best captures the response pattern across all stimulus conditions 286 

(cv-R2=52%), predicting no suppression and larger BOLD amplitudes for short than long stimulus 287 

conditions (Fig 6A, top row). 288 
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 289 
Figure 6. Comparison of pRF model performance. (A) V1 example voxel. Gray shaded area: Average ± 290 
SEM voxel time series. Data are from the same voxel as in Fig 2A repeated for each row. PRF model fits are 291 
shown in dashed lines. Split-half cross-validated variance explained (cv-R2) is computed by fitting the predicted 292 
time series to the average of odd runs and applying the modelfit to the average of even runs and vice versa. 293 
Blue: Compressive spatiotemporal summation model (CST, top row). Orange: Compressive spatial summation 294 
model (CSS, middle row). Black: Linear spatial summation model (LSS, bottom row). (B) VO1/2 example 295 
voxel. Data are from the same voxel as in Fig 3A repeated for each row. Same color scheme as panel A. (C) 296 
Distribution of voxel-level cross-validated variance explained for each pRF model, all 10 participants. 297 
Triangle: median. Dotted line: noise ceiling computed from max split-half reliability across participants. Blue: 298 
CST. Orange: CSS. Gray: LSS. Since number of voxels vary per participant and visual area, we assure equal 299 
contribution of each participant by resampling data 1000x of each participant’s visual area. (D) Pairwise model 300 
comparison for each visual area. Bars: show average across participants of the voxelwise difference in cv-301 
R2 between two pRF models. Error bars: SEM across participants. Individual dots: average difference for each 302 
participant. Blue-gray: CST vs LSS. Blue-orange: CST vs CSS. Orange-gray: CSS vs LSS. 303 
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When pRFs are large and cover multiple stimuli, like the example VO1/2 voxel, the LSS pRF 304 

model predicts larger responses for big than small squares, slightly higher responses for long than 305 

short presentations, and identical responses for sequential and simultaneous pairs. As such, it fails 306 

to predict the observed simultaneous suppression in all conditions (Fig 6B, bottom row). On the other 307 

hand, the CSS pRF model predicts simultaneous suppression because of spatial subadditivity, as 308 

well as a modest increase in response with stimulus size (Fig 6B, middle row). Like the LSS model, 309 

the CSS model predicts slightly larger responses for the long than short presentations of a given 310 

sequence type (SIM/SEQ). Consequently, the CSS model predicts simultaneous suppression well 311 

for the long presentations across stimulus sizes, but overpredicts simultaneous suppression for short 312 

presentations. In contrast, the CST pRF model best predicts all stimulus conditions for this example 313 

voxel: it shows simultaneous suppression, slightly larger response for big vs small stimulus sizes, 314 

and larger responses for short vs long presentation timings (Fig 6B, top row). 315 

Across all voxels and visual areas, we find that the CST pRF model best predicts our data 316 

(Fig 6C,D). The CST model explains more cv-R2 than LSS and CSS pRF models and approaches 317 

the noise ceiling in V3 and higher-level visual areas (Fig 6C, dotted line). A two-way repeated 318 

measures ANOVA with revealed significant effects of pRF model (F(2)=2.6x103, p<10-209) and ROI 319 

(F(8)=3.4x103, p<10-209) on cv-R2, as well as a significant interaction between pRF model and ROI 320 

(F(2,8)=65, p<2.8x10-209). On average, the increase in cv-R2 for the CST model compared to the 321 

other models ranges from ~5% in V1 to ~14% in VO1/2 (Fig 6D) and is significant in each visual area 322 

(Supplementary Table 3, post-hoc Bonferroni-corrected t-tests). Beyond early visual cortex, the 323 

CSS model outperforms LSS, but in V1 the LSS model slightly (+1.4%) and significantly (p<2.7x10-324 

8) explains more variance than the CSS model. These results suggest that V1 voxels largely sum 325 

linearly in space, but nonlinearly in time. However, across the visual hierarchy, compressive 326 

spatiotemporal summation provides a more comprehensive explanation of the empirical data. 327 

3.6 What pRF components drive the observed simultaneous suppression? 328 

To understand the underlying neural computations that generate simultaneous suppression, we used 329 

pRF models to predict the level of simultaneous suppression in each voxel and condition of the SEQ-330 

SIM experiment. Then, we compared the model-based simultaneous suppression level against the 331 

observed suppression (Fig 7, shaded gray bars). 332 
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 333 
Figure 7. Model-based prediction of simulateneous suppression vs observed simulateneous 334 
suppresion. Shaded gray bars: Observed suppression levels in data, mean  SEM across participants (same 335 
as Fig 4B). Black open circles: Linear spatial summation (LSS) pRF model; Orange filled circles: Compressive 336 
spatial summation (CSS) pRF model; Blue filled circles: Compressive spatiotemporal (CST) summation. Model-337 
based points and errorbars show average and SEM across all 10 participants. 338 

The CST model best captures simultaneous suppression across visual areas and stimulus 339 

conditions as its predictions are largely within the range of data variability (Fig 7, compare blue circles 340 

to shaded gray bars). Specifically, the CST model predicts (i) progressively increasing simultaneous 341 

suppression across visual hierarchy, (ii) stronger suppression for longer than shorter presentation 342 

timings for squares of the same size, and (iii) weaker suppression for bigger than smaller squares of 343 

the same timing. 344 

The CSS model captures the progressively stronger simultaneous suppression across visual 345 

hierarchy and the observed simultaneous suppression for the long stimuli in a few visual areas 346 

(V3A/B, IPS0/1, and TO1/2), but fails to predict suppression for short stimuli and generally 347 

overpredicts the level of suppression (Fig 7, orange circles). In other words, the CSS model predicts 348 

much stronger simultaneous suppression levels than observed, as model points are consistently 349 

below the data. This overprediction is largest for short presentation timings in early (V1-V3) and 350 
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ventral visual areas (hV4 and VO1). One reason for this mismodeling error is that the CSS model 351 

does not encode visual transients: it predicts stronger simultaneous suppression for small than big 352 

sizes but predicts similar simultaneous suppression for long and short presentations of the same 353 

square size. 354 

Finally, and as expected, the LSS model does not predict simultaneous suppression 355 

altogether. This is because the LSS model sums visual inputs linearly in space and time, and we 356 

designed our experiment such that each square is shown for the same duration and location in 357 

sequential and simultaneous conditions. Therefore, the LSS model predicts the same responses for 358 

sequential and simultaneous stimulus pairings and consequently no suppression (Fig 7, black open 359 

circles). For the big and long squares, the LSS model predicts slightly higher responses for 360 

simultaneous vs sequential presentations. We attribute this to our experimental design, which has 361 

different inter-stimulus-intervals of individual squares between sequential and simultaneous blocks, 362 

see Methods – LSS pRF model). Together, these model comparisons suggest that accounting for 363 

spatiotemporal nonlinearities rather than just spatial nonlinearities is necessary for predicting 364 

simultaneous suppression across a variety of spatiotemporal stimulus conditions. 365 

What intrinsic pRF components drive the observed simultaneous suppression? Examining 366 

the CST model parameters reveals that simultaneous suppression depends on pRF size, 367 

compressive exponent, as well as contributions from both sustained and transient temporal channels 368 

(Fig 8). Visual areas with larger pRF sizes tend to show stronger simultaneous suppression levels 369 

(smaller slopes, Pearson’s correlation r=-0.72, CI95%=-0.81–0.59, p<0.0001) (Fig 8A). Likewise, 370 

visual areas with stronger compression (smaller CST pRF exponent parameters) are linked to 371 

stronger simultaneous suppression levels (Pearson’s r=0.65, CI95%=0.50–0.76, p<0.0001) (Fig 8B). 372 

Both pRF size and compression increase from early to higher-level visual areas, for example, along 373 

the lateral pathway: V1 through V3 followed by LO and TO. Indeed, V1 has the smallest pRF sizes 374 

and least compression (CSTn=0.71), whereas TO1/2 has the largest pRFs and strongest 375 

compression (CSTn=0.36). Lastly, we find that across visual areas, both sustained and transient 376 

channels contribute to predicting single voxel BOLD responses, as their β-weights are similar (no 377 

significant difference in β-weights across channels) (Fig 8C). These results indicate that both 378 

sustained and transient channels are needed to predict simultaneous suppression across different 379 

stimulus size and timing conditions. 380 
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 381 
Figure 8. Simulateneous suppression depends on pRF size, compressive exponent, and contributions 382 
from both sustained and transient channels. In all panels: dots/bars show average across 10 participants. 383 
Error bars: SEM across 10 participants. (A) Simultaneous suppression level vs median pRF size. (B) 384 
Simultaneous suppression level vs median CST pRF exponent. For effective size and exponent pRF 385 
parameters, we first computed the median across pRFs of a visual area for each participant, as compressive 386 
exponent values in V1 and V2 voxels are not normally distributed (see Supplementary Fig 3), then we 387 
calculated the average median value across participants. Pearson’s correlation (r) is computed using individual 388 
participant data. (C) Average β-weights of sustained and transient channels in CST pRF model. Beta 389 
weights are averaged first within a participant’s visual area, to then average across participants per visual area. 390 
Colored bars: Sustained channel. White bars: Combined transient channel. Differences between sustained and 391 
transient channels are not significant. (D) Median exponent pRF parameters for CSS vs CST model. Dashed 392 
line indicates equality line. 393 

Because the static nonlinearity in each CST pRF is applied to the output of spatiotemporal 394 

channels, the compression is of spatiotemporal nature and cannot be separated across spatial and 395 

temporal dimensions. Nevertheless, we can gain insight into the different contributions of spatial 396 

versus spatiotemporal compression by comparing the exponent across the CST and CSS pRF 397 

models. We find that across all visual areas, the CSS model predicts consistently higher compression 398 

(smaller exponent) than the CST model (Fig 8D). This overly strong compression by the CSS model 399 

likely explains its mismodeling of the short stimuli conditions where it predicts too much suppression 400 

(Fig 7). Overall, these results suggests that both spatial and temporal nonlinearities are necessary 401 

to account for the observed simultaneous suppression, and ultimately interact, resulting in a reduced 402 

spatiotemporal compression parameter.  403 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.24.546388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.24.546388
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

4 Discussion 404 

Simultaneous suppression is a decades-old, yet perplexing neurophysiological phenomenon: Why is 405 

the response to multiple stimuli presented simultaneously substantially lower compared to the 406 

response to the same stimuli presented sequentially? Here, we combined a new experimental 407 

design, varying stimulus size and presentation timing, with an innovative spatiotemporal pRF 408 

modeling framework to elucidate the stimulus-driven computations that give rise to simultaneous 409 

suppression in individual voxels. Our results show that the level of simultaneous suppression 410 

depends not only on the spatial overlap between stimuli and the pRF, but also on the timing of stimuli 411 

and the number of visual transients. Furthermore, we find that compressive (subadditive) 412 

spatiotemporal computations by pRFs are necessary to predict simultaneous suppression in each 413 

voxel across the visual hierarchy, and across various experimental conditions. These findings 414 

suggest that a stimulus-driven compressive spatiotemporal computation by pRFs generates 415 

simultaneous suppression and necessitate a rethinking of the neural mechanisms involved in 416 

simultaneous suppression. 417 

4.1 Rethinking the neural mechanisms of simultaneous suppression  418 

By investigating simultaneous suppression under a computational lens, measuring and predicting 419 

each voxel’s pRF response independently, we provide a mechanistic explanation on how the spatial 420 

overlap between the stimulus and pRF drives simultaneous suppression at the single voxel level. 421 

This confirms the longstanding hypothesis that the overlap between the receptive field and stimuli 422 

matters6,10,13. Additionally, we show that increasing simultaneous suppression up the visual hierarchy 423 

is predicted by both the progressive increase in pRF size and the spatiotemporal compression 424 

strength. 425 

Crucially, we are able to explain a wide range of simultaneous suppression levels by stimulus-426 

driven computations within pRFs alone, which necessitates a rethinking of the neural processing 427 

underlying simultaneous suppression. Thus, we propose a new idea that simultaneous suppression 428 

is a consequence of simple, stimulus-driven spatiotemporal computations rather than a result of 429 

stimuli competing for limited neural resources within receptive fields, and prioritized by task demands. 430 

As our computational framework uses a stimulus-referred encoding model, it has predictive power. 431 

This allows future research to make new predictions about suppression levels for any stimulus 432 

sequences. The framework is also modular and can be expanded to computationally operationalize 433 

the effects of stimulus content, context, and task demands on simultaneous suppression. 434 
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4.2 Simultaneous suppression increases up the visual processing hierarchy, and depends on 435 

stimulus size and timing 436 

Consistent with previous work6,7,10,13, we find that simultaneous suppression increases up the visual 437 

hierarchy and is particularly strong in ventral visual areas (hV4 and VO1/2). Notably, we find that not 438 

only stimulus size and location, but also stimulus timing and number of visual transients affect the 439 

level of simultaneous suppression: for stimuli of the same size, longer timings (1 s) with fewer 440 

transients generated stronger suppression levels than shorter timings (0.2 s) with more transients. In 441 

contrast, many prior studies6,10-13 used a single duration (0.25 s) similar to our short stimuli, for which 442 

we find weaker levels of simultaneous suppression. This may explain why we find moderate levels 443 

of suppression in V1 voxels despite having small pRFs; a result not reported previously. Another 444 

possibility is that we include all pRFs that overlap the stimuli, including small pRFs that partially 445 

overlap multiple squares. This differs from electrophysiology studies where stimuli are optimized to 446 

completely overlap with single neurons’ receptive fields7-9. Moreover, we quantified simultaneous 447 

suppression in each voxel rather than an entire ROI6,10-13, which may also explain differences across 448 

studies. 449 

4.3 Compressive spatiotemporal computations within pRFs can explain simultaneous 450 

suppression across visual cortex 451 

We compared three pRF models in our computational framework (LSS17, CSS22, and CST41) to test 452 

whether compressive spatial summation or compressive spatiotemporal summation better predict 453 

the simultaneous suppression. Overall, the CST pRF model provides a comprehensive explanation 454 

for simultaneous suppression across voxels spanning the ventral, dorsal, and lateral visual 455 

processing streams, stimuli varying in size, and brief presentations durations (0.2-1s) well below the 456 

temporal resolution of fMRI. We note that the high CST model performance across all visual areas 457 

is not a given, as different models could have better predicted certain visual areas or processing 458 

streams. 459 

Spatial pRF models captured some, but not all aspects of the observed simultaneous 460 

suppression. For example, LSS pRFs predict the absence of simultaneous suppression in small V1 461 

voxels and CSS pRFs predict lower responses for simultaneously vs sequentially presented stimuli, 462 

outperforming the LSS model beyond V1. However, LSS and CSS model were developed for 463 

stimulus durations and timings that evoke BOLD responses that approximately sum linearly in time. 464 

Hence, these models are limited because they do not account for visual transients. This is not only 465 

a limitation of the spatial pRF models we tested (LSS and CSS), but of any other pRF model that 466 

sums linearly over the stimulus duration, such as center-surround pRFs23,43 or linear spatiotemporal 467 
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pRF models44. Likewise, we believe other mathematical forms of subadditive spatiotemporal 468 

summation could predict simultaneous suppression similarly to the CST model (e.g., a delayed 469 

normalization spatiotemporal pRF model41). 470 

While the CST pRF model outperforms the LSS and CSS models by predicting simultaneous 471 

suppression across stimuli size and timing, it did not capture all spatiotemporal nonlinearities. For 472 

instance, for small and long stimuli, the CST model overpredicts suppression in early visual areas, 473 

but underpredicts suppression in higher-level areas. Future research may improve CST model 474 

performance by optimizing parameters of both neural and hemodynamic temporal impulse response 475 

functions (IRFs) in each voxel41, and incorporating additional temporal nonlinearities, such as an 476 

exponential response decay34,36. 477 

We are not the first to consider temporal aspects of BOLD responses in models of the human 478 

visual system. Prior studies have suggested other hemodynamic45,46 and neural27,31-34,44 IRFs to 479 

capture BOLD temporal nonlinearities (see review 47). Notwithstanding the success of these models, 480 

only the recent development of a compressive spatiotemporal pRF model41 with a neural IRF in units 481 

of visual degrees and milliseconds provided us with the opportunity to examine what subadditive 482 

spatiotemporal computations contribute to simultaneous suppression for the following reasons. First, 483 

a successful model needs to account for neural nonlinearities. We believe that the observed 484 

nonlinearities are of neural rather than hemodynamic origin, as electrocorticography and single unit 485 

recordings show that neural responses to brief visual stimuli evoke strong visual transients and are 486 

nonlinear34. In a recent study, we have shown that implementing such neural nonlinearities in a 487 

computational model rather than optimizing hemodynamic responses is necessary to predict BOLD 488 

temporal nonlinearities to brief stimuli as in the present study41. Second, to capture visual transients 489 

in rapid succession, the model requires neural IRFs with millisecond precision and 50-200 ms 490 

response window rather than 1-4s window as afforded by hemodynamic models44,46. Third, the model 491 

also requires a spatial pRF. While prior studies have modeled neural IRFs with millisecond time 492 

resolution27,31-34, without a spatial component these models are unable to predict differences in 493 

responses to one vs multiple stimuli covering a pRF. 494 

4.4 Compressive spatiotemporal summation as a general computational mechanism in the 495 

visual system 496 

A key insight from our study is that both increasing pRF size and stronger spatiotemporal 497 

compression contribute to increasing levels of simultaneous suppression up the visual processing 498 

hierarchy. This insight complements prior work6,10,48 which proposed that the progressive increase in 499 

receptive field size causes stronger simultaneous suppression in higher-level areas. 500 
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Increasing receptive field size and compression from early to higher-level visual areas have 501 

been interpreted as increasing summation windows that enhance invariance both in space20,22,23,49,50 502 

and time24-26,29,31,33,36. This aligns with the idea that spatial and temporal compression of visual 503 

information share a similar processing strategy33 and suggests that compressive spatiotemporal 504 

summation may be a general computational principle in visual cortex. 505 

What may be the role of compressive spatiotemporal summation? Little is known regarding to 506 

the role of compressive spatiotemporal summation outside of motion processing51-54. One possibility 507 

is that increasing compressive spatiotemporal summation generates representations that encode 508 

complex shape and motion information that unfolds over time55. This may be useful for binding 509 

different views of novel objects during unsupervised learning (associated with ventral stream 510 

functions56,57) or for perceiving complex visual dynamics, actions, and social interactions (associated 511 

with lateral stream functions58-60). Another possibility is that spatiotemporal compression within pRFs 512 

may enable neurons to prioritize novel visual information5,61. This may be beneficial for visual 513 

search1,2 or short-term visual working memory by converting redundant visual information into a more 514 

efficient representation62. However, spatiotemporal compression may also limit visual processing 515 

capacity, affecting downstream cognitive processes such as worse memory for simultaneously vs 516 

sequentially-presented items63. Thus, an important future direction is characterizing and 517 

computationally linking visual capacity and simultaneous suppression. 518 

In sum, our empirical data and voxel-wise pRF modeling approach, call for a rethinking of the 519 

neural mechanisms that drive simultaneous suppression and suggest that suppression is a byproduct 520 

of compressive spatiotemporal computations. These findings provide exciting new opportunities to 521 

computationally understand how stimulus content, context, and task demands affect simultaneous 522 

suppression and visual processing capacity more broadly.  523 
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5 Methods 524 

5.1 Participants 525 

Ten participants (6 female, ages 22-53 years, M = 30.1 years, SD = 8.7 years) with normal or 526 

corrected-to-normal vision participated in a retinotopy and SEQ-SIM fMRI experiment. Participants 527 

gave written informed consent, were compensated for their time, and all procedures were approved 528 

by the Stanford Internal Review Board on Human Subjects Research. 529 

5.2 Stimuli & experimental design 530 

Stimuli were generated using MATLAB (MathWorks, MA, USA) and PsychToolbox64 on an Apple 531 

MacBook Pro laptop. Images were presented using an Eiki LC-WUL100L projector (Eiki International, 532 

Inc., CA, USA) on a rear-projection screen via two large mirrors placed at the back of the MRI scanner 533 

bed. The projected image had a resolution of 1920x1080 pixels, resulting in a field-of-view of 534 

~38x24°, and refresh rate of 60 Hz. The display was calibrated using a linearized lookup table. 535 

Retinotopy experiment. Participants completed four 3.4-minute runs, where bar stimuli 536 

cropped from colorful cartoons traversed across a 24x24° circular aperture (Toonotopy42). Cartoon 537 

images inside the bar changed randomly at 8 Hz. The bar swept in 12 discrete steps, 2-s per bar 538 

position, for 4 orientations (0°, 45°, 90°, 135°) and 2 motion directions for each orientation. Observers 539 

fixated on a central dot (diameter = 0.12°) and pressed a button every time the fixation dot changed 540 

color (semi-random intervals, 6–36 s). Due to a coding error, button presses were only recorded for 541 

3 participants, who performed at ceiling (M = 98.7% correct, SD = 1.2%). 542 

SEQ-SIM experiment. Participants completed eight ~5.5-minute runs (except for participant 543 

S5, completing six runs), where 8 squares were presented sequentially or simultaneously while 544 

fixating: 4 squares in the lower right quadrant and 4 squares in the upper left quadrant. Both 545 

sequential and simultaneous conditions used two presentation timings (short: 0.2 s and long: 1 s) 546 

and two sizes (small: 2x2° and big: 4x4°), resulting in eight conditions. 547 

Stimuli: Squares were randomly cropped from colorful cartoons and placed on a mean 548 

luminance gray background. To ensure square stimuli would elicit responses in visual cortex, squares 549 

with little to no contrast were excluded (normalized root mean square contrast across pixels < 10%). 550 

The content of individual squares differed for each trial and quadrant, and never repeated within a 551 

run. Within a quadrant, squares had a 2-by-2 layout with a 0.82° gap between them, centered at 552 

~7.1° eccentricity ([x,y] = [5°,5°]). Both sizes used identical gap and eccentricity, such that 4 small 553 

squares extended horizontally and vertically from 2.59° to 7.41°, and big squares extended from 554 
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0.59° to 9.41°. The lower right and upper left quadrant had the same square locations but mirrored 555 

horizontally and vertically. 556 

Experimental Design: Stimuli were shown in ~8 s blocks, interspersed by 12-s blank periods. 557 

Each run started with a 6-s countdown and 12-s blank and ended with a 12-s blank. Each condition 558 

was repeated four times in a pseudo-randomized order across two runs. The block order, as well as 559 

individual square presentation within a block, differed across runs. Each participant was assigned a 560 

unique pair of runs, which were repeated four times (three for participant S5) within the experiment 561 

with different square content (see example: https://osf.io/7rqf4).  562 

Sequential and simultaneous conditions had 8 trials per block for short stimuli and 2 trials per 563 

block for long stimuli. We used different trial-per-block ratios such that short and long conditions had 564 

a similar total block duration while the number of visual transients quadrupled (16 vs 64)—matching 565 

the increase between small and big square sizes (4 vs 16 deg2). In a sequential trial, the four squares 566 

in each quadrant appeared one at a time, in random order, with a 33-ms inter-stimulus-interval (ISI) 567 

between squares. In a simultaneous trial, all four squares in a quadrant appeared at once for the 568 

same duration and location followed by a mean luminance gray display to match duration of a 569 

sequential trial. 570 

Block onsets and stimulus conditions were identical across quadrants, but timing and order 571 

of individual square appearances were independently determined per quadrant. In simultaneous 572 

blocks with long stimulus presentations, stimuli in the first trial were presented at block onset to match 573 

sequential blocks. Stimuli of the second trial were presented 4 s later to avoid 7-s gaps between 574 

stimuli within a block. In simultaneous blocks with short presentations, stimuli in the first trial were 575 

also locked to block onset, but onset of stimuli in the following 7 trials was randomized within a trial. 576 

Task & Behavioral performance: Participants performed a 1-back letter RSVP task at fixation 577 

and pressed a button when a letter repeated (1/9 probability). The letters (diameter of ~0.5°) updated 578 

at 1.5 Hz, alternating between black and white colors, and randomly drawn from a predefined list (‘A’, 579 

‘S’, ‘D’, ‘F’, ‘G’, ‘H’, ‘J’, ‘K’, ‘B’, ‘P’). Participants had a 0.83-s response window after a letter appeared 580 

and performance was displayed after every run. Outside the scanner, participants did 1-minute 581 

practice runs until they reached at least 70% correct before starting the experiment. In the scanner, 582 

participants performed the task well (M=88% correct, SD=8.2%), ranging from 68–95%, and average 583 

false alarm rate of 2%. These behavioral data are confirmed by steady fixation in eye movement data 584 

(Supplementary Fig 4) and indicate that participants were fixating throughout experimental runs. 585 
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5.3 MRI data acquisition  586 

Participant’s structural and functional data were collected using a 3T GE Signa MR750 scanner 587 

located in the Center for Cognitive and Neurobiological Imaging at Stanford University. Whole brain 588 

T1-weighted anatomy were acquired using a BRAVO pulse sequence (1 mm3 isotropic, inversion 589 

time=450 ms, TE=2.912 ms, FA=12°), using a Nova 32-channel head coil. Functional data were 590 

collected using a Nova 16-channel coil, using a T2*-sensitive gradient echo planar imaging sequence 591 

(2.4 mm3 isotropic, FoV=192 mm, TE=30 ms, FA=62°). EPI slice prescriptions were oblique, roughly 592 

perpendicular to the calcarine sulcus. Retinotopy experiment used a TR of 2000 ms and 28 slices. 593 

SEQ-SIM experiment used a TR of 1000 ms and 14 slices. A T1-weighted inplane image 594 

(0.75x0.75x2.4 mm) was collected with the same coil and slice prescription as the functional scans 595 

to align functional and anatomical scans. 596 

Left eye gaze data of 9 participants were continuously recorded in each SEQ-SIM run at 1000 597 

Hz using an EyeLink 1000 (SR Research Ltd., Osgoode, ON, Canada). Eye position calibration and 598 

validation was conducted before the first run, using a 5-point grid. We could not collect eye gaze data 599 

in one participant due to constraints in the mirror setup. Four participants were excluded prior to 600 

analysis due to excessive measurement noise. Analysis details for eye gaze data are in the 601 

Supplemental Material above Supplementary Fig 4. 602 

5.4 MRI data analysis 603 

5.4.1 Reproducible computation and code sharing  604 

Data analyses were conducted in MATLAB (R2020b) and for FreeSurfer’s auto-segmentation65 (v6.0; 605 

http://surfer.nmr.mgh.harvard.edu/). Data and analysis code are publicly available at 606 

https://osf.io/rpuhs/, https://github.com/VPNL/simseqPRF, and 607 

https://github.com/VPNL/spatiotemporalPRFs. 608 

5.4.2 Preprocessing 609 

Whole-brain T1-weighted scans were aligned to the AC-PC line using SPM12 610 

(https://github.com/spm/spm12) and auto-segmented with FreeSurfer’s recon-all algorithm. 611 

Functional data were slice-time corrected, motion corrected, drift corrected, converted to percent 612 

signal change using the Vistasoft toolbox (https://github.com/vistalab/vistasoft). Participants’ 613 

functional scans were aligned with the inplane to their whole brain anatomy scan, using a coarse, 614 

followed by a fine 3D rigid body alignment (6 DoF) using the alignvolumedata_auto toolbox 615 
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(https://github.com/cvnlab/alignvolumedata). The first 8 (SEQ-SIM) or 6 (Retinotopy) volumes of 616 

each functional scan were removed to avoid data with unstable magnetization. 617 

Retinotopy analysis. Retinotopy runs were averaged and analyzed with Vistasoft’s 618 

compressive spatial summation pRF model (CSS)22 using a 2-stage optimization (coarse grid-fit, 619 

followed by fine search-fit). For each voxel, this resulted in 2D Gaussian pRF with center coordinates 620 

(x0, y0) in degrees, pRF standard deviation (σ) in degrees and pRF static nonlinearity exponent 621 

(CSSn) ranging from 0.01 to 1. To avoid pRFs that are not visually responsive, we selected pRFs 622 

with R2 ≥20% in the retinotopy experiment, similar to previous pRF publications42,66. 623 

Defining visual areas. Spatial pRF parameters were converted to polar angle and 624 

eccentricity maps and projected to participant’s native cortical surface using nearest neighbor 625 

interpolation. Visual field maps were used to define the following visual areas: V1, V2, and V367, hV4 626 

and VO1/268, LO1/2 and TO1/269, and V3A/B and IPS0/170.  627 

Defining ROIs and selecting voxels. For each visual area, we selected voxels with pRFs 628 

centers within the circumference of the big squares in the SEQ-SIM experiment, that is, within an 629 

8.82x8.82° square located 0.59° to 9.41° from display center in both x- and y-dimensions in each 630 

quadrant. From these voxels, we used those with corresponding data from the SEQ-SIM experiment. 631 

Overall, we obtained data in most participants’ visual areas, except 6 participants who had insufficient 632 

coverage of IPS0/1 and 2 participants who had insufficient coverage of TO1/2, due to fewer slices in 633 

the SEQ-SIM experiment. 634 

SEQ-SIM analysis. We excluded voxels with a split-half reliability <10% to filter out those 635 

voxels with little to no visual response. Excluded voxels were mostly from V1 and V2, with small 636 

pRFs that fell in between stimuli or on the border of stimuli. The two unique SEQ-SIM runs were 637 

concatenated for each repeat. When applying split-half cross-validation for model fitting, the 4 638 

concatenated runs were split into two odd and two even runs, and averaged within each half. 639 

5.5 pRF modeling framework 640 

Our modeling framework contained three pRF models: (i) LSS, to test linear spatial summation17, (ii) 641 

CSS, to test compressive spatial summation22, and (iii) CST, to test compressive spatiotemporal 642 

summation41. Both LSS and CSS models linearly sum over the temporal duration of the stimulus. 643 

Each model’s input is a 3D binarized stimulus sequence, pixels by pixels (in visual degrees) 644 

by time (milliseconds). Each pRF is applied to each frame of the stimulus sequence to predict the 645 

neural pRF response. For each model, this neural response is then convolved with a canonical 646 

hemodynamic response function (HRF) (double-gamma SPM default) and downsampled to the fMRI 647 
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acquisition TR. This results in a predicted BOLD response for the entire stimulus sequence. For each 648 

pRF that overlapped stimuli in SEQ-SIM experiment, predictions were computed for each unique 5.5-649 

min run, and then concatenated for the two unique runs. Importantly, concatenated runs contained 650 

all 8 stimulus conditions, requiring each model to predict all conditions simultaneously. 651 

LSS pRF model. The LSS model has a 2D Gaussian pRF with an area summing to 1, 652 

computing the dot product between the 2D Gaussian and stimulus sequence to predict the neural 653 

response. This model sums inputs linearly in visual space and time, and typically predicts the same 654 

BOLD response for sequential and simultaneous trials. For longer stimulus durations, the LSS model 655 

occasionally predicts larger responses for simultaneous than sequential, due to a difference in square 656 

ISI between the two condition blocks. Specifically, the randomized square onset causes sequential 657 

ISIs to range from 1–7s, which by chance can be longer than the fixed 4-s simultaneous ISI—658 

especially when pRFs are small and overlap a single square. When this occurs, LSS predicts the 659 

BOLD responses accumulate less in the sequential than simultaneous block. 660 

CSS pRF model. The CSS model is similar to the LSS model but applies a static power-law 661 

nonlinearity exponent CSSn between 0.1–1. The spatial nonlinearity is compressive when CSSn<1. 662 

CST pRF model. The CST model contains three spatiotemporal channels. Each channel has 663 

an identical spatial pRF as the LSS model, combined with a sustained, on-transient, or off-transient 664 

neural temporal impulse response function (IRF). For each channel, we apply the dot product 665 

between the spatial pRF and the stimulus sequence, which output is then convolved with the neural 666 

temporal IRF with millisecond time resolution. Each channel’s response then goes through the same 667 

rectified linear unit (ReLU, where 𝑓(𝑥) = max⁡(0, 𝑥)). The rectified response is subjected to a static 668 

power-law nonlinearity, where the CST exponent parameter (CSTn) is bound between 0.1–1, 669 

compressing the output. Predicted neural responses for sustained and the summed transient 670 

channels are then convolved with the HRF. The voxel’s response is the weighted sum of the two (βS, 671 

βT) time series. 672 

The sustained, on-transient, and off-transient IRFs are as described in ref41, and are identical 673 

across voxels, using default V1 parameters from ref31. The sustained IRF is monophasic gamma 674 

function that peaks between 40-50 ms (time constant parameter 𝜏=4.93 ms, exponent parameter 675 

n=9). The on-transient IRF is the difference of two gamma functions, the sustained IRF and a second 676 

gamma function (𝜏=4.93 ms, n=10, time constant ratio parameter κ=1.33), resulting in a biphasic 677 

function that generates a brief response at stimulus onset. The off-transient IRF is identical to the 678 

on-transient IRF but with opposite sign, generating a response at stimulus offset. The area under the 679 

sustained IRF is normalized to sum to 1, and area under each transient IRF is sums to 0. 680 
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Fixed and optimized pRF parameters. Spatial pRF parameters were independently 681 

estimated from each participant’s retinotopy experiment using the CSS pRF model, resulting in a 682 

pRF center (x0, y0), standard deviation (σ) and exponent (CSSn) parameter for each voxel. The 683 

standard deviation and exponent parameter trade-off in the CSS model (see ref22), where 
𝜎

√𝑛
 684 

approximates the effective pRF size: the standard deviation (σ) estimated with a linear pRF model 685 

(LSS, no spatial compression). Therefore, to reconstruct CSS pRFs. we use each voxel’s estimated 686 

CSS parameters (x0, y0, σ, and exponent). To reconstruct LSS and CST pRFs, we use the same 687 

estimated pRF center (x0, y0), but for the standard deviation (σ) we use the effective pRF size. 688 

The CST model had fixed parameters for the neural temporal IRFs and only optimized the 689 

CSTn using a grid-fit approach. Per pRF, the best fitting CSTn was determined by systematically 690 

evaluating goodness-of-fit of predicted time series with CSTn between 0.1–1 (0.05 steps) and 691 

selecting the CSTn resulting in the highest cross-validated R2. We used a grid-fit instead of a search-692 

fit optimization approach to avoid estimates getting stuck in a local minimum. 693 

5.6 Model fitting 694 

We fitted each voxel’s pRF model prediction separately to data, using a split-half cross-validation 695 

procedure. The maximum height of predicted BOLD time series was normalized to 1 and we added 696 

a column of 1’s to capture response offset. This resulted in two regressors (β0, β1) for LSS and CSS 697 

models, and three regressors (β0, βS, βT) for CST. We used linear regression (ordinary least squares) 698 

to fit these regressors to the voxel’s observed time series, separately for odd and even splits. To 699 

determine model goodness-of-fit (variance explained), we computed the cross-validated coefficient 700 

of determination (cv-R2) by using the scaled predicted time series of one split to predict observed 701 

time series from the other split and vice versa (i.e., β-weights are fixed and not refitted). Cv-R2 values 702 

and β-weights were averaged across split halves for each voxel. Split-half reliability across runs was 703 

used as the noise ceiling. 704 

To check whether CST model performance could be inflated by the extra regressor, we also 705 

computed cross-validated adjusted-R2, which penalizes goodness-of-fit for the number of time points 706 

and explanatory variables. The adjusted-R2 values were almost numerically identical to R2 and did 707 

not significantly affect our results nor statistical comparisons. 708 

5.7 Linear mixed model 709 

To quantify simultaneous suppression, we fitted a linear mixed model (LMM) to all participant’s voxels 710 

within a visual area with MATLAB’s fitlme.m, using the maximum likelihood fitting method. This LMM 711 
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predicted the average simultaneous BOLD response of each voxel as a function of the average 712 

sequential BOLD response, for each stimulus condition (fixed interaction effect), allowing for a 713 

random intercept and slope per participant and stimulus condition (random interaction effect): 714 

 715 

Equation 1: 𝑆𝐼𝑀⁡𝑎𝑚𝑝𝑙⁡~⁡1 + 𝑆𝐸𝑄⁡𝑎𝑚𝑝𝑙 × 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + (1 + 𝑆𝐸𝑄⁡𝑎𝑚𝑝𝑙 × 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛⁡|⁡𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡) 716 

 717 

where SIM ampl and SEQ ampl are a matrix (nr voxels x 4) with continuous values, Condition 718 

is a categorial vector (1 x 4), and Participant is the group level for the random effects (10 participants). 719 

 720 

This LMM captured our data well (mean R2 = 90%, SD = 6.6%), with V1: 86%, V2: 94%, V3: 721 

94%, hV4: 92%, VO1/2: 97%, V3A/B: 95%, IPS0/1: 88%, LO1/2: 85%, and TO1/2: 76% variance 722 

explained. We tested this LMM to three alternative LMMs: (i) mean sequential amplitude as a fixed 723 

factor (no condition interaction effect) with one random intercept per participant, (ii) a fixed interaction 724 

effect with a single intercept per participant, identical for each stimulus condition, and (iii) a fixed 725 

interaction effect with a random participant intercept for each condition. Despite having more degrees 726 

of freedom (45) than the alternative LMMs (4, 10, and 19), the main LMM was a better fit to the data 727 

as it had a significantly higher log-likelihood than alternative LMMs, and lower AIC and BIC for each 728 

visual area (F-test p < 0.00001) (Supplementary Fig 5). 729 

5.8 Summarizing results 730 

BOLD time series. Both observed and predicted run time series were averaged across split-halves 731 

and segmented into 23-TR time windows. These time windows spanned from 4 s pre-block onset, 8 732 

s stimulus block, to 11 s post-block. For each voxel, we took the average time window and standard 733 

error of the mean (SEM) across 4 repeats. 734 

Seq vs Sim BOLD amplitude. The average data and model time windows were summarized 735 

into 8 values per voxel (one per condition), by averaging the BOLD response within a 9-TR window 736 

centered on the peak, spanning from either 4–12s or 5–13s after stimulus block onset. These values 737 

were used in LMMs and scatter plots. We used a variable start per condition and visual area because 738 

the BOLD accumulation rate differed. The start was determined by averaging (data or model) time 739 

windows across voxels within a visual area and condition, into a “grand mean” time window and 740 

finding the first TR after block onset where the BOLD response exceeded 10% of the total cumulative 741 

sum. This averaging window was applied to all voxels within a visual area. 742 
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Simultaneous suppression effects. We summarized LMM results for each condition and 743 

visual area as line fits with 95%-confidence intervals (CI95%) using the slope and intercept of the 744 

individual participants (Fig 2B and 3B) or average across participants (Fig 4A). For Fig 4B, we 745 

summarized the simultaneous suppression level using the average slope and SEM across 746 

participants. For Fig 8, we first average slopes across conditions within a participant, and then 747 

average slopes across participants (± SEM). 748 

PRF parameters. We resampled pRF size, CSSn, CSTn, and CST βS and βT 1000x with 749 

replacement within a participant’s visual area, because the number of voxels varied across areas 750 

and participants. For pRF size and exponents, we report the median resampled parameter for each 751 

participant and visual area because the V1 and V2 CSTn were not normally distributed (see 752 

Supplementary Fig 3). CST βS and βT were normally distributed; hence, we report the average 753 

resampled beta weights per participant and visual area. For group results, we report the average (± 754 

SEM) across participants’ mean or median resampled parameter value, for each visual area. 755 

5.9 Statistical analyses 756 

To quantify differences in LMM regression slopes, we ran a two-way repeated measures ANOVA 757 

with factors visual area and stimulus conditions across participants. To quantify differences in pRF 758 

model cv-R2, we ran a two-way repeated measures ANOVA with factors pRF model and visual area 759 

across voxels of all participants and visual areas. For both ANOVA results, if there was a main effect 760 

(p<0.05), we used Bonferroni-corrected post-hoc multiple comparison t-tests to evaluate differences 761 

between pRF models, or visual area and stimulus condition. We used Pearson’s correlation r to 762 

quantify the relationship between participant slopes averaged across conditions and effective pRF 763 

size or CSTn across visual areas.  764 
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7  Supplementary Material 958 

Supplementary Figure 1. 959 
Average sequential vs simultaneous 960 
BOLD amplitude of individual voxels for 961 
all stimulus condition. Each point is a 962 
voxel are colored by effective pRF size 963 
estimated from retinotopy data in six 2º 964 
non-overlapping bins. Each panel shows 965 
data of all 10 participants. Black solid line: 966 
average LMM slope across participants. 967 
Shaded area: 95%-confidence interval 968 
across participants. Dashed line: identity 969 
line, no suppression.  970 
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 971 
Supplementary Figure 2. Simulated pRF model predictions for a sequential trial followed by a 972 
simultaneous trial. Each model simulation uses a large pRF (see inset in A) that overlaps four small squares 973 
presented for 0.2 s (short square timing). (A) Stimulus time course. The stimulus’ visual extent is represented 974 
as the total contrast area in a binarized stimulus frame, where pixels are summed across space for each time 975 
point and normalized to set the maximum contrast area to 1. Because each trial has 4 squares per quadrant, 976 
the contrast area for each square in the sequential trial (SEQ) is a fourth of the area when all squares are 977 
shown simultaneously (SIM). (B-D) PRF model predictions. Black lines & left y-axis: predicted neural 978 
response. Colored lines & right y-axis: predicted BOLD response. (B) Linear spatial summation (LSS) pRF 979 
prediction (dashed gray). The LSS model sums stimulus input linearly over time and space. This linearity, 980 
combined with individual squares in simultaneous and sequential trials being matched in duration and location 981 
relative to the pRF, results in the LSS model predicting no simultaneous suppression. (C) Compressive spatial 982 
summation (CSS) pRF prediction (dashed orange). Due to the compressive static nonlinearity, the CSS 983 
model predicts simultaneous suppression when multiple squares (simultaneously) overlap with the pRF than 984 
when a single square (sequentially) overlaps the pRF. The CSS pRF model sums linearly in time and as 985 
individual square duration is matched between paired sequential and simultaneous conditions, it will not predict 986 
differences in response amplitude for short vs long stimulus presentation timings. (D) Compressive 987 
spatiotemporal summation (CST) pRF prediction (blue). Blue dot-dashed: sustained spatiotemporal 988 
channel. Blue dashed: combined on- and off-transient spatiotemporal channel. By explicitly encoding neural 989 
temporal transients in milliseconds, the CST model predicts BOLD responses larger responses for many visual 990 
transients (SEQ) vs a few transients (SIM). The static nonlinearity produces additional subadditive 991 
spatiotemporal summation for both sustained and transient channels, including spatial subadditivity when 992 
multiple squares overlap the pRF. Consequently, both CST channels generate larger responses for sequential 993 
than simultaneous presentations. 994 
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 995 

Supplementary Figure 3. Average CST pRF exponent parameter distributions. Distributions are computed 996 
by first resampling participants’ data 1000x per ROI, then averaging distributions across participants. Both 997 
group average (line) and SEM (shaded area) of each ROI distribution are then upsampled 2x. Asterisks: median 998 
CST exponent value.  999 
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Eye movement analysis. Raw horizontal and vertical gaze position (deg) and velocity (deg/s) time 1000 

series of 5 participants during SEQ-SIM fMRI experiment were preprocessed as follows. First, we 1001 

removed time points occurring within -100 to 100 ms of blinks. Second, given large amounts of spatial 1002 

noise, we used the Identification by Two-Means Clustering algorithm [1] to label robust fixation 1003 

periods and their visual field location. If gaze locations jumped between two means due to noise, we 1004 

recentered data to a single mean. Third, we removed time points (and surrounding 2 ms) if it had (i) 1005 

a velocity larger than a typical saccade up to 8º (400 deg/s) [2], (ii) an absolute gaze location beyond 1006 

stimulus display (radius = 10º), or (iii) a gaze position SD 2.5x larger than SD across horizontal and 1007 

vertical time series. We excluded 7 runs with < 20% data, resulting in 32 runs total. We visualized 1008 

participant’s median and kernel density of gaze location across runs in visual space. 1009 

 1010 

 1011 

Supplementary Figure 4. Eye fixation locations during SEQ-SIM experiment. Normalized fixation density 1012 
is shown for 5 participants (S1, S2, S3, S4, S9) and across all participants (N=5). Red cross: Median gaze 1013 
location across runs. Contour lines: Density at 1st, 10th, 50th, 100th percentile, correspond to magenta, dark 1014 
blue, green, and yellow sections. Light gray squares: Outlined location of large squares closest to fixation 1015 
([x,y]=[0,0]). Dark gray squares: Outlined location of small squares closest to fixation. 1016 

1. Hessels, R.S., et al., Noise-robust fixation detection in eye movement data: Identification by two-1017 
means clustering (I2MC). Behav Res Methods 49(5), 1802-1823 (2017).  1018 

2. Smeets, J.B. and Hooge, I.T. Nature of variability in saccades. J Neurophysiol 90(1), 12-20 (2003).  1019 
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 1020 

Supplementary Figure 5. Comparison of linear mixed models (LMMs). For each model comparison metric, 1021 
we computed the difference between main LMM and alternative LMM. The main LMM fits the data better than 1022 
all alternative LMMs, for each visual area, on each metric. Right: Difference in LMM log likelihood. Middle: 1023 
Difference in LMM AIC. Left: Difference in LMM BIC. The main LMM uses a fixed intercept and slope for mean 1024 
sequential (SEQ) amplitude as a function of stimulus condition and allowing for random participant intercept 1025 
and slope per stimulus condition. Black bar: Alternative LMM 1, using a fixed intercept and slope for mean 1026 
sequential (SEQ) amplitude and allowing one random slope per participant. White bar: Alternative LMM 2, 1027 
using a fixed intercept and slope for mean sequential (SEQ) amplitude as a function of stimulus condition and 1028 
allowing one random slope per participant. Yellow bar: Alternative LMM 3, using a fixed intercept and slope for 1029 
mean sequential (SEQ) amplitude as a function of stimulus condition and allowing a random slope per 1030 
participant, per condition.  1031 
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Supplementary Table 1.  1032 
Summary of suppression slopes for 9 visual areas and 4 stimulus conditions. Data are scale factors and 1033 
have arbitrary units. Data are from 10 participants, except for IPS0/1 (4 participants) and TO1/2 (8 participants). 1034 
M: mean. SE: standard error. 1035 

 Stimulus condition 

 Small & Short Small & Long Big & Short Big & Long 

Visual area M SE M SE M SE M SE 

V1 .85 .057 .81 .023 .84 .070 .85 .036 

V2 .75 .028 .63 .023 .78 .037 .78 .055 

V3 .67 .040 .59 .054 .74 .039 .70 .076 

hV4 .64 .037 .40 .029 .66 .040 .62 .080 

VO1/2 .65 .051 .40 .034 .70 .042 .62 .070 

V3A/B .66 .051 .39 .043 .67 .035 .65 .059 

IPS0/1 .63 .061 .41 .054 .67 .10 .56 .056 

LO1/2 .56 .057 0.27 0.041 .61 .051 .59 .064 

TO1/2 .43 .057 0.24 0.043 0.47 0.019 .47 .11 

  1036 
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Supplementary Table 2. 1037 
Post-hoc comparisons of suppression slopes, for each visual area and stimulus condition. Mean 1038 
condition difference (C1 – C2), standard error (SE) and 95%-confidence intervals are have arbitray units 1039 
(slope). P-values are Bonferroni corrected for multiple comparisons. *** p < 0.001, ** p < 0.01, * p < 0.05. 1040 

Visual area Condition 1 Condition 2 C1 – C2 SE 
CI95% 

Lower 
CI95% 

Upper 

V1 Short & big Long & big -.013 .076 -.21 .19 
 Short & big Short & small -.0071 .076 -.21 .19 
 Short & big Long & small .030 .076 -.17 .23 
 Long & big Short & small .0054 .076 -.20 .22 
 Long & big Long & small .042 .076 -.19 .24 
 Short & small Long & small .037 .076 -.16 .24 

V2 Short & big Long & big .047 .076 -.15 .25 
 Short & big Short & small .032 .076 -.17 .23 
 Short & big Long & small .15 .076 -.049 .35 
 Long & big Short & small -.016 .076 -.22 .18 
 Long & big Long & small .12 .076 -.096 .31 
 Short & small Long & small .12 .076 -.080 .32 

V3 Short & big Long & big .034 .076 -.17 .23 
 Short & big Short & small .051 .076 -.15 .25 
 Short & big Long & small .14 .076 -.057 .34 
 Long & big Short & small .017 .076 -.18 .22 
 Long & big Long & small .11 .076 -.091 .31 
 Short & small Long & small .093 .076 -.11 .29 

hV4 Short & big Long & big .043 .076 -.16 .24 
 Short & big Short & small .025 .076 -.18 .23 
 Short & big Long & small .27** .076 .066 .47 
 Long & big Short & small -.018 .076 -.22 .18 
 Long & big Long & small .22* .076 .022 .42 
 Short & small Long & small .24** .076 .040 .44 

VO1/2 Short & big Long & big .086 .076 -.11 .29 
 Short & big Short & small .056 .076 -.14 .26 
 Short & big Long & small .30*** .076 .10 .50 
 Long & big Short & small -.030 .076 -.23 .17 
 Long & big Long & small .22* .076 .016 .42 
 Short & small Long & small .25** .076 .046 .45 

V3A/B Short & big Long & big .033 .076 -.17 .23 
 Short & big Short & small .027 .076 -.17 .23 
 Short & big Long & small .30*** .076 .099 .50 
 Long & big Short & small -.0061 .076 -.21 .19 
 Long & big Long & small .27** .076 .066 .47 
 Short & small Long & small .27** .076 .072 .47 

IPS0/1 Short & big Long & big .12 .12 -.21 .42 
 Short & big Short & small .042 .12 -.27 .36 
 Short & big Long & small .26 .12 -.056 .58 
 Long & big Short & small -.064 .12 -.38 .25 
 Long & big Long & small .16 .12 -.16 .47 
 Short & small Long & small .22 .12 -.098 .54 

LO1/2 Short & big Long & big .027 .076 -.17 .23 
 Short & big Short & small .058 .076 -.14 .26 
 Short & big Long & small .35*** .076 .15 .55 
 Long & big Short & small .030 .076 -.17 .23 
 Long & big Long & small .32*** .076 .12 .52 
 Short & small Long & small .29*** .076 .091 .49 

TO1/2 Short & big Long & big .14 .084 -.086 .36 
 Short & big Short & small .040 .084 -.18 .26 
 Short & big Long & small .24* .084 .013 .46 
 Long & big Short & small -.098 .084 -.32 .13 
 Long & big Long & small .10 .084 -.12 .32 
 Short & small Long & small .20 .084 -.027 0.42 
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Supplementary Table 3. 1041 
Post-hoc comparisons of pRF model performance. Mean model difference (M1 – M2), standard error and 1042 
95%-confidence intervals are in units of percent cross-validated variance explained. P-values are Bonferroni 1043 
corrected for multiple comparisons. *** p < 0.001, ** p < 0.01, * p < 0.05. 1044 

Visual area Model 1 Model 2 M1 – M2  SE 
CI95%  
Lower 

CI95%  
Upper 

V1 CSS LSS -1.38*** 0.24 -1.95 -0.804 

 CST CSS 6.54*** 0.24 5.97 7.12 

 CST LSS 5.17*** 0.24 4.59 5.74 

V2 CSS LSS -0.41 0.24 -0.98 0.164 

 CST CSS 9.33*** 0.24 8.76 9.90 

 CST LSS 8.92*** 0.24 8.35 9.49 

V3 CSS LSS 0.25 0.24 -0.32 0.819 

 CST CSS 10.42*** 0.24 9.85 11.0 

 CST LSS 10.67*** 0.24 10.10 11.2 

hV4 CSS LSS 3.21*** 0.32 2.45 3.97 

 CST CSS 8.02*** 0.32 7.26 8.77 

 CST LSS 11.23*** 0.32 10.47 12.0 

VO1/2 CSS LSS 4.92*** 0.38 4.02 5.82 

 CST CSS 8.88*** 0.38 7.98 9.78 

 CST LSS 13.80*** 0.38 12.90 14.7 

V3A/B CSS LSS 1.02*** 0.26 0.39 1.65 

 CST CSS 8.63*** 0.26 8.00 9.26 

 CST LSS 9.65*** 0.26 9.02 10.3 

IPS0/1 CSS LSS 2.77** 0.78 0.91 4.63 

 CST CSS 6.77*** 0.78 4.91 8.62 

 CST LSS 9.53*** 0.78 7.68 11.4 

LO1/2 CSS LSS 1.16*** 0.23 0.61 1.71 

 CST CSS 4.44*** 0.23 3.89 5.00 

 CST LSS 5.60*** 0.23 5.05 6.15 

TO1/2 CSS LSS 3.95*** 0.56 2.60 5.30 

 CST CSS 3.34*** 0.56 1.99 4.69 

 CST LSS 7.29*** 0.56 5.95 8.64 

 1045 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2023. ; https://doi.org/10.1101/2023.06.24.546388doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.24.546388
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1 Abstract
	2 Introduction
	3 Results
	3.1 V1 voxels with small pRFs show modest to no simultaneous suppression
	3.2 Strong simultaneous suppression for large pRFs in higher-level visual areas
	3.3 Simultaneous suppression increases up the visual hierarchy and depends on stimulus size and presentation timing
	3.4 A spatiotemporal pRF modeling framework to predict simultaneous suppression at the single voxel level
	3.5 Comparing pRF model performance in predicting observed SEQ-SIM data
	3.6 What pRF components drive the observed simultaneous suppression?

	4 Discussion
	4.1 Rethinking the neural mechanisms of simultaneous suppression
	4.2 Simultaneous suppression increases up the visual processing hierarchy, and depends on stimulus size and timing
	4.3 Compressive spatiotemporal computations within pRFs can explain simultaneous suppression across visual cortex
	4.4 Compressive spatiotemporal summation as a general computational mechanism in the visual system

	5 Methods
	5.1 Participants
	5.2 Stimuli & experimental design
	5.3 MRI data acquisition
	5.4 MRI data analysis
	5.4.1 Reproducible computation and code sharing
	5.4.2 Preprocessing

	5.5 pRF modeling framework
	5.6 Model fitting
	5.7 Linear mixed model
	5.8 Summarizing results
	5.9 Statistical analyses

	6 References
	7  Supplementary Material

